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Number selective sensorimotor neurons in
the crow translate perceivednumerosity into
number of actions

Maximilian E. Kirschhock1 & Andreas Nieder 1

Translating a perceived number into a matching number of self-generated
actions is a hallmark of numerical reasoning in humans and animals alike. To
explore this sensorimotor transformation, we trained crows to judge numer-
ical values in displays and to flexibly plan and perform a matching number of
pecks. We report number selective sensorimotor neurons in the crow tele-
ncephalon that signaled the impending number of self-generated actions.
Neuronal population activity during the sensorimotor transformation period
predicted whether the crows mistakenly planned fewer or more pecks than
instructed. During sensorimotor transformation, both a static neuronal code
characterized by persistently number-selective neurons and a dynamic code
originating from neurons carrying rapidly changing numerical information
emerged. The findings indicate there are distinct functions of abstract neu-
ronal codes supporting the sensorimotor number system.

Humans and animals share a primordial and non-symbolic number
estimation system1,2. It allows them to not only perceive numerosity
(i.e., the number of objects in stimuli), but also produce a specific
number of self-generated actions3–5. The number of self-produced
actions contains vital information for wild animals’ decision making.
For example, some songbirds produce specific numbers of syllables in
their mobbing calls to indicate the dangerousness of predators6–8, and
the males of certain frog species must match or exceed the number of
call syllables of competitors to attract female mating partners9,10. Such
findings in the wild have been complemented by laboratory studies in
which birds and mammals have been trained to perform specific
numbers of motor responses11–14.

The brainmechanisms representing perceived number have been
studied intensively in primates15–17. Here, the fronto-parietal network is
known as the core number network inwhichneurons represent sensed
numbers16,18. The neuronal representation of the number of self-
generated actions is much less explored. In monkeys, neurons in the
superior lobule of the posterior parietal cortex have been shown to
represent different numbers of hand movements in macaques trained
to repetitively produce five identical movements13. In this study,
however, themonkeys had learned to always perform five movements

in response to a go-cue; the monkeys were not cued by sensory dis-
plays for different numbers of target movements to perform13. Thus,
the transformation process between sensing a number and producing
a number could not be explored. To date, the neuronal processes of
transforming perceived number stimuli into a matching number of
self-generated actions, the brain mechanisms that link perception to
action across time, are unknown3. To study this complex process,
animals first need to assess numerical information from sensory dis-
plays to later perform the perceived target number via self-generated
actions.

In the current study, we turned to a corvid songbird, the carrion
crow, to investigate the sensorimotor translation in numerical dis-
crimination. Many birds are numerically competent19–21, and the asso-
ciative endbrain area termed nidopallium caudolaterale (NCL) is
associated with sophisticated avian cognition22–27. NCL neurons are
selectively responsive to numerosity in visual displays19,28–30, even in
numerically naïve crows31 and newborn domestic chicks32, but also
encode the planning and execution of goal-directed movements33,34.
Therefore, the NCL operates at the apex of the perception–action loop
in the avianbrain and is considered the avian analog of themammalian
prefrontal cortex (PFC)35–37. We hypothesized that neurons in the NCL
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represent the numerical sensorimotor transformation process. In the
current article, we report number selective sensorimotor neurons in
the corvid NCL as a neuronal correlate of such a numerical perception-
to-action transformation mechanism.

Results
We trained two carrion crows (Corvus corone) to judge the numerical
values from one to five in instruction displays and to flexibly plan and
perform a matching number of pecks (Fig. 1a). We used displays
showing one to five dots (dot protocol) and numerals that the crows
had learned to associate with the corresponding numerosity (sign
protocol) as instruction stimuli. Both protocols were shown in two
stimulus conditions (standard and control conditions; Fig. 1b) to con-
trol for non-numerical factors and to promote generalization across
instruction stimulus appearance. After the presentation of the instruc-
tion numerosity, amotor planning period enabled the crows to prepare
thenumberof pecks. In the following responseperiod, the crowshad to
generate the number of actions matching the numerical values of the
instruction stimulus by pecking on a touch-sensitive screen. To dis-
courage response timing of pecks, each peck was required at pre-
defined time points (indicated by enumeration stimuli) interleaved by
pauses of variable duration (Fig. 1a). In addition, three different tem-
poral arrangements of the response period were applied to further
prevent the crows from using timing strategies to solve the task
(Fig. 1c). To indicate the self-chosenendpoint of thepeck sequence, i.e.,
the final peck amounting to the instructed number, the crows had to
peck at a confirmation stimulus that served as an “enter key”.

Crows produce instructed number of actions
Both crows reliably produced the target number of pecks (Crow 1:
74.7 ± 5.1%, 71 sessions; Crow 2: 72.1 ± 4.0%, 56 sessions; mean± SD).
On average, crow 1 completedmore than400 correct trials per session
(mean± SEM: 410.4 ± 5 hits; n = 71 sessions), whereas crow 2 com-
pleted more than 300 trials per session (305.4 ± 7.6 hits; n = 56). The
median pecking reaction times (RT) to the onset of the first enu-
meration/ confirmation stimuli in the execution period were 444ms
(crow 1) and 389ms (crow 2), respectively.

The number of correct trials per stimulus protocol and condition
combination was overall balanced (mean number of hits for dot/stan-
dard, dot/control, sign/standard, sign/control for crow 1, respectively:
94.6, 98.1, 114.2, 103.4; crow 2: 65.6, 72.8, 87.4, 79.6). The performance
functions to both stimulus protocols show the peck frequency in
response to the instructed numerical value, with peak values typically
representing target number and flanking data points representing the
frequency of incorrect (too few or too many pecks) responses
(Fig. 2a–d). Error rates were highest adjacent to the target number but
decreasedwith distance from it, demonstrating the numerical distance
effect2. Performance functions became wider (i.e., less precise) with
increasing target numbers, a phenomenon known as the numerical size
effect2. Due to the combined numerical distance and size effects and
the resulting worsening of discriminability with increasing number
values, nonmatching numbers directly adjacent to larger target num-
bers (3 and higher) may not have be discriminable significantly by the
crows. Both the distance and the size effects characterize an analog
number system underlying the crows’ number production behavior2.
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Fig. 1 | Crows performed an instructed number production task. a Number
production task.After the crow initiated a trial by positioning its head in front of the
touch-sensitive monitor, an instruction stimulus appeared cueing the crow for 1–5
pecking responses (three pecks cued in the example shown). During a brief motor
planning period, the crow planned the impending number of pecks. Next, the crow
was prompted to peck the instructed number of times, with each unitary peck
delivered in a pre-defined epoch cued by enumeration stimuli shown at variable
time points. Finally, the crow indicated the end of the response sequence by
pecking at a confirmation stimulus (“enter key”). b Example instruction stimuli.

