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Abstract

Least-squares and kernel-ridge / Gaussian pro-
cess regression are among the foundational
algorithms of statistics and machine learning.
Famously, the worst-case cost of exact non-
parametric regression grows cubically with
the data-set size; but a growing number of
approximations have been developed that es-
timate good solutions at lower cost. These
algorithms typically return point estimators,
without measures of uncertainty. Leverag-
ing recent results casting elementary linear
algebra operations as probabilistic inference,
we propose a new approximate method for
nonparametric least-squares that affords a
probabilistic uncertainty estimate over the er-
ror between the approximate and exact least-
squares solution (this is not the same as the
posterior variance of the associated Gaussian
process regressor). This allows estimating the
error of the least-squares solution on a subset
of the data relative to the full-data solution.
The uncertainty can be used to control the
computational effort invested in the approxi-
mation. Our algorithm has linear cost in the
data-set size, and a simple formal form, so
that it can be implemented with a few lines
of code in programming languages with linear
algebra functionality.

1 INTRODUCTION

The least-squares estimation of a regression function
from a reproducing kernel Hilbert space (RKHS) is
one of the foundational algorithms of statistics and
machine learning. Partly as a result of this central role,
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it is known under a plurality of names, including kernel
ridge regression (Hoerl and Kennard, 1970), spline re-
gression (Wahba, 1990), and Kriging (Matheron, 1973).
All of these terms refer to a unique real-valued function
f : X_R over some domain X: The element of the
reproducing kernel Hilbert space of a kernel k over X
that minimizes the regularized loss

L(f) = ‖f‖2k + σ−2
N∑

i=1

‖yi − f(xi)‖22, (1)

where (xi, yi) ∈ X × R, i = 1, . . . , N are input and
output labels of some dataset, σ ∈ R is a parame-
ter, and ‖ · ‖k is the associated norm of the RKHS
of k. Equivalently, this function is also the posterior
mean of the Gaussian process arising from the prior
p(f) = GP(f ; 0, k) with covariance function k and
the likelihood p(y |f(x)) = N (y;f(x), σ2I) (Kimel-
dorf and Wahba, 1970; Wahba, 1990; Rasmussen and
Williams, 2006). It is given by the function

f̄(x∗) = kᵀ∗(K + σ2IN )−1y, (2)

where K is the kernel Gram matrix, the matrix in
RN×N whose elements are given by Kij = k(xi, xj),
and kᵀ∗ ∈ R1×N is the projection vector with element
k∗,i = k(x∗, xi). Throughout, we will use the shorthand
notation B := K + σ2IN . The marginal variance of
the Gaussian process is given by

V(x∗) = k(x∗,x∗)− kᵀ∗(K + σ2IN )−1k∗. (3)

For the purposes of this paper we will take this situ-
ation as given and ignore the issue of how the kernel
k should be chosen and adapted to the dataset (see
Schölkopf and Smola, 2002; Rasmussen and Williams,
2006, for discussions). The primary computational is-
sue of least-squares estimation is the solution of the
linear problem B−1y. The standard algorithms for
this purpose—Gaussian elimination (more precisely,
LU decomposition (Turing, 1948)) and the Cholesky
decomposition (Benôıt, 1924)—have worst-case com-
plexity O(N3).

In the kernel and Gaussian process communities, many
approximate inference methods have been proposed to
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Figure 1: Conceptional sketch: Difference between posterior marginal variance (red shading) of an approximate
Gaussian process model over f and the estimate of the numerical error on the approximated posterior mean/least-
squares estimate (green shading) introduced in this paper. Crosses denote the full data set; circles denote
the subset used in the approximation. Left: absolute function values. The solid line is the exact posterior
mean/least squares estimate arising from the entire dataset. The dashed line is the Subset of Data approximation.
Right: plot relative to the exact least-squares/posterior mean function. The dashed line is the absolute value
of the approximation error. While the exact posterior mean is not always within one posterior variance of the
approximated GP, the numerical error estimate is a hard upper bound on the difference between the posterior
means. For clarity, this conceptional sketch uses the implicit exact choice W =

