
Learning Conditional Mappings
between Population-Coded Modalities

Fabian Schrodt and Martin V. Butz

Cognitive Modeling, Department of Computer Science,
University of Tübingen, Germany

{tobias-fabian.schrodt,martin.butz}@uni-tuebingen.de

Abstract. It is still an open question how the brain manages to map
various modalities onto each other. We introduce a tripartite neural net-
work architecture that is able to learn non-linear mappings between
topological, population-encoded modalities. The neural network gains
this capability by creating sparse modal correlation maps. By applying
factorization, the correlation maps serve as mutually conditional trans-
formations onto a third modality. We show that such a combination is
able to solve the locally linear task of learning forward velocity kinemat-
ics of a simple arm. In comparison to other approaches, the architecture
is robust and predictable in terms of learning performance and efficient
in terms of model complexity. The model is neurally plausible, mimick-
ing coordinate transformations known to be computed in parietal cortex,
and may serve as a basic building block to model non-linear mappings
between population-encoded modalities, which are typically grounded in
different frames of reference.

Keywords: Gain-Field Encodings, Population Coding, Factorization,
Sparse Coding, Non-Linear Mappings, Neural Networks

1 Introduction

The brain is able to combine information of various modalities and frames of
reference to learn predictive models about its body and its interaction with the
environment. Typically, sensory input can be assumed to be encoded by popu-
lations of locally receptive cells with tunings to specific stimulus characteristics
[1]. To eventually establish a body model, conditionals of multiple population-
coded stimuli have to be learned to resolve non-linearities and minimize sur-
prise about action outcomes. In parietal cortex, mappings between population-
encoded modalities have been suggested to be established by means of gain-fields
[2, 3].

One example of a tripartite mapping problem is learning a combined model of
kinematic and dynamic bodily control: Given the proprioception of a limb, what
effect does a change in its posture (or a motor command) have in terms of visually
perceived motion? In this question, two modal sources of information have to
be mapped onto a third one, resulting in a locally linear, conditional mapping

problem. A neurocognitively plausible model may learn such a forward model
by means of supervised training because the outcomes of actions are directly
observable [4]. Once a forward model has been learned, it is possible to derive
an inverse mapping, which is typically ambiguous due to redundancies, that is,
extra degrees of freedom, in the system. Population codes have the potential
to resolve resulting uncertainties [5]. For many degrees of freedom, however,
classical gain-field models are not applicable due to the resulting huge network
sizes, diminishing their cognitive plausibility when no modularization is applied
[6]. We asked the question how such mappings can be learned considering the
conditional, tripartite nature of this problem (and others) while keeping the
computational effort minimal.

In the following, we describe the Conditional Mapping Architecture (CMA)
and show that it is able to learn a combined model of forward dynamics and
kinematic control. The architecture relies on pair-wise multiplications in modal
modules instead of tensor products and is thus easily differentiable and computa-
tionally more efficient than related approaches inspired by gain-field encodings.
In subsequent experiments, we show that the model features fast and predictable
learning performance that is adjustable via a single topological parameter.

2 Conditional Mapping Architecture

CMA is a tripartite architecture sketched in Fig. 1. Two of the parts serve as
input to the network, each fed by data of a different modality. The third part
is defined as the output modality. We assume that there is a non-linear, but
distinct dependency of the output modality on the inputs. That said, the output
is determined by a many-to-one mapping from the first input modality to the
output modality, under the condition of the second input modality – or vice
versa.

2.1 Population Coding

Each modal information is assumed to be limited to a hyperrectangular range
in RDm

, m ∈ {1, 2, 3}1. Each component or dimension dm ∈ {1..Dm} in a
modal space is represented separately by a population of N neurons2, providing
regularly distributed tuning prototypes in the range of this component. Then,
given a modal input sensation sm,dm ∈ [sm,dm

max , sm,dm

min], m ∈ {1, 2}, each neuron
i ∈ {1..N} in an input population responds in the form of a unit Gaussian radial
basis function defined by:

am,dm

i = exp

−1/2

(
pm,dm

i − sm,dm

bm,dm

)2
 , m ∈ {1, 2} , (1)

1 Superscripts of scalars or vectors denote descriptors, while subscripts denote indices
(with the exception of ‘min’ and ‘max’).

