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Abstract. The implementation of high-performance robot controllersfor com-
plex control tasks such as playing autonomous robot soccer is tedious, error-
prone, and a never ending programming task. In this paper we propose pro-
grammers to write autonomous controllers that optimize andautomatically adapt
themselves to changing circumstances of task execution using explicit percep-
tion, dynamics and action models. To this end we develop ROLL (Robot Learn-
ing Language), a control language allowing for model-basedrobot programming.
ROLL provides language constructs for specifying executablecode pieces of how
to learn and update these models. We are currently using ROLL’s mechanisms for
implementing a rational reconstruction of our soccer robotcontrollers.

1 Introduction

The implementation of high performance robot controllers for complex control tasks
such as playing autonomous robot soccer is tedious, error-prone, and a never end-
ing programming task. Optimizing robot behavior requires parameter tweaking, situ-
ation specific behavior modifications, and proper synchronizations between concurrent
threads of control. The mutual interactions between parameter settings, synchroniza-
tions, and situation-specific hooks imply that even tiny changes to the program may
have large and unpredictable effects on the robot behavior.

Even worse, not only changes to the program cause drastic behavior changes, but
even changes to the environment such as switching from one soccer field to another,
changing lighting conditions, or simply playing against another team might cause the
same controller to produce very different behavior. In one case we played on a softer
carpet which caused the robot to sink deeper and the ball to get stuck between the guide
rail for dribbling and the floor. As a result, the dribbling skill and the action selection
had to be substantially modified. The robots had to be equipped with mechanisms to
detect situations where the ball is stuck in order to avoid overheating the controller
board. Or, in another case the playing strategy had to be extended substantially when
we played against a team with bigger robots. The bigger robots occluded landmarks on
the field and the ball. As a consequence the robots needed muchmore sophistication in
situations where they couldn’t localize themselves and theball [2].

In order to enable programmers to implement controllers that can adapt themselves
quickly to such changing circumstances we propose to specify the code pieces requiring
adaptation or optimization based on experience explicitlyas executable learning prob-
lems. For this purpose we develop a language ROLL (Robot Learning Language) that



integrates learning mechanisms into the existing robot control and plan language RPL
[4]. Using ROLL programmers can specify robot controllers that represent, acquire, and
reason about models of their control routines. In this paperwe focus on the acquisition
of appropriate models by automatic learning. Besides models we also learn routines that
execute the robot’s desired actions using the automatically acquired models.

With this approach the learning process is executable and can be performed au-
tomatically. Therefore the models and parts of the control program can be relearned
without human interaction whenever the environment changes substantially. But the in-
tegration of learning and programming is not only a convenience to the developper, it
also enhances the learning performance. Robot learning is acomplex task that requires
the adjustment of parameters like the experiences and the learning bias. On the one
hand, these parameters can be found empirically in a convenient way, as they are rep-
resented explicitly and the learning process is performed automatically. On the other
hand, these parameters could be acquired by a meta-learningprocess.

Still, an explicit representation of the learning process does not suffice to make a
robot learning task reproducible, because there is a huge uncertainty in the training ex-
periences. To get the experiences under control we explore the use of datamining tech-
niques. The field of datamining has yielded strong mechanisms for producing clean,
understandable data. We found that the learning performance can be enhanced signifi-
cantly by applying data mining techniques.

In order to underline our arguments, figure 1(a) shows a code fragment of a simple
control program for an autonomous soccer robot. The parts initalics denote the func-
tions or routines that require an adaptation to the environment. We see that in this case
all the routines needed to fulfill the goals could be learned.Also, the choice of the next
goal could be made by a learned decision tree depending on theopponent team.

repeat
cond

opponent-attack? → defend-own-goal
near-ball? → score-goal

supporting-mate? → support-team-mate
else → annoy-opponent

(a) Simple robot controller.

with-models
action-model, perception-model, . . .

seq
tagged learning-phase

to-be-learned ← extract-non-operational-routines()
for-every problem in to-be-learned

learn(problem)
tagged execution-phase

repeat

current-goal ← choose-goal(current-situation)
try-all

wait-for tasks-changed?
achieve current-goal

(b) Controller with learned models.

Fig. 1. Example controller for an autonomous soccer robot with and without learned models.

In contrast, figure 1(b) shows a control program that uses explicit, learned models.
The first step in the execution is to learn all the routines that have not been learned yet.



After that the robot starts its normal course of action. Herethe choice of the next goal
is performed by a learned function and also the execution routines are learned.

In the rest of the paper we glimpse at the main concepts of our learning language
ROLL. Then we will briefly go into how we tested parts of this language and how we
plan to evaluate it in the future. We will conclude with section 4.

2 Learning Mechanisms

Figure 2 shows the parts of a learning agent. Every aspect of alearning problem is
represented explicitly within ROLL.

Theperformance element realizes the mapping from percepts into the actions that
should be performed next. The control procedures therein might not yet be executable
or optimized. These are the procedures we want to learn.

Thecritic is best thought of as a learning task specific abstract sensorthat transforms
raw sensor data into information relevant for the learning element. To do so the critic
monitors the collection of experiences and abstracts them into a feature representation
that facilitates learning. The experiences are stored in adatabase, which allows us to
employ datamining mechanisms for data cleaning.

Thelearning element uses experiences made by the robot in order to learn the rou-
tine for the given control task. It can choose a learning algorithm from a library of
so-calledlearning systems.

The problem generator generates goals that are achieved by the performance ele-
ment in order to gather useful experiences for a given learning problem. The problems
are generated according to a probability distribution as given in the learning problem
specification.
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Fig. 2. Parts of a learning agent after Russell and Norvig.



3 Progress and Further Work

We are currently using ROLL’s mechanisms for implementing a rational reconstruc-
tion of our autonomous soccer robot controllers and for the control of an autonomous
household robot (figure 3). The salient features of the code are that it is self-optimizing
and adaptive.

(a) Autonomous soccer robots. (b) Realistic household simulation.

Fig. 3. Evaluation testbeds for ROLL: robotic soccer and a simulated household robot.

We used the learning mechanisms described in section 2 for learning navigation
tasks in the domain of robot soccer. The learned routines were successfully applied in
the RoboCup world championship 2004 in Lisbon [3,1]. The model-based paradigms
were also employed on that occasion, as well as in the domain of the household robot.

The next step in our research is to combine the underlying model-based language
with the learning concepts, so that the scenario in figure 1(b) can be implemented as
shown. We will then be able to perform extensive testing on how the overall perfor-
mance changes when the learning parameters are changed. After that we intend to ex-
tend the learning constructs for other forms of learning like reinforcement learning.

4 Conclusion

We have given a very brief overview over our robot learning language ROLL, which
combines learning and programming in a synergetic way. By first learning appropriate
models (perception, actions, dynamics), we then proceed tolearning control routines
and decision functions.

The learning process is described explicitly in the controlprogram and is executed
automatically by the controller. This makes it repeatable and reproducible. Besides,
the parameterization for a learning problem on a special robot can be carried over to
different robot platforms and similar learning problems.
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