√
2H , which is only estimated in

the experiments of Section 4.

address this issue by constructing an approximation f̂
to f̄ at cost linear or sub-linear in N (Zhu et al., 1998;
Csató and Opper, 2002; Snelson and Ghahramani, 2007;
Walder et al., 2008; Rahimi and Recht, 2009; Titsias,
2009; Lázaro-Gredilla et al., 2010; Yan and Qi, 2010;
Wilson et al., 2013; Le et al., 2013; Solin and Särkkä,
2014). Reviews like that of Chalupka et al. (2013)
or Quiñonero-Candela and Rasmussen (2005) suggest
that several of these methods do give sizeable speedups
and reasonably good approximations; there is currently
no unique “best” such approximation. Virtually all
these approximate inference methods provide a point-
estimator for f̄ without an uncertainty estimate. Our
aim here is to provide such uncertainty measures, i.e. an
estimate of the residual r(x) := |f̂(x)− f̄(x)|. In this
new line of work we provide insights for the Subset of
Data approach. Other approximation techniques are
under investigation.

Building on recent results (Hennig, 2015) that cast
elementary linear algebra algorithms as instances of
Gaussian regression, Section 2 shows how the LU and
Cholesky decompositions of symmetric positive definite
(s.p.d.) matrices can be interpreted as two different
formulations of the same posterior mean of a family
of Gaussian distributions arising from conditioning a
Gaussian prior over the elements of the matrix on ‘ob-

served’ linear projections of said matrix along conjugate
directions (this is related to an argument already made
by Hestenes and Stiefel (1952)). We also show that
within this family, there exists a possible choice of prior
covariance that provides a calibrated uncertainty es-
timate if the algorithm is stopped after less than N
steps (after the full N steps, the algorithm converges,
and the posterior covariance vanishes). Interestingly, it
is not trivial to make this posterior covariance explicit,
as it is only used implicitly in the classic algorithm.
Doing so requires the estimation of a large number of
unobserved parameters, for which we provide a simple,
regularized solution of low computational cost. The
result is a statistical estimate of a strict upper bound of
the residual r(x). If the algorithm is run for M steps,
it has cost O(MN +M3). This is more expensive than
the cheapest approximate inference methods for least-
squares (which are sub-linear in N), but cheaper than
many state of the art Gaussian process approximation
methods that are O(M2N).

While we do not study application examples, such an
uncertainty estimate has obvious use cases. For exam-
ple, this numerical uncertainty could be propagated
forward as an additional term to control exploration
in reinforcement learning with Gaussian processes (e.g.
Boedecker et al., 2014). Or, it could be used to control
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computational effort invested into maximum likelihood
optimization of kernel hyper-parameters. One could
identify irrelevant parameter configurations by training
on a subset of the data and evaluating the predictive
performance taking into account the residual.

A practical advantage of the fact that our algorithm
is a re-interpretation of classic matrix decompositions
of s.p.d. matrices is that it can be implemented with
ease and great efficiency: Since the Cholesky and LU
decompositions are an elementary operation, they are
available (and optimized well) in all major linear al-
gebra libraries. Leveraging the output of such a basic
library, our algorithm can be formulated in a few lines
of additional code. An instance of such code in matlab
can be found at the end of this text, in Section 5.

2 GAUSSIAN INFERENCE FOR
LEAST-SQUARES

Before we move to the main derivations, we establish
some relevant background.

2.1 Notation

Our notation largely follows that of Rasmussen and
Williams (2006). In the following, diag(B), for a square
matrix B, is a diagonal matrix of same shape as B,
containing the diagonal elements ofB. Throughout the
discourse B will be a symmetric and positive definite
matrix. We will also use the shorthand H := B−1 for
the inverse of B.