Each of the numerical values 1–5 was indicated by two stimulus protocols, dot
arrays and signs (Arabic numerals). Standard and control stimuli controlled for
non-numerical factors in the dot numerosities (position, size, density, and total dot
area), and shape appearance (different font types) of the signs, respectively.
c Temporal arrangement of the response period. To prevent the crows from timing
rather than enumerating their pecks, three temporal profiles (standard, control 1,
and control 2) with defined response intervals were prompted (see Methods for
details). The standard andoneof the control arrangementswere shownper session,
with a pseudo-random trial order.
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The performance of both crows to all target numbers, stimulus
conditions, and temporal arrangements was above chance (Fig. 2e–j;
all p <0.001, one-sided t-tests against respective chance levels, n = 71
for crow 1, n = 56 for crow 2). Note that performance chance levels
decrease with increasing target number38 (1: 33.3%; 2: 25%; 3: 20%; 4:
16.7%; 5: 14.3%; see Methods for details). Overall, this shows that the

crows were able to properly reproduce visually instructed num-
bers 1 to 5.

NCL neurons encode the planned number of actions
While the crows performed this task, we recorded the activity of
339 single neurons in the NCL39 (Fig. 3a). We had shown previously in
simpler task protocols that many NCL neurons respond to the per-
ceived number of items in visual displays19,28–30. Here, we focused
analyses on the motor planning period (see Fig. 1a) during which the
translation of perceived number into a future number of actions
must occur. In this period, many neurons modulated their activity in
response to the target number by becoming systematically exited or
suppressed to specific numerosities relative to baseline activation.

To identify the time intervals in which single neurons selectively
responded to the impending number of actions, we employed a well-
established statistical procedure19,28,40–42. We performed two-factorial
sliding-window ANOVAs on the firing rates with factors target number
(1–5) and protocol (dots and signs) throughout the motor planning
period (criterion p <0.01). This analysis was performed in the time
interval from 200ms after motor planning onset to 1100ms after
motor planning onset to cover the time period after cue instruction
and beforemotor execution (analysiswindow indicated above Fig. 3b).
A quarter of the recorded neurons in both crows (24%; 80/339 neu-
rons) showed amain effect for target number during certain trial times
in the motor planning period (Fig. 3b). These number selective sen-
sorimotor neurons showed no main effect for, or interaction with,
instruction protocol (dots vs. signs) but were abstractly representing
the number of planned motor responses. Number neurons fired
maximally to one of the instructed target numbers (a neuron’s pre-
ferred number) and decreased firing rates with increasing numerical
distances from the preferred number. Individual neurons were tuned
to different preferred target numbers (Fig. 3c–g) and covered the full
value range fromone to five (Fig. 4a). The exemplary neurons depicted
in Fig. 3c–g show ‘ramping activity', i.e., they selectively increased fir-
ing rates toward the end of the planning period. The normalized and
averaged tuning functions of all neurons tuned to a specific preferred
target number resulted in overlapping approximate neuronal repre-
sentations that covered the entire range of target numbers the crows
had to plan (Fig. 4b). Neurons responding during the presentation of
visual numerosities similarly to the here described numerical planning
neurons were found in previous experiments19,28–31. The neuronal tun-
ing functions of number neurons tuned in the planningphasemirrored
the behavioral performance functions, including the numerical dis-
tance and size effects (Fig. 2a–d).

We next explored whether the neuronal activity of tuned neurons
was relevant to the correct number of pecks produced by the crows.
To that aim, we compared neuronal activity during correct trials and
incorrect trials, i.e., trials in which the crows produced fewer or more
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Fig. 2 | Crows reliably produced the instructed target number of actions.
Detailed behavioral performances of crow 1 (a, c, e, g, i) and crow2 (b,d, f,h, j). a–d
Each bell-shaped curve shows the probability that the crows performed a specific
number of pecks in response to the instructed numerical value (coded by colors).
Peak values represent the respective correct number of responses and off-peak
values signify errors. Symbols indicate performance in the dot and sign protocols,
respectively. a, b show performance curves for the standard stimulus conditions,
c, d for the control conditions. Average performances (% correct) of crow 1
(71 sessions) in the standard (e), control 1 (g), and control 2 (i) temporal arrange-
ments of the response period (see Fig. 1c). Performance is shown for all numerical
values, stimulus conditions (std. vs. contr.) and protocols (dots vs. signs). Symbol
position along the y-axis shows themean, error bars the SEM. Gray horizontal lines
in the graphs denote the chance level for each target number (see Methods for
calculation of chance levels). f, h, jAverage performances of crow 2 (56 sessions) to
the different temporal arrangements, numerical values, protocols and conditions
(same layout as in c, g, i). Source data are provided as a Source Data file.
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pecks than instructed. We found that neuronal activity to the respec-
tive preferred target number was significantly reduced for incorrect
trials compared to activity from correct trials (correct vs. incorrect:
100% vs. 80 ± 4.5%; 6.95 ± 1.03Hz vs. 5.14 ± 0.62Hz; p < 0.001, n = 61
neurons, Wilcoxon signed-rank test) (Fig. 4c). This indicates that the
crows were prone to number production errors if number selective
sensorimotor neurons were not properly encoding their preferred
target number during error trials. Also, the neuronal activity in trials in
which the tuned neurons’ preferred number n was produced erro-
neously (instead of instructed number n − 1 or n + 1) was higher than

the activity in trials where n + 1 or n − 1 was correctly produced (cor-
rect(n − 1) vs. incorrect(n): 61.9 ± 3.8% vs. 72.4 ± 6.1%; p <0.05; cor-
rect(n + 1) vs. incorrect(n): 76.9 ± 3.6% vs. 81.6 ± 5.6%; p > 0.5; n = 33
neurons, Wilcoxon sign-rank tests) (Fig. 4d).

Number of actions can be decoded fromNCLpopulation activity
To explore whether the entire population of recorded neurons, irre-
spective of individual tuning, carried information about the planned
number of actions, we trained and tested statistical support vector
machine (SVM) classifiers on neuronal activity during the motor
planningperiod (seeMethods). First, we trained classifiers on thefiring
rates for one protocol (i.e., dots or signs) and then used it to classify
the planned target number from new trials within the same protocol.
We found that within-protocol classification accuracy was well above
chance level of 20% for the 5 number classes (dots: 51.7 ± 0.2%, signs:
61.1 ± 0.2%; 270 neurons; mean± SEM over resamples) (Fig. 5a). We
further tested whether a classifier trained on activity of one protocol
(e.g., dots) could also predict target numbers for the other protocol
(e.g., signs). Indeed, we found robust across-protocol classification
(dots to signs: 49.4 ± 0.2%, signs to dots: 48.9 ± 0.2%) (Fig. 5a), indi-
cating abstract and instruction-specific coding of the planned number
of actions. With trials pooled across protocols, the neuronal popula-
tion carried robust information of the target number (63.6 ± 0.2%; 296
neurons; mean ± SEM over resamples). The resulting confusion matrix
shows the classifier’s capacity to predict impending target numbers in
relation to the instructed target numbers (Fig. 5c); high accuracy
values along the diagonal indicated reliable performance. As a reflec-
tion of the numerical distance effect, most misclassifications were
made in the direct vicinity of the correct number. The tuning curves
derived from the classifier performance (Fig. 5b) exhibit a clear dis-
tance and size effect mirroring both the crows’ behavioral functions
(Fig. 2a–d) and neuronal tuning curves (Fig. 4b). This speaks for a
stable sensorimotor population code in NCL that signals the planned
number of actions based on the perceived numerical instruction
stimuli.

