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Email: tobias-fabian.schrodt@uni-tuebingen.de, martin.butz@uni-tuebingen.de

†Institute for Neural Information Processing, Faculty of Engineering and Computer Sciences,
Ulm University, James-Franck-Ring, Ulm, 89081 Germany,

Email: georg.layher@uni-ulm.de, heiko.neumann@uni-ulm.de

Abstract—It appears that the mirror neuron system plays a
crucial role when learning by imitation. However, it remains
unclear how mirror neuron properties develop in the first place.
A likely prerequisite for developing mirror neurons may be the
capability to transform observed motion into a sufficiently self-
centered frame of reference. We propose an artificial neural
network (NN) model that implements such a transformation
capability by a highly embodied approach: The model first
learns to correlate and predict self-induced motion patterns
by associating egocentric visual and proprioceptive perceptions.
Once these predictions are sufficiently accurate, a robust and
invariant recognition of observed biological motion becomes
possible by allowing a self-supervised, error-driven adaption of
the visual frame of reference. The NN is a modified, dynamic,
adaptive resonance model, which features self-supervised learning
and adjustment, neural field normalization, and information-
driven neural noise adaptation. The developed architecture is
evaluated with a simulated 3D humanoid walker with 12 body
landmarks and 10 angular DOF. The model essentially shows
how an internal frame of reference adaptation for deriving the
perspective of another person can be acquired by first learning
about the own bodily motion dynamics and by then exploiting this
self-knowledge upon the observation of other, relative, biological
motion patterns. The insights gained by the model may have
significant implications for the development of social capabilities
and respective impairments.

Keywords: Correspondence problem; mirror neurons; biologi-
cal motion; perspective-taking; canonical views; recurrent neural
networks.

I. INTRODUCTION

This paper addresses the question how we may be able to
take the perspective of another person when we observe their
bodily motion. The capability of learning by imitation has been
attributed to the mirror neuron system [1]. However, preceding
the activation of mirror neurons upon action observation, a
transformation of the egocentric frame of reference to the
observed person seems necessary to solve the correspondence
problem [2] – which is a process that is hard-coded by
most models on imitation learning. We propose an artificial
neural network (NN) model that is able to solve this problem
by deducing another point of view on the fly, which is a
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capability often referred to as perspective-taking [3]. This is
accomplished by utilizing correlations and predictions about
the own, embodied motion patterns. As a result, our model
offers an explanation for the development of mirror neurons
and their property to equate self-perception with observation.

The NN model we propose memorizes biological motion
by encoding episodes of movements in a multiply-invariant
space, which integrates positional and angular bodily features.
It segments those episodes by events of significant motion non-
linearities. Upon the recognition of a learned motion segment,
the network predicts subsequent motion over a marginal time
span to enable self-supervised learning and adaptation. Further,
our model is able to learn multiple canonical perspectives on
biological motion patterns. This is in accordance with neural
areas that contribute to biological motion perception (such as
STS and premotor areas), which were reported to show both
view-dependent and view-independent neural responses [4],
[5].

We assume that human imitative abilities are to some
extent enabled by spatial visualizations of specific altercentric
perspectives: On observation of a movement, a canonical
perspective is taken, for which embodied associations to
actions are available. This notably includes the perspective of
the observed person. Comparably, specific canonical views of
objects form attractors for mental rotation in object recognition
[6]. We show that perspective-taking can be achieved by
minimizing the divergence between observed and memorized
motion patterns, which originally stem from embodied, visuo-
proprioceptive associations: The continuous adaptation of the
visual frame of reference is driven by patterns of view-
dependent relative positional (visual) motion, while the recog-
nition of biological motion is vigorously improved by the
correspondence to view-independent angular (proprioceptive)
motion.

Previously, we have shown that our model can realize
continuous mental rotations towards canonical views of a sim-
ulated 2D arm motion [7]. Here, we enhance the model to 3D
vision, adapt the prediction mechanism for faster convergence,
and investigate the properties and performance in additional
experiments using a simulated full body model.