2 We assume that each modal component is represented by the same number of neurons
for reasons of simplicity.

Π
Π

Π
Π

Π Π
Π

Π
Π

Π

Factorization

q
1

q
2q̇

1

......

q̇
2

ẋ
1

ẋ
2

Correlation Correlation

f 3

f 2f 1

C 1 C 2

W 3

...
...

...

W 1
W 2

Fig. 1. Connection scheme of the tripartite mapping architecture applied to learning
a forward model of endeffector motion ẋ, given angles q and angular velocities q̇. Free
parameters are shown in red.

where pm,dm

i is the prototype in the range of the modal component and bm,dm

is
the breadth of the tuning of neurons in the population representing information
in dimension dm of modality m. The breadth depends on an a-priori range of
the modal component:

bm,dm

=
sm,dm

max − s
m,dm

min

2N
, m ∈ {1, 2, 3} . (2)

For output populations (m = 3 in the following), each neuron i ∈ {1..N} re-

sponds linearly to upstreamed signals, resulting in activities am,dm

i (see Eq. 7).

Given a target sensation or observation sm,dm ∈ [sm,dm

max , sm,dm

min], an error term

δm,dm

i can be calculated suitable for backpropagation:

δm,dm

i = tm,dm

i − am,dm

i , m = 3 (3)

where target activities tm,dm

i are determined analogously to Equation 1.

2.2 Correlating Modalities

To build a processing architecture that is able to learn conditional, tripartite
mappings, we at first employ a correlation map between all dimensions of each
input modality. This correlation map is realized by all pair-wise products of single
activations of cells in unequal populations, resulting in N2 · Dm · (Dm − 1)/2

multiplications. Thus, the activation cm,dm,em

i,j of a multiplicative unit correlating
activations i and j of dimension dm and em of modality m is given by

cm,dm,em

i,j = am,dm

i · am,em

j , (4)

where dm 6= em ∈ {1..Dm}, i, j ∈ {1..N}. This is similar but not equivalent
to tensor products often used in gain-field models, because our approach does
not require Dm-fold multiplications, which reduces the number of parameters
drastically. For Dm = 2, this approach is equivalent to the outer product of
population activity vectors. Note that only the two input modalities have to be
correlated independently.

2.3 Factorization

The resulting correlation maps in our architecture can each be considered a 2D
image Cm with width N ·Dm · (Dm− 1)/2 and height N , reflecting all possible,
pair-wise logical AND interactions. By nature, image processing methods are
applicable – the aim is to find a suitable and yet sparse connectivity that is able
to realize image transformations systematically, whereas one modality can be
considered the input image, and the other can be considered a warp. Allowing
all possible mappings from the two correlation maps to the output modality
would result in a three-way interaction tensor with cubic number of parame-
ters. However, it has been shown that factorization can reduce the number of
parameters drastically, given that local regularities in the mapping exist [7].

Factorization is realized by learning a triplet of linear transformations Wm:
Two of them factorize given input images each onto a modal factor vector fm ∈
RF , and the third transforms the elementwise multiplication (denoted �) of the
modal factors to the output image. The factors are represented by linear hidden
units. This yields the factor cell activations

fm = Wm · Cm,m ∈ {1, 2} (5)

fm = f1 � f2, m = 3 . (6)

The transformation matrices Wm are the only free parameters of the architec-
ture, resulting in F ·N ·

(
N ·D1 · (D1 − 1)/2 +N ·D2 · (D2 − 1)/2 +D3

)
param-

eters overall. Finally, f3 is transformed to the concatenated output activations,
effectively including a projection of the combined correlation maps:

(am,1, ... ,am,Dm

) = Wm · fm, m = 3 . (7)

Training the architecture is possible by means of error gradient descent by back-
propagation, since all parameters are differentiable. In the next section, we eval-
uate the architecture.

q
1

q
2

ẋ

q̇
2

q̇
1

Fig. 2. Simulation of a 2-DOF arm with angular constraints.

3 Evaluation Setup

We evaluate the architecture on the task of approximating the forward velocity
kinematics of a simple 2 DOF arm with two limbs with unit length and an
endeffector in a 2D positional space, resulting in Dm = 2 ∀m. A sketch of the
arm is shown in Fig. 2. The learning objective is the prediction of endeffector

velocities ẋ
!
= s3, given angular velocities q̇ = s1 under the condition of angular

postures q = s2. Given the condition, this mapping is onto and locally linear.
All modal components were represented each by N = 10 population neurons.