The population code for prospective number of actions is rele-
vant to behavior
If the sensorimotor population code is relevant for the crows’ beha-
vior, classifier accuracy should predict number production errors and
types of errors. Indeed, the accuracy of classifiers trained on correct
trials was considerably lower when tested on incorrect trials
(33.2 ± 0.3%) as compared to correct trials (56.0 ±0.2%, 161 neurons;
mean± SEM over resamples; p <0.001, n = 1000 resamples, Wilcoxon

Fig. 3 | Neurons are selective for the impending number of actions. a Lateral
view of a schematic crow brain with blue shaded area depicting the recording site
nidopallium caudolaterale (NCL) in the telencephalon (Tel.). Cb cerebellum, OT
optic tectum. b Time entries in the motor planning period (600–1600ms) during
which neurons were selective for numerical value (0ms is instruction stimulus
onset). Each line represents the activity of one neuron (n = 80), surface color
indicates p value of selectivity. Thick solid line on top of the surface plot delineates
the sliding-window ANOVA analysis interval reported in the main text (800ms to
1700ms after instruction stimulus onset to account for neuronal response laten-
cies). c–g Exemplary neurons selective to numerical values 1–5. Dot raster histo-
grams (eachdot representingone actionpotential) are shown in the toppanelswith
the bottom panels depicting spike-density functions (smoothed with a 150-ms
Gaussian kernel). Responses to specific numerical values are color coded. Insets
show average tuning curves (to the dot and sign protocols) of the respective
neuron during its selective trial interval (indicated by shaded area in the histo-
grams, corresponding to the periods of significant selectivity in b). Error bars
depict the SEM over trials (n = 145, 339, 287, 299, 179 trials overall for neurons in
c–g, respectively). Neurons are tuned to one (c), two (d), three (e), four (f), and five
(g) impending numbers of actions. FR firing rate. Source data are provided as a
Source Data file.
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signed-rank test) (Fig. 5d). Next, we wondered whether the population
code could not only predict future correct from incorrect trials, but
also the direction of numerical errors, i.e., whether the crows gener-
ated fewer (−1 error) or more pecks (+1 error) than the instructed (i.e.,
correct) number of pecks. We therefore tested classifiers for these
three response types across all numerical values (241 neurons; see
“Methods” for further details). Indeed, the classifier could predict
whether errors were caused by the crows understating (−1 error) or
overstating (+1 error) the number of self-generated pecks in relation to
the target number (Fig. 5e). Too few pecks were significantly more
often assigned to the −1 error class than the +1 error class, and vice
versa (p <0.001; Wilcoxon signed-rank tests, n = 1000). Thus, already
before the motor plan is executed, the population code predicts
whether the crows are going to match the target number or miss it by
producing too few or too many pecks. Together, these results
demonstrate the behavioral significance of the activity of NCL neurons

for the sensorimotor translation of perceived into self-generated
numbers.

Dynamic and static codes during sensorimotor transformation
Finally, we explored the temporal dynamics and neuronal code(s)
underlying the sensorimotor translation process using two time-
resolved neuronal population analyses. First, we performed an ω²
percent explained variance (PEV) analysis (n = 271 neurons; see Meth-
ods for details). The PEV quantifies the amount of information about
different task factors carried by neuronal populations (Fig. 6a). This
analysis showed that neurons initially represented all factors of the
instruction stimulus, that is, the instruction target number, but also the
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stimulus protocol and the interaction between both factors (Fig. 6a).
However, sensory instruction information gradually vanished toward
the end of the instruction period. After a brief dip in the transition
between instruction period and motor planning period, only infor-
mation about the target number persisted and remained encoded
throughout the motor planning period.

We further explored how the neuronal code for numerosity is
transformed dynamically into a representation of the upcoming target
number of actions by applying cross-temporal classifiers analyses. We
trained SVM classifiers on the firing rates from any given time point

and tested them during any other time points of new trials. Accuracy
was plotted in a confusion matrix spanning the trial times of classifier
training against the trial times of classifier testing (Fig. 6c). The accu-
racy values along the diagonal of the resulting confusion matrix are
plotted in Fig. 6b; throughout the entire instruction stimulus period
and themotor preparation period, the accuracy values of the classifier
were significantly higher than chance. This indicates that the encoded
sensory numerosity is conveyed into a planning code for the
impending numbers of pecks.

For the sensorimotor transformation process, two extreme codes
are conceivable. Neurons might be tuned to a specific target number
during the sensory instruction period andmaintain this representation
over long time periods via persistent firing. This type of coding is
known as static coding; here, a decoder trained on neuronal activity
during a briefmoment of the trial could generalize to other timepoints
of the trial43. Alternatively, a dynamic code could occur whereby
neurons fire sparsely and rapidly change numerical tuning over time.
Here, a decoder trainedonneuronal activity during onemoment of the
trial cannot generalize to the next43.

We found evidence forboth codes.A static codewasevidencedby
significant cross-temporal generalization from the beginning of the
instruction stimulus period until the beginning of themotor execution
period (Fig. 6c).

Thus, classifiers trained on firing rates recorded during the
instruction stimulus period were still able to decode the impending
number of motor actions when tested on activity recorded during the
motor planning period. This resulted in a square-like accuracy pattern
in the cross-temporal confusion matrix spanning both trial periods
(outlined by thick contour line in Fig. 6c). To test that the cross-
temporal generalization and the resulting square-like accuracy pattern
wasmeaningful, we applied a cluster permutation test to the resulting
accuracy values (see Methods for details). Indeed, the square-like
accuracy pattern (outlined by thick contour lines in Fig. 6c) resulted
from accuracy values that were significantly above chance level (~25%;
cluster permutation test). This suggests that tuned activity of persis-
tently active numerosity-selective neurons bridged the gap between
the sensory instruction stimulus until the beginning of the motor
execution period.