In the following, we first introduce the neural architecture
for learning biological motion, building canonical views, and
progressive perspective-taking. After we introduce our 3D
simulation environment, we evaluate the model in several
experimental setups (Section III) showing robust learning of
one or multiple views on biological motion and the flexible
adaptation of the internal perspective upon the presentation of
novel views. In Section IV, we summarize the results, draw
conclusions, and sketch-out future research perspectives.

II. NEURAL NETWORK MODEL

The model consists of three successive stages illustrated in
the overview given in Fig. 1. The first stage processes relative
positional and angular values into mentally rotated direction
sensitive population codes. The second stage performs a mod-
ulatory normalization and pooling of information. Stage III is
a dynamic, self-supervised adaptive resonance model. It uses
instar-learning to segment the pooled sensory stream given
by Stage II memorizing recurring correlations, and outstar-
learning to recall and predict the learned correlations. The
predictive structures learned by the outstar process also enable
the derivation of a prediction error. We detail the three stages
and the involved techniques in the following sections.

Fig. 1. Overview of the three-stage neural modeling approach in a 3D
example with 12 positional and 8 angular features, resulting in n = 20
features. Boxes numbered with m indicate layers consisting of m neurons.
Black arrows describe weighted forward connections, while filled circle
arrowheads indicate modulations. Dashed lines denote recurrent, delaying con-
nections. Blank circle arrowheads denote normalizing neurons. Red backwards
connections indicate the flow of error back-propagation signals.

A. Stage I - Feature Preprocessing

The input to the network is driven by a rather arbitrary
subset of relative visual positions of bodily landmarks and
proprioceptive angles that jointly represent a body structure.
Only features that vary during movements should be chosen,
because the model will basically work in the motion domain.
The network is initially driven by self-perceptions, bootstrap-
ping the egocentric perspective. Further canonical perspectives

can be learned upon observation of others, or by spatial visu-
alization of altercentric perspectives on self-induced motion.
At this time, we assume that the network’s input signals can
easily be recognized both during self-observation as well as
during the observation of another person.

Fig. 2 (a) shows the model’s feature processing for a single,
relative, 3D feature position (e.g. the right wrist position
relative to the center of the observed body): In interstage Ia,
the relative position is transformed into a directional velocity
by time-delayed inhibition, resulting in translation invariant
representation. Interstage Ib implements a mental rotation of
this directional velocity using gain field-like modulation [8] by
a neural rotation module. The connectivity essentially realizes
a 3D matrix multiplication

Rµ∆~x = ∆~x′

of a directional velocity ∆~x = (∆x,∆y,∆z)T into a trans-
formed directional velocity ∆~x′ = (∆x′,∆y′,∆z′)T by an ar-
bitrary rotation matrix Rµ. We chose Rµ = RzRyRx to realize
a Tait-Bryan rotation. Each rotation R{x,y,z} is implemented as
a population of 3x3 neurons, which represent the elements of
the 3D rotation matrix. It is driven by a mental rotation angle
µ{x,y,z}, which is realized by a bias neuron. Multiplication
of the rotation populations is again accomplished by gain-
field modulation. In this sense, Rµ is driven by three variable
mental rotation angles µx, µy, µz , which determine the degree
of rotations about extrinsic axes. The same mental rotation
Rµ is applied to all positional processing stages, by which
multiple error signals can be merged at the model’s rotation
module. This simultaneous adaptation of the axes with respect
to the integrated error allows the derivation of the shortest
path rotation towards an error-minimal visual perspective.
Interstage Ic implements directional convolution over time.
Multiplying the rotated directional motion by a directional
weighting matrix W converts the motion signals into a set
of direction-selective neural activities. The weighing matrix is
set up in a combinatorial fashion, as every single dimension of
a D-dimensional input may increase, not change, or decrease,
resulting in 3D − 1 direction-sensitive neurons (disregarding
constant information).