For evaluation, three Conditional Mapping Architectures with different number
of parameters were compared to three Multilayer Perceptrons (MLP) with three
hidden layers (HL) consisting of neurons with hyperbolic tangent activation func-
tions and biases, resulting in approximately the same number of free parameters
(FP):

– CMA-16: F = 16 factor units ⇒ 3520 FP. Learning rate 0.001.
– MLP-30: 30 neurons per HL ⇒ 3690 FP. Learning rate 0.001.
– CMA-49: F = 49 factor units ⇒ 10780 FP. Learning rate 0.004.
– MLP-60: 60 neurons per HL ⇒ 10980 FP. Learning rate 0.002.
– CMA-99: F = 99 factor units ⇒ 21780 FP. Learning rate 0.008.
– MLP-90: 90 neurons per HL ⇒ 21870 FP. Learning rate 0.003.

Learning rates were optimized heuristically and separately for each network, all
momenta were set to 0.8. Small learning rates are required for learning this pre-
diction online to avoid catastrophic inference and forgetting of already learned,
locally linear mappings [8]. Fig. 1 shows a CMA architecture example for N = 4
and F = 7 applied to the above learning task. A classical computational gain-
field as originally described by Zipser and Andersen [9] would have 200k free
parameters in this configuration. It would however not be possible to train it for
higher-dimensional problems.

For sampling the training data, we set goal postures qg randomly distributed
in posture space and moved the arm according to the normalized postural dis-
tance

q̇(t) =
qg(t)− q(t)

||qg(t)− q(t)||
· U2(0.1) (8)

where U2(0.1) is a 2-dimensional, uniformly distributed random variable in the
interval [0, 0.1] rad. By adding noise to each angular movement, we could enforce

local variance both in the direction and velocity of the movement of the end-
effector. By targeting goal postures randomly, we could ensure that the whole
postural space was uniformly sampled throughout the training procedure. As
soon as the Euclidean distance ||qg(t)− q(t)|| between the current posture vec-
tor and the goal posture vector fell below 0.2, a new goal posture was set. Goal
postures were restricted by the angular constraint qi ∈ [0, π]. The resulting modal
ranges for angular and endeffector velocities were set accordingly.

We trained each network for 107 time steps in 6 independent trials, includ-
ing normally distributed parameter initialization with mean 0 and variance 0.1
with different random seeds. After training, we averaged the performance in a
50k time steps evaluation phase without parameter adaptation to test for local
overadaptation to the target mapping. The results are shown and interpreted in
the following.

4 Results

The output components a3,d3

provided by a network were used to decode the pre-
dicted directional endeffector velocity ẋ by polling their prototypes and weight-
ing them according to their activation for each modal output component dm,
yielding:

ẋd
m

=

∑N
i=1 x

m,dm

i · am,dm

i∑N
i=1 a

m,dm

i

, dm ∈ {1..Dm}, m = 3 (9)

Then, the prediction ẋ was compared to the actual observation s3. To evaluate
the networks’ performances, we derived two measuring units from this compar-
ison: First, we compared the angular error in the direction of the predicted
endeffector motion, defined by

∆α = acos

(
ẋ • s3

||ẋ|| · ||s3||

)
· 180

π
(10)

where • is the scalar product. Secondly, we defined an exponential velocity error

∆v =

∣∣∣∣log

(
||ẋ||
||s3||

)∣∣∣∣ (11)

The development of these two error measures over time in comparison of the
different network types is shown in Fig. 3(a) and Fig. 3(b).

At first, it has to be noted that finding a working MLP configuration for the
task at hand was not trivial. Since it can be considered a highly non-linear clas-
sification problem, at least three hidden layers (resulting in 5 consecutive linear
transformations) were required for decent performance. We achieved our best
results using hidden layers of equal size. All MLPs had a rather slow learning
progress early on: Training began to have a noticeable effect only after about
80k time steps. At this time, CMAs already reached an acceptable performance

(a)

time step t
100 1000 10000 100000 1e+06 1e+07

d
ir
e
c
ti
o
n
 e

rr
o
r

∆
α

 (
°

)