We alsoobserved signatures of a dynamic code. Classifiers trained
during a specific time interval after instruction stimulus onset showed
highest accuracies only within the instruction stimulus period, and—
after a performance dip during trial period transition—separately
toward the end of the motor planning period. This resulted in highest
accuracy values only along the main diagonal of the confusion matrix,

Fig. 6 | Distinct neuronal codes during sensorimotor transformation.
a Information (expressed as time-resolved % explained variance; solid lines) about
factors target number, instruction stimulus protocol, and their interaction carried
by the neuron population across time. Dotted lines show percent explained var-
iance for shuffled trial labels, shaded areas the SEM over resamples. b Time-
resolved SVM classifier performance. The solid line shows mean accuracy of clas-
sifier performance at each point in time during the trial (the mean diagonal accu-
racy values derived from the cross-temporal confusion matrix shown in c, the
purple shaded area shows the SEM. The gray shaded area marks the distribution of
shuffled label classifier performance (5th to 95th percentile), whereas the dashed
line shows the chance level for 5 classes. c Cross-temporal SVM classifier perfor-
mance. Mean accuracy is color coded on the two-dimensional matrix, where
training time bins are ordered along the y-axis, and testing time bins along the x-
axis (temporally aligned to a and b). Straight dotted lines mark the onset of the
instruction stimulus period and straight dashed lines indicate the start and the end
of the motor planning period. The area outlined by the thick contour line corre-
sponds to the temporal cluster of time bins significantly above chance level (~25%;
cluster permutation test, see Methods for details). Dashed contour lines indicate
different levels of accuracy (35–65% in steps of 10%). Source data are provided as a
Source Data file.
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with a coding interruption at the onset of the motor planning period
(Fig. 6c). The classifiers’ inability to generalize number information
across trial time periods indicates an additional dynamic neuronal
code in NCL; this is consistent with the finding that many single neu-
rons rapidly changed tuning and encoded target number only during
restricted trial intervals (Fig. 3b).

Beyond the instruction stimulus and motor planning period,
manyNCLneuronswere also active during themotor execution period
(a detailed analysis of the execution period is beyond the scope of this
paper that deals with the sensorimotor translation mechanism).
Figure 7 depicts an exemplary neuron that was significantly tuned to
number 3 in the instruction, motor planning, and motor execution
period. Because the time intervals between the crow’s unitary
responses in the motor execution period varied according to the
temporal arrangements during the execution period (see Fig. 1c), the
execution responses are temporally interrupted. This indicates that
the neuronal population actively translated perceived numerical
values into numbers of self-generated actions during the motor plan-
ning period.

Discussion
To solve the number production task, the crows used the “approx-
imate number system”, a nonsymbolic number estimation system
humans share with a variety of animals2. This is evidenced by the
approximate bell-shaped performance functions of the crows and
the signatures of the psychophysical Weber law, which predicts that
their performance functions become systematically broader (i.e.,
imprecise) with increasing target numbers. Compared to purely
perceptual delayed-matching-to-numerosity tasks19,28–30, overall per-
formance was decreased in the current delayed number production
task. This due to the increasing complexity of the task with increasing
target numbers (correlating with decreasing chance performance
levels) and the overall increased cognitive demand of the current
protocol; the crows not only needed to correctly assess numerosity
in the visual displays, but also keep track of their own self-generated
actions. Importantly, the performance of both crows to all target
numbers, stimulus conditions, and temporal arrangements was
above chance. Thus, the crows were able to properly reproduce

visually instructed numbers 1–5. For higher target numbers 3–5,
performance of both crows was slightly better for the sign protocol
(Arabic numerals). This is to be expected as the signs are associated
with one precise numerical value, whereas the dot numerosity stimuli
provide only approximate numerical values that first need to be
estimated perceptually and thus introduce additional noise in num-
ber discrimination. Overall, however, the crows’ precision in this task
comparable to the one seen in humans asked to reproduce a target
number with a series of fast key presses while being prevented from
symbolic counting4,5.

The crows’ RTs in the execution period indicate that they did not
prepare the execution of a peck during the planning period but waited
for the onset of the first enumeration stimulus prompting a peck. The
crows’ median RTs of 444ms (crow 1) and 389ms (crow 2) in the
current study were almost identical to the RTs of two crows (394ms
and 460ms, respectively) that had to peck at the shorter (or longer,
depending of the task contingencies) of two choice stimuli, i.e., in a
situation where they needed to process the information of the choice
stimuli before they could prepare and execute a peck44. This indicates
that the crows in the current studydid not prepare amotor response in
the planning period but instead waited until the start of the response
phase. The planning period that we analyzed subsequently for repre-
sentations of impending number of pecks was thus not contaminated
by motor-related activity.

The number selective sensorimotor neurons we described in the
corvid NCL constitute a neuronal correlate of a numerical
perception-to-action transformation process3. In the service of this
function, NCL neurons fulfilled several expected characteristics: they
showed tuning to preferred numerical values, they responded
abstractly and irrespective of the format of the instruction stimulus,
and most of all, they predicted impending self-generated actions in a
behaviorally relevant way. The information (as measured by PEV)
contained in the neuronal NCL population robustly encoded the
numerical value when the instruction stimulus was shown, but also—
mildly diminished—in the absence of a numerical stimulus during the
planning period. This information content in the neuron population
enabled a classifier to reliably predict the impending number of
pecks during the planning period.
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Fig. 7 | Neuronal activity of an exemplary neuron throughout the entire trial.
Exemplary neuron selective to numerical value 3 throughout an entire trial. Dot
raster histogram, spike-density functions, and color code are the same as in
Fig. 3c–g. Pictograms above the dot raster histograms show the respective task
period. Because the time intervals between the crow’s unitary responses in the
motor execution period varied (see our timing controls for the different arrange-
ments), the execution responses are temporally interrupted; trials are temporally

aligned to previous enumeration pecks (indicated by downward triangle symbols).
The gray shaded areas show the time periods over which tuning curves (insets) are
summated. Error bars herein depict the SEM over trials (n = 111, 111, 68, 61, 51 trials
for target number 1–5, respectively). The shaded area during the motor planning
period corresponds to the selective interval of this cell (cf. Fig. 3c). FR firing rate.
Source data are provided as a Source Data file.
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The static and dynamic codes we found in the crow NCL during
sensorimotor number transformation are not incompatible. In the
primate cortex, stable persistent activation with robust across-time
generalization is known to exist in the presence of dynamically
changing neuronal representations45,46. Our results suggest over-
laying static and dynamic codes during the transformation of a
sensory number code into a representation of a specific motor plan.
It is likely that these different codes serve different functions during
the transformation process. For example, in the primate cortex, it has
been argued that the static code represents retrospective aspects of
working memory47, whereas a dynamic code might support the
prospective nature of working memory to guide future behavior48,49.
Given that our crows needed to translate an instruction stimulus into
numbers of pecks, it is conceivable that the static component
resulting from persistently tuned neurons represents the retro-
spective memorization of the instructed numerical value, whereas
the dynamic code stemming from transiently tuned neurons repre-
sents the translation of the remembered values into impending
numbers of pecks. Interestingly, these two indispensable aspects of
the sensorimotor transformation process are represented by a
superimposed static and dynamic code, respectively. It stands to
reason that overlapping neuronal codes may not only be present in
transformations of numerical information, but more generally when
sensory input is translated into a volitional goal-directed motor
output.