The processing of each one-dimensional angular informa-
tion, which is shown in Fig. 2 (b), is done analogously.
A rotation mechanism for angles is not necessary and thus
not applied. In summary, stage I provides a population of
neurons for each feature of sensory processing, which is either
sensitive to directional changes in a body-relative position (26
neurons for each position) or sensitive to directional changes
in proprioceptive angles (2 neurons for each angle).

B. Stage II - Normalization and Pooling

Stage II first implements a separate normalization of ac-
tivity in the direction-sensitive populations, by which the
model becomes scale- and speed-invariant for each considered
feature. That is, only the motion directions are regarded.
Normalization of a layer’s activity-vector can be achieved by



(a) (b)

Fig. 2. Feature preprocessing stage I for (a) a single, visual, relative
3D position (rotation (in blue) is applied on all axes) and (b) a single,
proprioceptive 1D angle.

gain modulation: The method we propose approximates a real-
time normalization of a layer’s output-vector to the Euclidean
length 1. In our model, a common neuron indexed by j can
formally be described by its input netj , its activation function
fj(netj), its output oj , some noise-term ξj (which we will
address later), and the axonic modulatory factor aj :

oj = aj · fj(netj) (1)

netj = ξj +
∑
i

wij · oi . (2)

Normalization of a layer a can be put into execution by
modulating all neurons j of that layer by the output oa of
a single, layer-specific normalizing neuron (aj := oa)1, with

oa(t) =
oa(t−1)∑
j oj(t)

2
, (3)

where oj(t) denotes the moving average of oj(t−1).
Next, all normalized direction-sensitive fields are merged

by one-to-one connections to a pooling layer (that is, without
reducing the dimensionality), which serves as the input to the
following Stage III. The connections are weighted by 1/

√
n,

where n denotes the number of features being processed,
which ensures that the pooling layer input is normalized.

C. Stage III - Correlation Learning

Stage III realizes a clustering of the normalized and pooled
information from Stage II (indexed by i) by Hebbian learning
of weights fully connecting the pooling layer to a number of
pattern-responsive neurons (indexed j). Each pattern neuron
represents a constellation of positional and angular directional
movements via its instar weight vector ~wj . The weights wij
to a pattern j are trained by the instar learning rule [9]:

1/η · ∂wij(t)/∂t = ∆wij(t) = oj(t) · (neti(t)− wij(t)) (4)

with learning rate η. We use winner-takes-all competitive
learning [10] in the sense that only the most active pattern
is adapting and predicting.

1No square root is necessary for the normalization to length 1.

Since the patterns to learn are initially typically unknown,
we propose to bootstrap the weight vectors from scratch
(wij(t0) = 0) – which means that initially no sensory
information is propagated to the pattern layer (oj(t0) = 0).
For Hebbian learning to initially occur, we add standardized
normal distributed neural noise ξj = N (0, σ) to the input netj
of each neuron in the pattern layer (see Eq. (2)), such that
pattern neurons are driven by the sum of signal and noise.

Yet to account for the prerequisite of normalized weight-
vectors when using instar-learning, we assume that the ex-
citability of a pattern neuron decreases proportional to its
overall synaptic strength:

fj(netj) = netj ·min(||~wj ||−1, r) , (5)

where r denotes the initial or maximum responsiveness. In
this way, the weight vector to a pattern neuron is virtually
normalized. Also, on development of a pattern, its winning
probability is magnified by the angle between the presented
pattern and the memorized pattern (encoded by the instar
weight vector), while the relative influence of neural noise
decreases. Both the amount of neural noise – determined by
σ – and the initial responsiveness r play crucial roles for
the distribution of the network’s pattern capacity: While σ
influences the probability that a developed pattern is retrained,
σ · r as well as the capacity of free patterns (which consists
of the number of neurons with an instar weight-length below
r−1) determine the probability that an undeveloped pattern
wins over a developed one and is thus consulted to increase the
spatial resolution of this sensory episode. The transition perfor-
mance from untrained to trained patterns and the recoding of
trained patterns can be controlled by the learning rate η. This
neural noise mechanism in combination with winner-takes-all
learning can successfully avoid a “catastrophic forgetting” or
constant recoding of patterns once learned without making
prior assumptions about the input space.