2.2 The Subset of Data (SoD)
Approximation

Arguably the most straightforward approximation f̂
arises by simply considering only a subset of the pro-
vided data, and computing the full least-squares so-
lution on this subset. Chalupka et al. (2013) showed
empirically that if the dataset is sufficiently regular,
even randomly selected subsets can provide good ap-
proximations. This result is intuitive: If the latent
function is regular enough to be over-sampled by the
dataset, then such randomly selected sub-sets provide
good coverage of the function. The SoD approximation
naturally has sub-linear complexity O(M3), where M
the number of samples is much smaller than N , the
total number of data points.

2.3 Gaussian Elimination and the LU,
Cholesky Decompositions

Gaussian elimination transforms the system Bα = y
into triangular form, whence α can be obtained by
substitution. If B is invertible (in particular, if it is

s.p.d.), there exists a lower unitriangular1 matrix L
and an upper triangular matrix U , such that B = LU .
The matrix U is the triangular result of Gaussian elim-
ination, while L contains the applied transformations
(Golub and Van Loan, 1996).

For the s.p.d. case, Hestenes and Stiefel (1952) showed
that Gaussian elimination can be formulated as a conju-
gate directions method. Two vectors si, sj ∈ RN×1 are
called B-conjugate if sᵀiBsj ∝ δij (using Kronecker’s
symbol). Conjugate vectors can be constructed with
a slight modification of the Gram-Schmidt orthogo-
nalization procedure: given a linearly independent set
u1, ...,uM ∈ RN×1, set

si := ui −
i−1∑

j=1

sᵀjBui

sᵀjBsj
sj . (4)

When using the standard unit vectors ei for ui then

S := [s1, ..., sM ], (5)

and Y := BS have the property that Y ᵀ = U
and Y (SᵀY )−1 = L where SᵀY is diagonal. If
B is positive definite, then the diagonal elements of
SᵀY = SᵀBS are all positive. Let (SᵀY )1/2 be the
diagonal matrix containing the element-wise square-
roots of the corresponding elements in SᵀY . Then
R = (SᵀY )1/2Y ᵀ is a lower-triangular matrix, and
B = RRᵀ. Thus, R is the Cholesky decomposition of
B (which is unique, (Golub and Van Loan, 1996)).

2.4 Gaussian Inference over Matrices

Hennig (2015) recently showed that the method of
conjugate gradients (Hestenes and Stiefel, 1952) can
be interpreted as least-squares/Gaussian inference on
matrix elements. We will use a similar but simpler
argument regarding the Cholesky and LU decomposi-
tions in the next section. As a preliminary, we briefly
introduce the notion of parametric Gaussian inference
on the elements of a matrix, using the following nota-
tion (van Loan, 2000): For B ∈ RN×N , we will denote

with
−→
B ∈ RN2×1 a vector created by stacking the

rows of B. The Kronecker product of two matrices
A ∈ RMA×N and C ∈ RMC×N is the MAMC × N2

matrix with [A⊗C](i,j),(k,l) = AikCjl where (i, j) is
a double index. It has the property

(A⊗C)
−→
B =

−−−−→
ABCᵀ. (6)

Using this notation, one can define a multivariate Gaus-
sian2 prior over the matrix H ∈ RN×N (the inverse of

1i.e. it is triangular, with only ones on the diagonal.
2Such distributions are also known as “matrix-variate”

Gaussians (Dawid, 1981), but this name does not generalize
to the symmetric version used below.
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B), using a s.p.d. matrix W ∈ RN×N ,

N (H;
−→
H0,W ⊗W ). (7)

Assume some algorithm chooses a matrix of ‘directions’
S ∈ RN×M of rank M , and then computes Y = BS.
Clearly, S = HY is a linear transformation of H,
and

−→
S = (I ⊗ Y ᵀ)

−→
H. Since Gaussians are closed

under linear conditioning, the posterior arising from
these linear observations is also Gaussian. It has the
form (Hennig and Kiefel, 2012)

p(H|S,Y ) = N (H;
−−−−−−−→
H0 +HM ,W ⊗WM ) (8)

where HM = WYG−1∆ᵀ, and

WM =
[
W −WYG−1Y ᵀW

]
,

using the shorthands ∆ := S − H0Y and G :=
Y ᵀWY . Note that the posterior mean can be com-
puted in O(N2M).