A sensorimotor number system that processes the numerosity of
external stimuli but also internally-generated actions was proposed
based on psychophysics and brain imaging in humans. Psychophysical
findings based on numerosity adaptation after-effects50 also suggest a
close interaction between numerosity perception and production. For
example, participants required to tap rapidly in mid-air for several
seconds in an adaptation phase underestimated the number of sub-
sequently displayed visual stimuli near the tapping region; conversely,
adaptation to slow tapping caused overestimation of visual
numerosity51,52. Similarly, motor adaption also changes the perceived
numerosity of sequences of auditory tones53.

Functional imaging studies in humans have shown that posterior
parietal regions activated during the perception of numerical values
are found in the vicinity of, and in partial overlap with, action-related
(eye or hand movements) areas54–56. Indeed, a surprising link exists
between the representation of numerical quantities and the pre-
paration of actions57. For instance, a decoder trained to distinguish
based on fMRI activity leftward from rightward saccades in posterior
parietal cortex generalized to distinguish between subtraction and
addition58. Moreover, one parietal region that contains a topo-
graphically organized fMRI-map for numerosities (area NCP3; the
third numerosity postcentral sulcus map)59,60, seems to be involved
in the processing of the number of observed manipulative action61.
Perhaps the posterior parietal cortex together with other brain
regions that harbor numerosity-selective neurons, such as the pre-
frontal cortex62–64 and medial temporal lobe areas65,66, constitute the
neural substrate of the proposed sensorimotor number system in
primates3. Similar to the avian NCL, the fronto-parietal neocortical
network of primates plays an important role in translating percep-
tions into actions. Moreover, the fronto-parietal network is known as
the core number network in which neurons represent sensed
numbers16 and number of actions13. This cortical network would
therefore be ideally suited to enable not only non-symbolic numer-
ical transformations in non-human primates, but also symbolic
number transformations during mathematical reasoning in humans.

Methods
Animals
Two hand raisedmale carrion crows (Corvus corone), age 2 and 7 years,
obtained from the institute’s breeding facility were used in the current

experiment. Crows were housed in social groups of up to four indivi-
duals in spacious indoor aviaries (L ×W×H: 3.6 × 2.4 × 3m) with day-
light and a natural light-dark cycle under controlled temperature and
air humidity conditions67. Aviaries were equipped with chipped wood
beddingon thefloor, water trays,woodenperches of varyingdiameter,
and objects for enrichment. A varied diet consisting of birdseed
(Beoperlen, Vitakraft, Germany), insect larvae, chickmeat, hard-boiled
egg, vegetables, fruits and so on was provided.

During the experiments, the crows were kept on a controlled
feeding protocol and earned food as a reward during training and
recording periods; if necessary, food was supplemented after the daily
sessions. Water was provided ad libitum. All procedures were con-
ducted according to the national guidelines for animal experimenta-
tion and approved by the national authority, the Regierungspräsidium
Tübingen, Germany.

Experimental apparatus
Training and recording occurred in a darkened operant conditioning
chamber. Using leather jesses, the crows were loosely strapped to a
wooden perch and placed in front of a 15” touchscreen monitor (3M
Microtouch; 60Hz refresh rate). A light barrier was used to ensure the
crows maintained a central head position in front of the monitor
(viewing distance: 14 cm). The barrier consisted of an infrared light
emitter/detector fixedon the ceiling of the chamber and a reflector foil
attached to the crow’s head. A custom-built automated feeder used for
reward delivery was positioned below the monitor. Birdseed pellets
(Beo Special, Vitakraft) and mealworms (Tenebrio melitor larvae) were
used as rewards. Loudspeakers (VisationWB10) for auditory feedback,
as well as an infrared camera (Genius iSlim 321R) for observational
control, were also installed in the chamber. Presentation of stimuli and
collection of behavioral responses was managed by the CORTEX sys-
tem (Version 595) (National Institute for Mental Health, Bethesda,
Maryland). Electrophysiological data was recorded using a PLEXON
MAP system (Plexon Inc., Dallas, Texas). Stimulus epochs and beha-
vioral responses were synchronized with electrophysiological record-
ings with millisecond precision via 8-bit-words as event flags
communicated between the CORTEX-system and the Plexon-system.

Behavioral protocol
We trained two crows on a computerized task to plan and produce a
visually instructed number of peck responses. A trial started when a
ready cue (small white circle in the center of a touch-sensitive screen)
indicated to the crow that a trial could be initiated. To initiate a trial,
the crow had to position their head centrally in front of the monitor,
thereby closing an infrared light barrier. Moving out of this predefined
position before the end of a motor planning period terminated the
ongoing trial. Once a trial was initiated, an empty gray background
circle was displayed for 300ms (baseline period). Next, an instruction
stimulus (600ms) instructed the crowon the number of 1 to 5 pecks to
produce. This impending number of pecks had to be maintained in
working memory throughout the following motor planning period
(1000ms). The appearance of a second smaller gray circle (confirma-
tion stimulus, or “enter key”; size: 11.4° of visual angle) below the
empty background circle (now serving as enumeration stimulus; size:
26.1° of visual angle)marked the end of themotor planning period and
the beginning of the motor execution period.

In the motor execution period, the crow had to execute the cued
number of pecks (one after the other) in a defined way. The crow had
to produce each unitary response by pecking within 600ms at the
enumeration stimulus. The enumeration stimulus disappeared after
each peck, followed by a short and variable waiting period after which
the enumeration stimulus would reappear for as often as the crow
would continue to add more pecks (Fig. 1a).

The crow signaled they had made the requested number of
responses by pecking at the confirmation stimulus (serving as an
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“enter key”). Both types of pecking responses (to the enumeration
stimulus and the confirmation stimulus) were accompanied by specific
sounds (250ms duration; a high pitched “coin collection” sound from
the Super Mario game for a registered enumeration response; a lower
pitch “bubble pooping” sound for confirmation responses) serving as
auditory feedback for registered responses. A trial was evaluated as
correct if the number of pecks produced by the crow prior to
the confirmation response matched that cued by the instruction sti-
mulus. Correct trials triggered dispensary of a food reward accom-
panied by a reward tone (an upward FM sweep). If the crow gave a
premature confirmation response (produced fewer pecks than the
instructed number) or exceeded the requested number of enumera-
tion responses by one (n + 1), an error was detected in which the trial
was aborted.

If the crow exited the light barrier before the onset of the
response period, reacted prematurely during the waiting interval,
missed the pecking time interval, ormissed themonitor location of the
enumeration or confirmation stimuli, the trial was aborted but not
counted as error. All errors and trial abortions resulted in the with-
holding of reward accompanied by a specific sound (250ms of white
noise), a visual feedback signal (a brief, gray full-screen flash), and a
brief timeout period (3 s), delaying the initiation of the next trial.

As described below, we used two numerical presentation proto-
cols with a standard and control condition for each numerical value
ranging from 1–5. The numerical values, protocols, and conditions
were presented in a pseudo-randomized and balanced order.

