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Abstract The mirror neuron system (MNS) is

believed to be involved in social abilities like empathy

and imitation. While several brain regions have

been linked to the MNS, it remains unclear how the

mirror neuron property itself develops. Previously, we

have introduced a recurrent neural network, which

enables mirror-neuron capabilities by learning an

embodied, scale- and translation-invariant model

of biological motion (BM). The model allows the

derivation of the orientation of observed BM by

(i) segmenting BM in a common positional and

angular space and (ii) generating short-term, top-down

predictions of subsequent motion. While our previous

model generated short-term motion predictions, here

we introduce a novel forecasting algorithm, which

explicitly predicts sequences of BM segments. We
show that the model scales on a 3D simulation of a

humanoid walking and is robust against variations in

body morphology and postural control.
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1 Introduction

This paper investigates how we may be able to

recognize BM sequences and mentally transform them

to the egocentric frame of reference to bootstrap mirror

neuron properties. Our adaptive, self-supervised,

recurrent neural network model (Schrodt et al, 2014)
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might contribute to the understanding of the MNS

and its implied capabilities. With the previous model,

we were able to generate continuous mental rotations

to learned canonical views of observed 2D BM –

essentially taking on the perspective of an observed

person. This self-supervised perspective taking was

accomplished by back-propagating errors stemming

from top-down, short-term predictions of the BM

progression.

In this work, we introduce an alternative or comple-

mentary, time-independent forecasting mechanism of

motion segment sequences to the model. In the brain,

prediction and forecasting mechanisms may be real-

ized by the cerebellum, which is involved in the pro-

cessing of BM (Grossman et al, 2000). In addition, it

has been suggested that the cerebellum may also sup-

port the segmentation of motion patterns via the basal

ganglia, thereby influencing the learning of motor se-

quences in parietal and (pre-)motor cortical areas (Pen-

hune and Steele, 2012). Along these lines, the proposed

model learns to predict segments of motion patterns

given embodied, sensori-motor motion signals. Due to

the resulting perspective taking capabilities, the model

essentially offers a mechanism to activate mirror neuron

capabilities.

2 Neural Network Model

The model consists of three successive stages illustrated

in the overview given in Fig. 1. The first stage processes

relative positional and angular values into mentally ro-

tated, motion-direction sensitive population codes. The

second stage performs a modulatory normalization and

pooling of those. Stage III is a self-supervised pattern

segmentation network with sequence forecasting, which
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Fig. 1 Overview of the three-stage neural modeling approach
in a 3D example with 12 joint positions and 8 joint angles,
resulting in n = 20 features. Boxes numbered with m indi-
cate layers consisting of m neurons. Black arrows describe
weighted forward connections, while circled arrowheads indi-
cate modulations. Dashed lines denote recurrent connections.
Red arrows indicate the flow of the error signals.

enables the back-propagation of forecast errors. We de-

tail the three stages and the involved techniques in the

following sections.

2.1 Stage I - Feature Preprocessing

The input of the network is driven by a number of

(not necessarily all) relative joint positions and joint

angles of a person. Initially, the network can be driven

by self-perception to establish an egocentric perspective

on self-motion. In this case, the relative joint positions

may be perceived visually, while the perception of the

joint angles may be supported by proprioception in ad-

dition to vision. When actions of others are observed,

joint angles may be solely identified visually.

In each single interstage Ia in the relative position

pathway, a single, positional body landmark relation is

transformed into a directional velocity by time-delayed

inhibition, in which way the model becomes translation-

invariant. Interstage Ib implements a mental rotation of

the resulting directional velocity signals using a neural

rotation module Rµ. It is driven by auto-adaptive men-

tal rotation angles (euler angles in a 3D space), which

are implemented by bias neurons. The rotational mod-

ule and its influence on the directional velocity signals

are realized by gain field-like modulations of neural pop-

ulations (Andersen et al, 1985). All positional process-

ing stages apply the same mental rotation Rµ, by which

multiple error signals can be merged at the module.

This enables orientation-invariance on adequate adap-

tation of the module’s biases. In interstage Ic, each (ro-

tated) D-dimensional directional motion feature is con-

volved into a population of 3D − 1 direction-responsive

neurons.