Encoding Symmetry It is possible to restrict prob-
ability mass to only symmetric matrices, using the sym-
metric Kronecker product for which we define the ma-
trix Γ ∈ RN2×N2

with [Γ](i,j),(k,l) = 0.5(δikδjl +δilδkj).

This operator symmetrizes matrices: 2Γ
−→
B =

−−−−−→
B +Bᵀ.

Then, for square matrices A,C ∈ RN×N the symmet-
ric Kronecker product is A⊗	C := Γ(A ⊗ C)Γ and
satisfies

4(A⊗	C)
−→
B =

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ABCᵀ +ABᵀCᵀ +CBAᵀ +CBᵀAᵀ.

(9)

A prior of the form

N (H;
−→
H0,W⊗	W ) (10)

yields the posterior (Hennig, 2015)

N (
−→
H;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
H0 +HM +Hᵀ

M −WYG−1Y ᵀHM ,

WM⊗	WM ). (11)

Here, too, the mean can be computed in O(N2M).
Note the difference in the posterior covariance: If
symmetry is not encoded, the posterior covariance is
W ⊗WM ; whereas, encoding symmetry, the posterior
covariance is WM⊗	WM . Loosely speaking, under a ⊗
prior the uncertainty ‘decreases only column-wise’.

2.5 LU and Cholesky decompositions as a
Posterior Mean

We note that, from the general forms of posteriors
above, there is a family of Gaussian priors, indexed by a
positive number γ ∈ R+, whose posterior means, given
conjugate directions S, equal the LU and Cholesky

decompositions: If we set B0 := 0 and3 W := γB in
Equation 7 , then Equation 8 gives

BM = Y (SᵀY )−1Y ᵀ = LU = RRᵀ. (12)

Here, the roles of S and Y are exchanged relative
to Equation 7, since we now perform inference over
B. Then by choice of W , WS = Y and also ∆ =
(Y −B0S) = Y .

For inference over H, recall that S can be seen as ob-
servations of linear transformations ofH with Y . Thus
the same data can be used to obtain a decomposition
for B and H. Analogously to the inference over B
we set H0 := 0 and W := γH. It may seem counter-
intuitive to use the very matrix that is to be inferred
in the computations. In this argument, however, this
is an implicit choice: for the posterior mean it is not
actually required; instead, every term WY is simply
replaced by S. Below, we will first show (Section 3.1)
that there is a choice of γ in the family that can be
interpreted as a meaningful error estimate. Section 3.2
then shows how to estimate this W empirically. The
posterior mean is

HM = S(Y ᵀS)−1Sᵀ (13)

A difference to the posterior over B is that the decom-
position is UL, and that the intermediate estimates for
H are only non-zero in the upper left M×M block (see
Section 2.6 below). For better uncertainty estimates
we also include the knowledge about the symmetry of
the matrix. For the specific choice H0 = 0, this has
no effect on the posterior mean as many terms cancel,
but the posterior uncertainty is less conservative.

2.6 Relation to Subset of Data

The predictive mean HM of Eq. (13) is that of the
subset of data approximation. To see this, first note
that, as pointed out above, only the upper M×M block
is non-zero and we are going to show that this upper
block is exactly (KU ,U +σ2I)−1, where U denotes the
indices of the selected subset, i.e.