Additional to the instar segmentation of information, we
apply a predictive outstar learning and attentional gain control
mechanism, by which Stage III becomes a self-supervised
adaptive resonance model [11]. Outstar learning is realized
by feedback connections from the pattern layer to the pooling
layer, which are trained by:

1/η · ∂wji(t)/∂t = ∆wji(t) = oj(t−1) · (neti(t)− wji(t)) ,
(6)

where neuron j is the winner of time step t−1. This means
that the outgoing weight vector of a pattern neuron predicts
the input of the pooling layer at the next time step.

The absolute outstar learning signal is also used on forward
propagation from the winner of time step t−1 as modulatory
gain in the pooling layer i:

ai(t) := 1− |∆wji(t)| ∈ [0, 1] . (7)

By this modulation, the last winner inhibits the pooling layer’s
output (via Eq. 1): The larger the error in and the larger
the reliability of the prediction, the stronger is the resulting
inhibition (cf. Eq. 6), such that other patterns are more likely



to win in the next time step. In result, the pattern distinction
is improved further.

On the other hand, the negative of the above outstar learning
signal is backpropagated top-down through the network to
adapt the mental rotation in an error-minimizing manner: An
error signal δi – depicting the actual prediction error – is
directly fed into each pooling neuron i by the last pattern
winner j:

δi(t) = −∆wji(t) . (8)

This error signal is on backpropagation split by the feature
specific population codes and finally merged at the rotational
module, as shown in Fig. 1, where it is used to adapt the
bias neurons online. This essentially minimizes the difference
between the predicted and the perceived biological motion,
while the adaptation is restricted to a 3D rotation via the gain-
field modulation.

III. EXPERIMENTS

To evaluate the model, we simulated a 3D stick figure
walker and streamed relative joint and end-point locations as
well as joint angles as sensory information into the NN model.
We show that the model is able to segment this information
when perceived from an egocentric perspective. We then
show that the learned structure allows for a self-supervised,
progressive view-point adaptation towards the learned egocen-
tric perspective when similar biological motion is perceived
from other perspectives. Moreover, we show that additional
canonical views of motion can be memorized. Finally, we
show that when several canonical views have been learned the
model is transforming randomly oriented biological motion
towards the closest canonical view.

For the following experiments, we chose η = 0.01 as
instar/outstar learning rate, σ = 0.002 as pattern noise standard
deviation, and r = 100 as maximum pattern responsiveness.
On perspective adaptation, we trained the mental rotation bias
neurons with learning rate 0.35 and used a momentum of 0.5.
The reported results are averaged over 400 independent runs
(training and evaluating the network starting with different
random number generator seeds).

A. Simulation and Setup

We implemented a 3D simulation of a humanoid walking
with 10 angular DOF (see Fig. 3). One step of the walker
consists of 100 time steps, so that the movement is cyclic
with a period of 200 time steps. As input to the model, the

Fig. 3. 3D simulation of a humanoid walking to the right. Depth is visualized
by the size of the points.

simulation provides the 3D positions of 12 joints or limb
endpoints relative to the body’s center ~x1 ... ~x12 as well as 8
joint angles α1 ... α8 (leaving out inner rotations). The view
of the walker can be rotated for experimental purposes by an
arbitrary rotation matrix Rν , which is unknown to the model.

B. Learning of Egocentric Biological Motion

As a first step, we trained the network on the egocentric
perspective of the simulated humanoid walking movement
for 20k time steps (which equates to 100 repetitions of the
movement). Using the parametrization above, on average, six
patterns evolved from noise. The patterns form a cyclic series
of winners over the repetition of the movement. Fig. 4 shows
the activities of six pattern neurons for the first 1000 time steps
of a representative run. It can be seen that the signal-to-noise
ratio in the patterns’ activities increases significantly during
training, because increasing the length of a pattern’s instar
vector decreases its response to noise. Likewise, the winning
probability of free patterns decreases when the activity of a
trained pattern is high.