Stimuli
We used two different numerical presentation protocols that repre-
sented values 1–5 as instruction stimuli: The first protocol (dot pro-
tocol) showed a numerosity dot display with 1 to 5 black dots; the
second protocol (sign protocol) consisted of five different visual
shapes (Arabic numerals) that the crows had learned to associate as
signs with the number of actions 1 to 5. Both dot and signs displays
were shown on a gray circular background.

For both protocols we used two stimulus conditions (standard
and control) to control for non-numerical factors. For thedotprotocol,
the different stimulus conditions controlled for low-level visual fea-
tures that covary with numerosity (total dot area and dot density). In
the standard condition, dot displays consisted of 1 to 5 dots of pseudo-
randomized size (1.2–5.5° of visual angle) presented at pseudo-random
locations on the gray background circle, with the only requirement
that dots were not overlapping or touching. In the control condition,
total dot area and density was kept constant across numerical values.

For the sign protocol, black Arabic numerals 1–5 of pseudo-
random size (15–26 pts., 2.9–4.9° of visual angle) were placed at a
pseudo-random location on the background. “Arial” was used as the
standard font-type, whereas “Times New Roman”, “Souvenir”, and
“Lithograph Light” were used as control fonts. To prevent the animal
from memorizing or rote learning individual stimuli, multiple stimuli
for every combination of protocol, condition, and numerosity were
generated anew before each session using MATLAB (Version R2020b,
MathWorks Inc., Natick, Massachusetts).

Temporal arrangement during the enumeration period
The duration of the wait intervals in the motor execution period was
varied systematically to prevent the crows fromusing timing strategies
to solve the task. We applied three temporal arrangements: one stan-
dard and two control arrangements (Fig. 1c). In the standard timing
arrangement, the duration of each wait interval was chosen pseudo-
randomly between 300ms and 1.2 s (in steps of 300ms). Each of the
interval durations had an equal probability per wait interval, therefore,
rhythmicity was suspended. Although response period duration
increased with requested numerosity, it overlapped between neigh-
boring numerosities (see Fig. 1c). In the first control timing

arrangement (fixedwait interval), all wait intervals had a fixed duration
of 300ms. In the second control protocol (fixed overall duration), wait
interval durations varied according to the requested numerosity, such
that the total duration of the response period was the same across
numerosities. Therefore, wait interval durations were shorter for
higher numerosities and vice versa, i.e., trials with requested numer-
osity two had one 2.8 s wait interval, numerosity three had two 1.2 s
intervals, numerosity four had three 600ms intervals, and numerosity
five had four 300ms intervals. Since trials with numerosity one had no
wait interval, these trials had the same temporal organization.

For each session, the standard timing arrangement and one of the
two control timing arrangements were presented in pseudo-random
and balanced order; the control timing arrangements were
alternated daily.

Training procedure and learning criterion
Prior to training on this task, crow 1 was experienced with numerosity
discrimination in a delayedmatch-to-sample protocol, whereas crow 2
was naïve. The layout of the current task was introduced in a step-wise
manner by progressing from one training step to the next over the
course of months; once the crows were proficient with one training
step, they were moved to the next step.

In a first step, the crows were shown an instruction stimulus
containing two black dots. After a brief delay, two sequential white
squares appeared in the motor execution period. The crows had to
peck at each white square (which disappeared after being pecked) to
receive a reward. In a second step, an instruction stimulus containing
one dot was introduced. In addition, the “confirmation stimulus” was
introduced during the motor execution period. Moreover, an “enter
cue” (the same white square that served as count cue) was turned on
within the confirmation circle once the required number of pecks to
the enumeration stimulus was registered. Now the crows received a
reward when it pecked at one or two white squares (depending on the
cued number) and then on the enter cue. Target numbers one and two
were first presented in blocks of trials and later interleaved once the
crows mastered them individually. In a third training step, the white
squares were faded out in color against the gray background until they
were invisible, leaving the gray background circle as “enumeration
stimulus”. At this stage, short wait intervals without an enumeration
stimulus were introduced between enumeration pecks to ensure the
crows emitteddiscrete pecks. By the endof this step, the crowwasable
to produce one or two pecks and to confirm using the confirmation
stimulus as enter key. In the fourth training step, the display time of
this enter cue was then shortened until it was only briefly flashed (after
the crows produced the correct number of pecks) and finally not dis-
played at all. The crowswere nowpecking at the confirmation stimulus
upon correct number of, one or two, pecking responses unaided by
any cues other than the instruction stimulus. In the following training
steps, target numbers 3–5 were introduced one by one in the same
block-wise manner as described above. For example, the crow was
presented with only target number 3 trials until it—by chance—pro-
duced three pecks to the enumeration stimuli and got rewarded upon
pecking the enter key subsequently. Once the crow proficiently pro-
duced target numbers 1–5 for the standard dot protocol, the control
condition stimuli for dots were introduced.

After that, the sign protocol was introduced. This was done by
initially showing two instructing stimulus phases, first the dot stimulus
followed by the corresponding sign stimulus. The crows thereby
learned to associate dot numerosities with the respective sign stimulus
until the dot numerosities could be removed to only leave the sign as
instruction stimuli. After the crows mastered the sign protocol with
target numbers 1–5, control condition sign stimuli were introduced.
Finally, trials showing dot and sign instruction stimuli were gradually
interleaved. The last training step consisted of introducing the differ-
ent temporal arrangements, until the crows proficiently mastered the
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standard and the control 1 and control 2 temporal arrangements in the
motor execution period.

The crows were trained on the final protocols until they reached
the learning criterion. The learning criterion was reached when the
crows performed allfivenumerical target values and all three temporal
arrangements above chance for 9 consecutive sessions (i.e., days).
Chance levels decreased with increasing target numbers: 33.3% for
number 1 (given that the crows could perform 0, 1, or 2 pecks before
using the confirmation stimulus as “enter key”, i.e., 3/100%); 25% for
number 2 (either 0, 1, 2, or 3 pecks; 4/100 %), 20% for number 3, 16.7%
for number 4, and 14.3% for number 5.

Surgery and recordings
After crows reached the learning criterion,we implanted custom-made
micro-drives carrying electrodes for electrophysiological recordings.
All surgeries were performed while the animals were under general
anesthesia. Crowswere anesthetizedwith a ketamine/xylazinemixture
as described in Ditz and Nieder19. The head was placed in the stereo-
taxic holder that was customized for crows with the anterior fixation
point (i.e., beak bar position) 45° below the horizontal axis of the
instrument. Using stereotaxic coordinates (center of craniotomy:
anterior-posterior +5mm relative to inter-aural (ear bars) as zero;
medial-lateral 13mmrelative tomidline),wechronically implanted two
micro-drives with four electrodes (spaced apart ~0.5mm) each in the
left or right hemispheres, a connector for the head stage and a small
head post to hold the reflector for the light barrier. Glass-coated
tungsten microelectrodes with 2 MΩ impedance (Alpha Omega) were
used. The electrodes targeted the corvid NCL, which is characterized
by dopaminergic cells39,68,69. After the surgery, the crows received
analgesics19.