K + σ2I =

(
BU ,U BU ,X\U
BX\U ,U BX\U ,X\U

)
. (14)

By construction, S is upper triangular and we denote
this upper part with SU , i.e S =

(
Sᵀ
U 0

)ᵀ
. Multiply-

3This choice is only well-defined for s.p.d. B since, as a
covariance, W must be s.p.d. itself.
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ing HM = S(SᵀY )−1Sᵀ with B yields

S

[(
Sᵀ
U 0

)( BU ,U BU ,X\U
BX\U ,U BX\U ,X\U

)(
SU

0

)]−1
SᵀB

(15)

=

(
SU

0

)[
Sᵀ
UBU ,X\USU

]−1 (
Sᵀ
U 0

)
B (16)

=

(
SU

0

)
S−1U B−1U ,X\U (S−1U )ᵀ

(
Sᵀ
U 0

)
B (17)

=

(
B−1U ,U 0

0 0

)
B (18)

=

(
I 0
0 0

)
(19)

We note in passing that the approximation of Titsias
(2009) can be formulated in an analogous fashion, by
choosing B0 = σ2I, W = K and S := KX,U . But it
is less clear how the corresponding posterior variance
can be fashioned into a meaningful error estimate.

3 EMPIRICAL FITTING OF THE
POSTERIOR VARIANCE

The preceding section showed that the “intermediate”
LU and Cholesky decompositions (those of HUU ) can
be interpreted as the posterior mean of Gaussian distri-
butions over H arising from conditioning a family of
Gaussian priors on conjugate projections S of B. As
such, this observation does not yet imply that the asso-
ciated posterior variances of the Gaussian family can be
interpreted as a measure of uncertainty. In this section,
we show that the posterior variance of the belief over
H provides a strict upper bound to the approxima-
tion error of the Subset of Data approximation, if one
could set W =

√
2H. Of course, empirically, this is

not possible. Thus, a subsequent section will show how
to practically estimate a useful W that approximates
this bound at low cost.

3.1 An Upper Bound on the Approximation
Error

Let a, b ∈ RN be arbitrary vectors. The Gaus-
sian measure (11) on H implies that the scalar
µ̂ := aᵀHb is Gaussian distributed as well, with
mean aᵀHMb and a variance we denote with
ε̂2 := 1

2

(
aᵀWMab

ᵀWMb+ (aᵀWMb)
2
)

(derived in
the proof).

Theorem. The absolute error |µ̂− aᵀHb| divided by
the standard deviation ε̂ is always less than 1:

|aᵀHMb− aᵀHb|
ε̂

< 1 (20)

For a = b the ratio is exactly 1√
2

(or, for the choice

W = H, it is exactly one).

Proof. See supplementary.

Corollary. The difference between the subset of data
approximation and the exact least-squares solution, at
a specific test location x∗, divided by the standard de-
viation of the estimate under the Gaussian posterior
assigned by Eq. (11) with W =

√
2H is bound above

by 1.

|kᵀ∗Hy − kᵀ∗HMy|√
ε̂2∗

< 1 (21)

Further, under the choice W = H, the difference be-
tween the exact and approximate correction term in the
marginal variance of the Gaussian process on f , divided
by the posterior standard deviation of the estimate, is
exactly 1.

|kᵀ∗Hk∗ − kᵀ∗HMk∗|√
ε̂2∗

= 1 (22)

To avoid confusion, it is important to note that the
proof of Theorem 3.1 does not assume anything about
a or b. In particular when setting a = k∗ and b = y in
the Corollary, there is no assumption that y is actually
a draw from the Gaussian process with covariance k.
The implication of the Theorem and Corollary is that
there is a well-calibrated Gaussian belief around the
SoD approximation that remains well-calibrated across
all possible choices of M . However, the prior covariance
necessary for this bound involves the unknown matrix
H itself. The Theorem is the matrix-valued (and sym-
metric Kronecker-covariant) extension of the trivial
scalar statement that there is a variance σ2 such that,
given x and µ the Gaussian distribution N (x; 0, σ2)
is well-scaled in the sense that x2/σ2 < 1 (namely
σ = |x|). Below, we will now introduce a practical
empirical estimator for W .