The processing of each one-dimensional angular

information is done analogously, resulting in

2-dimensional population codes. A rotation mechanism

(interstage Ib) is not necessary for angles and thus not

applied. In summary, stage I provides a population

of neurons for each feature of sensory processing,

which is either sensitive to directional changes in a

body-relative limb position (26 neurons for each 3D

position) or sensitive to directional changes in angles

between limbs (2 neurons for each angle).

2.2 Stage II - Normalization and Pooling

Stage II first implements individual activity nor-

malizations in the direction-sensitive populations.

Consequently, the magnitude of activity is generalized

over, by which the model becomes scale- and velocity-

invariant. Normalization of a layer’s activity-vector can

be achieved by axo-axonic modulations, using a single,

layer-specific normalizing neuron (shown as circles in

Fig. 1). Next, all normalized direction-sensitive fields

are merged by one-to-one connections to a pooling

layer, which serves as the input to stage III. To

also normalize the activity of the pooling layer, the

connections are weighted by 1/
√
n, where n denotes the

number of features being processed.

2.3 Stage III - Correlation Learning

Stage III realizes a clustering of the normalized and

pooled information from stage II (indexed by i) over

time by instar weights fully connected to a number of

pattern-responsive neurons (indexed j). Thus, each pat-

tern neuron represents a unique constellation of posi-

tional and angular directional movements. For pattern

learning, we use the Hebb’ian inspired instar learning

rule (Grossberg, 1976). To avoid a “catastrophic for-

getting” of patterns, we use winner-takes-all competi-

tive learning in the sense that only the weights to the

most active pattern neuron are adapted. We bootstrap

the weights from scratch by adding neural noise to the

input of each pattern neuron, which consequently acti-

vates Hebb’ian learning of novel input patterns. The rel-

ative influence of neural noise decreases while a pattern-

sensitive neuron is learned (cf. Schrodt et al, 2014).

In contrast to our previous, short-term prediction

approach, here we apply a time-independent forecast-
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ing algorithm (replacing the attentional gain control

mechanism). This is realized by feedback connections

wji from the pattern layer to the pooling layer, which

are trained to approximate the input neti of the pooling

layer neurons:

1/η · ∂wji(t)/∂t = ∆wji(t) = neti(t)− wji(t) , (1)

where neuron j is the last winner neuron that differed

from the current winner in the pattern layer. In conse-

quence, the outgoing weight vector of a pattern neuron

forecasts the input to the pooling layer while the next

pattern neuron is active. The forecasting error can be

backpropagated through the network to adapt the men-

tal transformation for error minimization (cf. red ar-

rows in Fig. 1). Thus, perspective adaptation is driven

by the difference between the forecasted and actually

perceived motion. The difference δi is directly fed into

the pooling layer by the outstar weights:

δi(t) = −∆wji(t) , (2)

where j again refers to the preceding winner.

3 Experiments

In this section, we first introduce the 3D simulation we

implemented to evaluate our model. We then show that

after training on the simulated movement, the learned

angular and positional correlations can be exploited to

take on the perspective of another person that currently

executes a similar motion pattern. The reported results

are averaged over 100 independent runs (training and

evaluating the network starting with different random
number generator seeds).

3.1 Simulation and Setup

We implemented a 3D simulation of a humanoid walk-

ing with 10 angular DOF. The movement is cyclic with

a period of 200 time steps (corresponding to one left

and one right walking step). The simulation provides

the 3D positions of all 12 limb endpoints relative to the

body’s center x1 ... x12 as well as 8 angles α1 ... α8

between limbs (inner rotations of limbs are not consid-

ered). The view of the walker can be rotated arbitrarily

before serving as visual input to the model.

Furthermore, the simulation allows the definition of

the appearance and postural control of the walker. Each

of the implied parameters (body scale, torso height,

width of shoulders/hips and length of arms/legs, as

well as minimum/maximum amplitude of joint angles

on movement) can be varied to log-normally distributed

variants of an average walker, which exhibits either fe-

male or male proportions. Randomly sampled resulting

walkers are shown in Figure 2.