When the crows had fully recovered a few days after the surgery,
single-unit recordings in the behaving crows commenced. We recor-
ded from both hemispheres of both crows (9 sessions from right NCL
and 62 sessions from left NCL in crow 1; 5 sessions from left NCL and
51 sessions from right NCL for crow 2). Each recording session started
with advancing the electrodes until a proper neuronal signal (of at least
3:1 signal to noise)was detected (see also Fig. 4a, b in Veit andNieder68,
for example recording traces). Neurons were not preselected in the
involvement of the task.

Every session the birds were placed in the recording setup and a
head stage containing an amplifier was plugged into the connector
implanted on the bird’s head and connected to a second amplifier/
filter and the PlexonMAPboxoutsideof the setupby a cable above and
behind the bird’s head (all components by Plexon Inc., Texas, USA).
Signal amplification, filtering, digitizing of spike waveforms was per-
formed using the Plexon system. Spectral filtering of recordings was
accomplished by a combined preamplifier filter (150 Hz-8kHz, 1 pole
low-cut, 3 pole high-cut) andmain filter (250Hz, 2-pole, low-cut filter).
Amplitude amplificationswere set individually for different channels in
the range of ca. 20,000x gain. Spike waveforms were sampled at a
frequency of 40 kHz. Plexon’s Offline Sorter was used to manually
offline sort spikes into single-unit waveforms by applying mainly
principal component analysis.

We verified the NCL and the location of the electrodes in NCL
(according to the implantation coordinates provided above; as histo-
logically verified before, see ref. 70). We immunohistochemically
stained for tyrosine-hydroxylase to identify dopaminergic cells, which
characterize the NCL71 (see also Fig. 3 in Veit and Nieder68).

Data analysis
All analyseswerecarriedout inMATLAB (Release2020b), unless stated
otherwise. If not stated otherwise, all values in the figures and main
text refer to the mean± standard error of the mean (SEM). The latter
was calculated as the standard deviation divided by the square root of
sample size.

Behavioral analysis
Overall performance (% correct) was calculated as the number of
correct trials divided by the sumof correct and incorrect trials for each
session. To construct performance curves, the relative frequency of
number of responsesmade to the enumeration stimuli were calculated
for each instruction numerical value (separately for dot and sign pro-
tocols) and averaged over recording sessions.

Neuronal tuning and selectivity analysis
Single units were included in the analyses if they had an average firing
rate of at least 0.5 Hz in the relevant task windows (beginning of
baseline period until end of motor planning period), and at least two
recorded correct trials for each of 20 specific trial conditions (5
numerical values × 2 stimulus protocols × 2 stimulus conditions).

Neuronal activity in the motor planning period was evaluated in a
900ms time window from 800ms to 1700ms after instruction sti-
mulus onset (200ms to 1100ms after onset of the motor planning
period). With this, the analysis window reached 100ms into the phy-
sical presentation of the first enumeration response period but based
on the neurons’ response latency allowed us to still acquire activity
related to the crows’ planning. The mean visual latency for crow NCL
neurons is 144ms70. Therefore, the neuronal activity relative to the
physical task periods is delayed by this amount of time (i.e., 144ms, on
average). Thus, the first 100ms of the execution period still carry only
information about the planning period, not the motor execution.

We used two-factor sliding-window analyses of variance (ANOVA;
200ms window, 10ms step-size, p < 0.01) in this 900ms window to
assess single-neuron selectivity to the task variables “numerosity”
(numerical values 1–5) and “notation” (dots and signs). As stimulus
condition (standard and control) differed for dot and sign protocols, it
was not included as a factor into the ANOVAs. If neuronal activity
differed significantly for numerical value (i.e., if there was a significant
main effect for factor numerical value, but nomain effect for protocol,
nor a significant interaction term), in more than 11 consecutive time-
bins (amounting to a continuous interval of at least 300ms), this
interval and the neuron were categorized number-selective. In case
there was more than one selective interval for a neuron, only the one
containing the largest difference in firing rate for different numerical
values was used.

For every number-selective neuron and its selective interval, the
numerical value eliciting the highest firing rate was termed its pre-
ferred numerical value. Neuronal response functionswere constructed
by normalizing a neuron’s mean discharge rate between it most- and
least-preferred numerical value. Population response functions were
obtained by averaging tuning function of all number-selective neurons
preferring each individual numerical value.

Error trial analysis
To infer behavioral relevance of the motor planning activity, the dis-
charge rates in response to instructed numerical values were com-
pared between correct and incorrect trials. Only number-selective
neuronswith at least three recorded incorrect trials for each instructed
numerical values were considered in this analysis. The individual
neuron’s mean firing rates to their preferred numbers were compared
in correct vs. incorrect trials (Wilcoxon signed-rank test). Furthermore,
neuron’s response functions were calculated for correct and incorrect
trials andwereoverlayedby aligning them to their preferred numerical
values. To compare the tuned neurons’ responses in trials where the
preferred number n was produced erroneously, we considered only a
subset of number-selective neurons.Neurons had tohave at least three
recorded trials in which n pecks were incorrectly produced instead of
the n − 1 and n + 1 instructed pecks. Consequently, only neurons tuned
to preferred target numbers 2, 3, and 4 were considered in this ana-
lysis. Additional error analyses were performed at the population level
(see below).
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Classifier analyses
We performed classification analyses for cued target numerical values
using linear multi-class support vector machine (SVM) classifier
models72 trained and tested on trial firing rates within the 900ms
motor planning period analysis window. To evaluate auto-
classification accuracy for the entire sampled population, we only
considered neurons with at least 20 correct trials per stimulus class,
i.e., numerical value. To deal with the problem of multiclass classifi-
cation arising from our five classes, we used one-vs.-one transforma-
tion to binary classification provided by the used models72. In brief,
each multiclass classification was split into 10 binary classifications
(i.e., class 1 vs. class 2, 1 vs. 3, 1 vs. 4, and so on), onto which the model
was trained to discriminate. This one-vs.-one approach is commonly
preferred over the alternative one-vs.-rest approach (class 1 vs. classes
2–5, 2 vs. 1 and 3–5, etc.). To evaluate auto-classification accuracy (for
which training and test data stem from the same dataset), we per-
formed a 10-fold cross-validation approach: we divided the data
(average normalized firing rates for each of the 5 classes) into 10 even
splits. We then used 9 of these splits to train a classifier model, and
used the 10th split for testing the model. In particular, the normalized
average firing rates of 90 trials (18 trials per 5 classes) were used to
train an SVM model, and the models’ predictions of the remaining 10
trials (2 trials per 5 classes) were then evaluated to yield an accuracy
measure of this cross-validation run. This was repeated 10 times
overall, each time with another of the 10 splits as the testing subset.
Prior to training and testing, trial firing rates were z-scored, that is,
subtracted with themean and divided by the standard deviation of the
trainingdata (these parameters of the training subsetwere alsoused to
z-score the testing subset of trials). We repeated this procedure 1000
times, each time with a new subset of 20 randomly drawn trials for
each neuron. To assess chance level classifier performance, we also
repeated the above procedure (including z-scoring, cross-validation
splits, and resampling) with shuffled trial labels. The classifier model
predicts the class label of a given subset of trials. Together with the
correct labels, we used predicted labels to construct confusion
matrices. Overall classifier accuracywas calculated as the average over
the mean diagonal of the confusion matrix. Values in the figure and
main text report the mean and standard error of the mean (SEM) over
resamples.