3.2 Estimating the Posterior Variance

We adopt an empirical Bayesian approach, constructing
an approximation to W based on the collected obser-
vations (S,Y ). A good approximation Ŵ exhibits the
characteristics of H. Besides symmetry and positive
definiteness, H also satisfiesHY = S and Y ᵀH = Sᵀ.
The space of all matrices satisfying this condition can
be parametrized as

Ŵ (Ω) := HM

+ (I − S(Y ᵀS)−1Y ᵀ)Ω(I − Y (SᵀY )−1Sᵀ) (23)
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Figure 2: Ten random initializations of the probabilistic subset of data approximation on the PUMADYN (top
row) and CPU (bottom row) data sets, using the ARD Squared Exponential kernel. Left: standardized mean
squared error for Subset of Data. Right: ratio between absolute error and uncertainty. The upper lines are the
maximum, the lower lines the average over all test inputs. The horizontal line shows the theoretical bound at 1
that would be guaranteed if W =

√
2H where estimated exactly.

Furthermore, for all ‘future’ YM+1, the matrix
Y ᵀ
M+1HYM+1 is diagonal, because S is B-conjugate.

Y ᵀ
M+1HYM+1 = SM+1B

ᵀHBSM+1 (24)

= Sᵀ
M+1BSM+1 (25)

= diag(Sᵀ
M+1BSM+1) (26)

For the same reason, Ŵ (Ω) has the property

Y ᵀ
M+1Ŵ (Ω)YM+1 = Y ᵀ

M+1ΩYM+1. This suggests
choosing a scalar Ω = ωI. Assuming the subset is
drawn i.i.d. from the full dataset, ω can be estimated
by a simple average,

ω := avg(diag(SᵀBS) · diag(Y ᵀY )−1). (27)

For clarity, we point out that this choice does not yield
a scalar Ŵ . Rather, the projections to the left and
right of Ω in Eq. (24) capture aspects of the structure

of H to construct a nontrivial estimate Ŵ . Computing
this estimate ω requires O(M2N) operations. However,
in practice the last 10 columns of S and Y are enough
such that the effort is only 10 · O(MN).

4 EXPERIMENTS

The purpose of this section is to provide insights on
the practicability of the uncertainty estimate on the
Subset of Data approximation for the least-squares so-
lution. For studies on the quality of the Subset of Data
approximation in relation to the many other approx-
imation methods see e.g. Titsias (2009) or Chalupka
et al. (2013). These reviews find that the SoD approx-
imation is competitive with other approaches if the
regression function is sufficiently regular.

Figure 1 shows, on a toy example, the posterior uncer-
tainty given the correct W and contrasts it with the
posterior uncertainty of the approximated Gaussian
process. To assess the performance of the estimated Ŵ ,
we chose two medium sized data sets where comput-
ing the full Gaussian process posterior is still feasible.
For each data set we optimized the kernel parameters
by maximum marginal likelihood, until a test error
of less than 0.1 was achieved. As test metric, we use
the Standardized Mean Squared Error (Rasmussen and
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Figure 3: Same setup as Figure 2, but using the ARD Matérn 5/2 kernel.

Williams, 2006, p. 23),

SMSE =
1

n∗

n∗∑

k=1

(y∗k − µ∗k)
2

Var[y∗]
, (28)

where y∗ are the test targets and µ∗ is the mean
prediction in the test locations. For Subset of Data
we replaced the test targets with the corresponding
mean predictions of the Gaussian process. We per-
formed these experiments using two different kernel
functions, namely automatic relevance determination
(ARD) Squared Exponential and ARD Matérn 5/2 (Ras-
mussen and Williams, 2006, p. 83f, p. 106).

kSE(d(x, z;λ)) = f exp

(
−1

2
d2
)

(29)

k52(d(x, z;λ)) = f

(
1 +
√

5d+
5

3
d2
)

exp
(
−
√

5d
)

(30)

where f ∈ R+,λ ∈ RD are parameters and
d(x, z;λ) := xᵀ diag(λ)−1z. The reason to do so is
that different choices in kernel give linear problems of
varying difficulty, and kernel Gram matrices of differing
sparseness. We evaluated the estimator selecting the
subsets randomly and – as suggested by Chalupka et al.
(2013) – using Farthest Point Clustering (FPC) (Gon-
zalez, 1985). We recorded maximum and average of the
ratio between approximation error and estimated error

across the test inputs. The first dataset is pumadyn32nm,
available from http://www.cs.toronto.edu/~delve/

data/datasets.html. The other data set is called
CPU, available from http://archive.ics.uci.edu/

ml/. CPU contains 6554 data points in a 21 dimen-
sional input space, and pumadyn32nm consists of 7168
data points with 32 input dimensions.