Fig. 4. Motion segmentation by the network. Neural noise initiates the
development of patterns for each sufficiently diverse movement episode.

C. View-Independent Perspective-Taking

After learning the egocentric view on a self-induced motion
as detailed above, the model is able to transform observed,
similar motion into the learned frame of reference by adapting
its visual perception. Because the model is generally scale and
translation invariant, this adaption only includes the adjustment
of yaw, pitch, and roll of its internal coordinate system,
which we evaluated by examining the resulting model rotation
matrix Rµ. In this experiment, an unfamiliar perspective on the
learned movement was fed into the visual path of the model
by rotating the walker arbitrarily using an uniform distribution
in orientation space for the simulation’s rotation matrix Rν .
The angular path of the network perceived the proprioceptive
angles, assuming they can be determined sufficiently accurate
from vision. This increases the pattern recognition ability
of the network, even if proprioceptive information can only
partially be derived visually. We let the model’s rotation matrix
Rµ adapt for 10k time steps according to the prediction error
backpropagated to the visual rotation module. The progress
of the resulting spatial visualization of the model is shown in
Fig. 5.



Fig. 5. From top-left to bottom-right: online adaptation of the visual
perception. The model continuously rotates observed motion (shown in blue)
with convergence to the orientation it was trained on (in red: perspective
deduced by the model).

As a further measure of the model’s performance, we
analyzed the orientation difference (OD) between the model’s
derived inner view on the presented motion and the desired
view, which was previously trained on. We define the OD
as the minimal absolute angle of rotation needed about an
arbitrary axis to transfer the deduced orientation (determined
by Rµ) into the target orientation (determined by R−1ν ). Fig. 6
illustrates the model’s adaptation in terms of OD to the
egocentric perspective: Altogether, 52% of all runs converged
to the desired view of the movement. For these runs, the
median OD fell below 1° after 43 time steps, which equals
less than half a step of the simulated walker. After 10k time
steps, the median of the OD was 0.468°. There were no outliers
in our experiments.

Fig. 6. The OD to the egocentric perspective decreases over time. Continuous
box-plot notation: gray: whiskers (2.5 and 97.5% quantiles), blue: quartiles,
black: median.

The residual 48% of the runs converged to an implicitly
learned, top-down inverted perspective: Since each pattern
predicts over a marginal time-span, it predominantly predicts
the progress of motion in its own respective motion segment.
Thus, the prediction is rather independent from the actual
sequence of patterns, but considers each motion segment
independently. Based on our choice of the input space, top-
down inverted views on a cyclic movement can result in the
inverse order of patterns with worse, but locally minimal
prediction error. Thus, the model converges to a top-down
inverted view on the movement primarily in cases where the
initially observed rotation of the upright direction exceeds 90°.
We evaluated the probability of convergence to the egocentric
perspective in terms of initial OD in Fig. 7.

Fig. 7. Percentage of runs converging to the egocentric perspective dependent
on the initial OD when a new perspective is shown. Bins: x± 5° OD.

D. Learning Multiple Canonical Views

In the following, we investigate if additional canonical per-
spectives on biological motion can be learned and maintained
by the model parallel to the egocentric perspective. We trained
the network sequentially on the egocentric view as before,
and additionally on the facing (180° vertical rotation), the left
(-90° vertical rotation), and the right (90° vertical rotation)
view on the walking. We trained each of the four perspectives
for 25 repetitions of the movement and repeated the whole
procedure four times, resulting in 80k iterations in total.

When training the network on additional data, new pattern
neurons may be recruited or already trained but similar pattern
neurons may be recoded (probabilities for both depend on
the pattern noise parametrization). This applies for different
perspectives as well as basically different movements. Using
the foregoing parametrization, after learning, distinct groups
of pattern neurons were responsible for the particular views
as shown in Fig. 8, indicating that the different views could
nicely be separated by view-dependent neurons.