We used an analogous approach to test whether the neuronal
populationwould transfer informationabout the target number across
different stimulus protocols (dots or signs). To this end, we trained
SVM models on the classification of numerical value in one protocol
and tested in on the other protocol. This process is very similar to the
aforementioned analyses; hence, we onlymention deviations from the
above procedure. We included all units that were recorded for at least
10 trials per numerical value and stimulus protocol (10 trials for each
numerical value in the dot protocol and 10 for each numerical value in
the sign protocol). We tested how well SVM models trained on one
stimulus protocol (e.g., dots) could predict the numerical value of
trials of the other protocol (e.g., signs; and vice versa). Similar to a 10-
fold cross-validation, nine trials per class of one protocol were used for
training and one trial per class of the respective other protocol were
then used for testing the SVM models per split. This was repeated 10
times, each time with another split of trials for training and testing. All
other parameters of this approach (i.e., normalization, resampling,
chance level performance) were identical to the auto-classification
described above.

This classification/prediction approach was also used to demon-
strate behavioral relevance of the population signal by testing it on
activity from incorrect trials. Analogous to the above, we included all
neurons that had at least one incorrect trial for each class. This number
was small because there were very few incorrect trials for the numer-
ical value 1. Nine correct trials per class were used for training and
either one correct or one incorrect trial per class were then used for

testing the SVM models per split. Again, this was repeated 10 times,
each time with another split of trials. All other procedures for this
classifier were identical to the analyses above. We thus yield two
accuracymeasures from this analysis: one for the auto-classification of
correct trials, and one for the prediction of incorrect trial labels from
models trained on firing rates of correct trials.

Lastly, we also checked whether the population carried infor-
mation about the trial outcome. We trained and tested an SVM
classifier on whether a trial would be correct, incorrect due to pre-
maturely ending the enumeration period (−1 error), or incorrect due
to overshooting the target number of enumeration pecks (+1 error).
We considered only −1 errors (instead of for example −2 errors) to
balance out the fact that only +1 errors were possible due to the task
design. That is, an ongoing trial would automatically be aborted after
n + 1 pecking responses (for target number n). We included all
recorded neurons that had at least 30 trials of these three classes
irrespective of the numerical value. This was done because there
were vastly different numbers of +1 and −1 errors for different target
numbers. For example, there were virtually no −1 errors for target
number 1. We used a 10-fold cross-validation, and resampled trials
100 times. All other steps were identical to the auto-classification of
numerical value described above.

Time-resolved population analyses
To determine the amount of information about numerical values and
stimulus protocol carried by the neurons over the time course of a
trial, we performed a percent explained variance (PEV) analysis73,74.
We29,62,75 andothers76,77 have used the PEV analysis before to extract the
amount of information carried by neuronal populations. The PEV
captures the amount of information represented in the firing rates of
the population irrespective of selectivity. It reflects the amount of
variance in the firing rates explained by the task factors (“target
number” or “stimulus protocol”). To this end, all recorded neurons
with at least 10 trials per numerical value and stimulus protocol were
considered. We used two-factorial (numerical value, stimulus proto-
col) sliding-window ANOVAs (200ms window with 20ms step size)
over the relevant time window of the trial (baseline onset until motor
planning offset; 300ms prior to instruction stimulus onset until
1700ms after instruction stimulus onset) to yield the sum-of-squares.
From these, the amount of variability attributed to either factor or
their interaction as a function of time was calculated as ω² according
to:

ω2 =
SSterm � df × MSerror

SStotal + MSerror
× 100 ð1Þ

where SSterm is the sum-of-squares of the term of interest (factors
number or protocol, or their interaction), SStotal the total sum-of-
squares, df the degrees of freedom, and MSerror the mean squared
error. Values were averaged over units to extract the population PEV
value as a function of time for each term. We repeated this procedure
20 times, each time with randomly drawn trials. Average PEV
and SEM values are based on the mean over resamples. To assess
baseline PEV, we also performed the procedure with shuffled trial
labels in the ANOVAs, shuffled 50 times per resample (20
resamples × 50 shuffles = 1000 reshuffles for the calculation of
baseline PEV).

To further quantify the sensory-to-motor transformation of the
population code, we also performed a cross-temporal SVM classifier
analysis. For this, we considered only neurons that were recorded for
at least 20 correct trials per class, i.e., target number.Weused a sliding-
window (200ms length, 20ms step size, from baseline onset to the
beginning of the motor execution period) and trained a linear multi-
class SVM model in each of these windows. Similar to a 10-fold cross-
validation, we split the data in 10 equal parts, that is, we used firing
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rates of 18 trials per class in the respective time window to train the
model and then tested each window’s model with firing rates of the
remaining two trials per class from each of the remaining time win-
dows. This way, a two-dimensional matrix of accuracy values—where
the first dimension describes the time bin for the training of the clas-
sifier model, and the second dimension the time bin for testing—is
yielded. These training and testing procedureswere repeated 10 times,
each time with a different split of trials. One-vs-one classification was
used to deal with five classes. Before training and testing, firing rates
were z-scored based on parameters from the training subset. The
whole procedure was repeated 20 times, each time with a different
subset of randomly sampled trials.

To assess chance level accuracy of the cross-temporal classifier,
we performed a cluster permutation test78.We repeated the procedure
(including 10-fold cross-validation and z-scoring) with permuted trial
labels, shuffling 50 times per resample (50 shuffles × 20 resamples =
1000 reshuffles for chance level accuracy). We then compared the
mean (over resamples) of true accuracy values against the distribution
of random values in each time bin (pixel in the 2D accuracy matrix;
αcluster = 5%). This was also repeated for each of the (1000) permuted
accuracy matrices. In a second step, neighboring pixels significant
above this first threshold formed so-called “candidate clusters”. Clus-
ter size, i.e., the number of neighboring pixels of these candidate
clusters (of both, truedata, and shuffleddata)were thenused to forma
distribution, against which the true accuracy clusters were evaluated
for significance (αrank = 5%).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request. Source data are provided with
this paper.

Code availability
The code that support the findings of this study is available from the
corresponding author upon request.
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