3.2 Perspective-Taking on Action Observation with

Morphological Variance

We first trained the model on the egocentric perspective

of the average male walker for 40k time steps. The rota-

tion biases were kept fixed since no mental rotation has

to be applied during self-perception. In consequence, a

cyclic series of 4 to 11 winner patterns evolved from

noise in the pattern layer. Each represents i) a suffi-

ciently linear part of the walking via its instar vector

and ii) the next forecasted, sequential part of the move-

ment via its outstar vector. After training, we fed the

model with an arbitrarily rotated (uniform distribution

in orientation space) view of a novel walker, which was

either female or male with 50% probability. Each de-

fault morphology parameter was varied by a log-normal

distribution exp(N (0, σ2)) with variance σ2 = 0.1, pos-

tural control parameters were not varied. Instar/outstar

learning was disabled from then on, but the mental ro-

tation biases were allowed to adapt according to the

backpropagated forecast error to derive the orientation

of the shown walker.

Fig. 3 shows the mismatch of the model’s derived

walker orientation, which we term orientation differ-

ence (OD), over time. We define the OD by the min-

imal amount of rotation needed to rotate the derived

orientation into the egocentric orientation about the

optimal axis of rotation. In result, all trials converged

to a negligible OD, which means that the given view

of the walker was internally rotated to the previously

learned, egocentric orientation. The median remaining

OD converged to ∼ 0.15° with quartiles of ∼ ±0.03°.

The time for the median OD to fall short of 1° was

120 time steps. These results show that morphologi-

cal differences between the self-perceived and observed

walkers could be generalized over. This is because the

model’s scale-invariance applies to every positional re-

lation perceived by the model.

Fig. 2 Variants of the simulated walker.
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Fig. 3 The model aligns its perspective to the orientation
of observed walkers with different morphological parameters
(starting at t=200). Blue: quartiles, black: median.

3.3 Perspective-Taking on Action Observation with

Postural Control Variance

In this experiment, we varied the postural control pa-

rameters of the simulation on action observation by

a log-normal distribution with variance σ2 = 0.1, in-

stead of the morphological parameters. Again, female

as well as male walkers were presented. The perspec-

tive of all shown walkers could be derived reliably, but

with a higher remaining OD of ∼ 0.67°and more distal

quartiles of ∼ ±0.32°. The median OD took longer to

fall short of 1°, namely 154 time steps. This is because

the directions of joint motion are influenced by angular

parameters. Still, variations in postural control could

largely be generalized over.

4 Conclusion & Future Work

The results have shown that the developed model is

able to recognize novel perspectives on BM independent

from morphological and largely independent from pos-

ture control variations. With the previous model, mo-

tion segments are also recognized if their input sequence

is reordered, such that additional, implicitly learned at-

tractors may exist for the perspective derivation. In-

vestigations had shown that this applies especially to

top-down inverted views on biological motion. The in-

troduced, explicit learning of pattern sequences forces

the model to deduce the correct perspective by pre-

dicting the patterns of the next motion segment rather

than the current one. It may well be the case, how-

ever, that the combination of both predictive mecha-

nisms may generate even more robust results. Future

work needs to evaluate the current model capabilities

and limitations as well as possible combinations of the

prediction mechanisms further. Currently, we are in-

vestigating how missing or incomplete data could be

derived by our model during action observation.

Fig. 4 The model aligns its perspective to the orientation of
observed walkers with different postural control parameters.

We believe that the introduced model may help to

infer the current goals of an actor during action obser-

vation somewhat independent of the current perspec-

tive. Experimental psychological and further cognitive

modeling studies may examine the influence of motor

sequence learning on the recognition of BM and the

inference of goals. Also, an additional, dynamics-based

modulatory module could be incorporated, which could

be used to deduce emotional properties of the derived

motion – and could thus bootstrap capabilities related

to empathy. These advancements could pave the way

for the creation of a model on the development of a

mirror neuron system that supports learning by imita-

tion and is capable of inferring goals, intentions, and

even emotions from observed BM patterns.
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