Fig. 8. Separate representation of canonical views. At the end of training,
the four canonical views are represented in disjunct groups of pattern neurons.
This can be seen by the number of time steps a pattern neuron is maximally
active (winning) while a specific perspective is trained.

When monitoring the prediction error
√∑

i δ
2
i during learn-

ing the four canonical views, Fig. 9 shows a peak in the
prediction error every time the perspective was changed.
However, the magnitude of the peaks strongly decreases after
the fourth view change, which is when the first view is shown
for the second time, and it continues to decline further with
increasing repetitions, since recoding and recruitment of new
patterns reduces continuously. Overall, the error converged to
a level below 0.1° OD.

E. Perspective-Taking of Canonical Views

After training the network on the four canonical perspec-
tives, instar and outstar learning in the highest layer was
disabled but the self-supervised, error-driven adaptation of the
perspective was activated for 10k time steps. The properties
of convergence are shown in Table I: It can be seen that the



Fig. 9. Prediction error while learning from multiple canonical perspectives
repeatedly.

TABLE I
PROPERTIES OF CONVERGENCE TO FOUR CANONICAL VIEWS.
MROD: MEDIAN REMAINING ORIENTATION DIFFERENCE

MCT: MEDIAN CONVERGENCE TIME

View runs MROD MCT
Ego 10.25% 0.53283° 20
Facing 12.25% 0.53124° 23
Left 12.5% 0.53428° 24
Right 11.5% 0.53056° 28

learning of additional canonical views of biological motion
sped up convergence, because the next canonical view was
closer on average. The precision of perspective-taking was
hardly influenced.

Again, there was an implicitly learned, locally error-
minimal, top-down inverted attractor for each perspective
trained on (not shown in the table). Because of this, ap-
proximately 1/8 of the runs converged to each perspective
(differences between individual or groups of perspectives are
not statistically significant).

IV. CONCLUSION & FUTURE WORK

We have shown that our model is able to segment and mem-
orize 3D biological motion in a scale- and translation-invariant
space of visual and proprioceptive motion. We clarified that
perspective-taking can account for orientation invariance in
biological motion recognition: A spatial visualization of for-
eign motion in the egocentric or canonical frames of reference
can thereby ensure the correspondence between self-induced
and observed biological motion. Thus, our model offers an
explanation for the (strictly congruent) mirror neuron property
of both view-dependent as well as view-independent cells
in the superior temporal sulcus (STS), which other theories
on imitation, such as associative sequence learning [12], are
unable to explain.

When the model is trained on data that produces a spe-
cific sequence of patterns, all reordered sequences of those
patterns are implicitly learned simultaneously. This can result
in the ability to recognize unknown movements, but also in
the development of additional, especially top-down inverted
perspective attractors on cyclic movements. Yet, difficulties on
recognition of top-down inverted biological motion from point-
light displays, as well as the unaffected recognition of reversed
(or sped-up) motion determined in psychological experiments

[13], [14] comply with our model. Further, the observation
of top-down inverted motion without additional clues depicts
a rather unusual situation in everyday life. Although pattern
reordering may thus be an approach for generalizing motion
perception and perspective-taking, further investigations have
shown that explicit forecasting of linear motion segments
can successfully ensure the adherence of biological motion
sequences [15].

We assumed in this paper that all required visual and propri-
oceptive information is available both during self-perception
as well as during observation. In future, visual features that
are occluded as well as proprioceptive features that can not di-
rectly be inferred from vision when motion is observed, could
be completed using variants of the predictive mechanisms
described in this paper. Another open question is how mere
feature positions can automatically be assigned to the specific
network inputs without explicit labeling. We are currently
investigating these and related issues to further improve the
generality of our model as well as to rigorously test it on
available data and neuro-psychological results.
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