1

10

100 CMA-16: 2.5264°
CMA-49: 1.0649°
CMA-99: 0.83508°
MLP-30: 1.0379°
MLP-60: 1.0015°
MLP-90: 0.87827°

(b)

time step t
100 1000 10000 100000 1e+06 1e+07

le
n
g
th

 e
rr

o
r

∆
 v

0.1

1

CMA-16: 0.099885
CMA-49: 0.039839
CMA-99: 0.032896
MLP-30: 0.025488
MLP-60: 0.026537
MLP-90: 0.023124

Fig. 3. Log-log plots of the deviation of (a) the predicted endeffector movement direc-
tion from the actual movement direction in degree and (b) the predicted endeffector
movement speed from the actual movement direction in exponential relation. Horizon-
tal lines represent the average error levels while testing for local overfitting, which is
also indicated in the legends, respectively.

e.g. with angular errors between 2.5 and 5. However, upon reaching a specific
leverage point, the errors decreased about dual-logarithmically. When increasing
the learning rate, MLPs tended to strong overadaptation to the locally linear
forward dynamics, resulting in worse performance after all. Interestingly, as the
results show, increasing the number of hidden neurons did not improve the con-
vergence rate nor final performance significantly. MLPs with larger hidden layers
however seemed slightly less prone to overfitting.

In comparison, CMAs can especially be characterized by superior rate of
learning progress during the early training period. This suggests that the solu-
tion spaces of CMAs are more convex than for MLPs, such that they were able
to outperform MLPs at least for a finite time span. Also, CMAs did not tend to
overfit that much when increasing the learning rate. Instead of using a hierar-
chy of non-linear classifiers, CMA relies on pair-wise multiplications of (linear)
factors only, making them easy and robust to train. In contrast to MLP, CMA’s
performance increases with F as the only topological parameter of the architec-
ture. Thus, using CMAs seems suitable to quickly find an approximate solution

without challenging topological parameters. Considering the results, though, we
cannot draw the conclusion that CMAs were able to outperform MLPs in terms
of the attainable error limit.

5 Conclusions

In the course of this ongoing investigation, we introduced an architecture that
is able to learn online an approximation of population-coded forward dynamics
in about 80k time steps with accuracy. Transforming pair-wise correlation maps
of two modal input populations is sufficient to solve this problem. In contrast
to conservative gain-fields, our approach is potentially able to handle higher-
dimensional problems (e.g. 7 DOF forward dynamics) with a reasonable number
of parameters. The applied factorization can also be considered a fusion of a
pair of two-dimensional gain-field mappings onto a third modality. Just as hier-
archical gain-fields can be used to reduce the number of parameters [6], apply-
ing hierarchical factorizations of correlation maps could thus result in further
reduction of the number of parameters, particularly when applied to higher-
dimensional problems. Specifically relating to the task of learning forward dy-
namics, adding recurrences from angular changes to angles might provide the
network with further capabilities. In future work, also opportunities to resolve
the inverse dynamics could be investigated based on this architecture. Moreover,
the factorization structure should be analyzed further, in which case we expect
to uncover dimensional properties of the outside environment.

References

1. Pouget, A., Dayan, P., Zemel, R.: Information processing with population codes.
Nature Reviews Neuroscience 1 (2000) 125–132

2. Andersen, R.A., Essick, G.K., Siegel, R.M.: Encoding of spatial location by posterior
parietal neurons. Science 230 (1985) 456–458

3. Salinas, E., Sejnowski, T.J.: Correlated neuronal activity and the flow of neural
information. Nature reviews neuroscience 2 (2001) 539–550

4. Jordan, M.I., Rumelhart, D.E.: Forward models: Supervised learning with a distal
teacher. Cognitive science 16 (1992) 307–354

5. Doya, K.: Bayesian brain: Probabilistic approaches to neural coding. MIT press
(2007)

6. Kneissler, J., Butz, M.V.: Learning spatial transformations using structured gain-
field networks. In: Artificial Neural Networks and Machine Learning–ICANN 2014.
Springer (2014) 683–690

7. Memisevic, R., Hinton, G.E.: Learning to represent spatial transformations with
factored higher-order boltzmann machines. Neural Computation 22 (2010) 1473–
1492

8. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
The sequential learning problem. Psychology of learning and motivation 24 (1989)
109–165

9. Zipser, D., Andersen, R.A.: A back-propagation programmed network that simulates
response properties of a subset of posterior parietal neurons. Nature 331 (1988)
679–684