For the randomly selected subsets the results for the
Squared Exponential kernel are reported in Figure 2,
the results for the Matérn kernel in Figure 3. The
results of the FPC experiments are part of the sup-
plementary material. The figures show that it takes
a subset of about 200 samples for the estimate Ŵ to
converge to a meaningful value, so that the error bound
holds. They also show that, while the upper bound is
not tight, it is usually within one or at most two orders
of magnitude of the actual maximal error, and thus
should also be a meaningful metric for the control of
computational effort.

5 CODE

Computing the uncertainty over the prediction can be
done in a few lines of code given the already computed
objects for a Subset of Data prediction in x∗. We
use monospace font to denote objects referenced in
the Matlab function below. For simplicity we assume
the selected subset U are the first M entries of the
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N × D input data matrix X. Further let k be the
kernel function and R = chol(k(XU ,XU ) + σ2IM ). In
Matlab this requires an additional transpose as chol

computes an upper triangular matrix. We do not di-
rectly compute S via Gram-Schmidt but can infer it
from R. Recall that HM is zero except for the upper
M ×M block and that it is the inverse of the subset
kernel matrix. Therefore (RRᵀ)−1 = SU (Sᵀ

UYU )−1Sᵀ
U

and SU = (Rᵀ)−1(Sᵀ
UYU )−

1
2 . Since S is constructed

from Gram-Schmidt using the standard unit vectors,
S is unitriangular and therefore (Sᵀ

UYU )−
1
2 must be

diag(R).

In addition to R we require Kus := k(U ,x∗) and
alpha := (RRᵀ)−1yU . These objects are already
available after computing mean and variance for
x∗. Furthermore we require Ksx := k(x∗,X)
and Kxu := k(X,U). Then ε̂∗ from section 3.1 is
get uncertainty(M, R, alpha, Kus, Ksx, Kxu, y).

1 function std = get uncertainty(M, R, ...
alpha, Kus, Ksx, Kxu, y)

2 % compute last 10 S U
3 S = zeros(M, 10);
4 dR = diag(R(M-9:M, M-9:M));
5 S(M-9:M, :) = diag(dR);
6 S = R' \ S;
7 Y = Kxu * S;
8 omega = mean(dR.ˆ2 ./ sum(Y'.*Y', 2));
9

10 a = Kxu * alpha;
11 b = Kxu * (R \ (R' \ Kus));
12 aWb = Ksx*y - b'*y - Ksx*a + b'*a;
13 aWa = y'*y - 2 * (a'*y) + a'*a;
14 bWb = Ksx*Ksx' - 2 * (Ksx*b) + b'*b;
15 std = aWbˆ2 + aWa * bWb;
16 std = omega / 2 * sqrt(std);
17 end

6 CONCLUSIONS

Computational approximations, like statistical estima-
tors constructed from physical data sources, should
come with uncertainty estimates. We introduced a
construction of such an uncertainty estimate for the lin-
ear optimization problem at the heart of least-squares
estimation, one of the most fundamental computations
of statistics. Our uncertainty estimate is not based
on assumptions about the data labels y, in particular
it does not require the assumption that the data be
sampled from a Gaussian process. The algorithm has
linear complexity in the size of the data set. Because
it builds a light-weight statistical estimate from the
output of a classic numerical method (the Cholesky
decomposition), it can be implemented efficiently by
leveraging existing, highly optimized implementations
of this decomposition.

This kind of error estimate should, in principle, be fea-
sible for most approximate inference methods. Adding
this kind of functionality to other approximation
methods for least-squares, as well as finding better
(i.e. cheaper and more precise) statistical estimators
for the posterior variance, is left for future work.
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