MINI-TUTORIAL ON AUTOMATED
DISCOVERY OF SECURITY
VULNERABILITIES USING
FUZZING

Agenda

Motivation

Definition of Fuzzing and where it is in the security landscape

. Targets that can be fuzzed

Fuzzing types: black-box, grey-box, and white-box

Fuzzing types: source code fuzzing and protocol fuzzing

Fuzzing metrics and coverage information

Fuzz test optimization: sanitizers, seeds, dictionaries, and parallelization

® N> oA w N

. Challenges and good practices

Christopher Huth | 2020-04-02 BOSCH

Motivation

The JO)’ of Tech-. by Mitrozac & Snaggy

30 BUCKS IN
BITCOIN, OR NEXT

The Internet of ransomware things... i

TIME I SMELL
ON STRIKE SMOKE, L MIGHT
HUNGRY? UNTIL YOou JUST LET YOU
PAY UP AND SEND MONEY SLEEF.

20 BUCKS
L LNLOCK IN MY PAYPAL
ACCOUNT
OR I‘LL ONLY

THE NEXT TIME
¥OU LEAVE, ITLL
COST YOU 100
BUCKS TO GET
BACK INTO THE
HOUSE, UNLESS

YOU GIVE ME

MY ALARM
SYSTEM IS
GOING TO GO
OFF RANDOMLY
THROUGHOUT
THE NIGHT,
UNLESS YOU

I'LL BE
BURNING THE
TOAST IF YOU
DONT GET

EXCUSE US
WHILE WE
FARTICIFATE

I'M TURNING

HACKER #100 IN A DDOS OFF THE
OR I’LL REVERSE ATTACK. HEAT UNTIL
MY MOTOR AND YOU WARM UP
BLOW DIRT ALL MY BANK
OVER THIS ACCOUNT/

PLACE/

I‘LL START
YOUR CAR, BUT i

ONLY TO TAKE
YOU TO YOUR

BANK TO MAKE
A TRANSFER. &

SEND ME $25 OR

IF YOU DON‘T IL TELL EVERYONE
SEND US CASH, ON YOUR SOCIAL
YOUR REPUTATION NETWORK THAT YOU
WILL BE IN THE WERE STUPID ENOUGH

TRASH. TO BUY AN INTERNET-

CONNECTED BROOM/

3 Christopher Huth | 2020-04-02

One of the first bugs
discovered by fuzzing
(30 years old)

Example Vulnerability

while ((cc = getch()) = ©)
{

buf[1++]

CcC,

}

1. No check on the length of buffer buf
2. Write own code on the stack
3.

BOSCH

What is Fuzzing?

"Fuzzing is a dynamic technique. To find bugs, it must trigger the code that contains these bugs.",
Hui Peng, T-Fuzz: fuzzing by program transformation, 2018

[;x1-GPZ+wccke] ; ,N9J+2#6"6\e?19 1u2_t* 4GX""OVUB[E/T
~FApubb8<{%siq8Zh.6{V,hr?;{Ti.r3PIXMMMv6{xS"+"Hq!
AXBTYXRSQ!KA6 ;WA FRWM(™ | J_<1~0}z3K(CCZRH JI IvHz>_*.
\>Jr1U32-eGP?IR=bF3+;y$310dQ<B8I1 5" W2 FK*VETV{ *)KCi , P ro g ram
FuZZer i [l] -‘:- ';If\-;\l)I:f I' ’I‘:-DII\7II_I LA DL o) :
g4nCwqo 1y63}0 | Ko=*JK~; zMKV=9Nai :wxu{J&UV#HaU)*BiC<),
+t*gka<W=Z . KT5WGHZp 1 30D<Pq>&]BS6RE] 2#LP7iav}-}"\? unaer te St
[_[Z"LBMPG-FKj "\xwuZ1=Q "5, NQ@[! CuRzJ2D|vBy!
AZkhdF3CEPAKR?V hn|3="120x]D

» Fuzzing was coined in 1989, when Miller et al. used a An Empirical Study of the Reliability

random testing tool to investigate the reliability of UNIX tools. of
UNIX Utilities

» Fuzzing automatically generates

Barton P. Miller

» unexpected, malformed or random data bartges wisced

Lars Fredriksen
L.Fredriksen@att.com

» and provides this data as input to a software under test.

Bryan So
so@cs.wisc.edu

» Software under test is monitored, e.g. for crashes or hangs.

Summary

Operating system facilities, such as the kernel and utility programs. are typically assumed to be reliable. In

our recent experiments, we have been able to crash 25-33% of the utility programs on any version of UNIX that was

tested. This report describes these tests and an analysis of the program bugs that caused the crashes.

BOSCH

Christopher Huth | 2020-04-02

What is Fuzzing?

"Fuzzing is a dynamic technique. To find bugs, it must trigger the code that contains these bugs.",
Hui Peng, T-Fuzz: fuzzing by program transformation, 2018

[;x1-GPZ+wccke] ; ,N9J+2#6"6\e?19 1u2_t* 4GX""OVUB[E/T
~FApubb8<{%siq8Zh.6{V,hr?;{Ti.r3PIXMMMv6{xS"+"Hq!
AXBTYXRSQ!KA6 ;WA FRWM(™ | J_<1~0}z3K(CCZRH JI IvHz>_*.
\>Jr1U32-eGP?IR=bF3+;y$310dQ<B8I1 5" W2 FK*VETV{ *)KCi , P ro g ram
FuZZer i [l] -‘:- ';If\;\l]I:f I' ’I‘:-DII\7II_I LA DL o) :
g4nCwqo 1y63}0 | Ko=*JK~; zMKV=9Nai :wxu{J&UV#HaU)*BiC<),
+t*gka<W=Z . KT5WGHZp 1 30D<Pq>&]BS6RE] 2#LP7iav}-}"\? unaer te St
[_[Z"LBMPG-FKj "\xwuZ1=Q "5, NQ@[! CuRzJ2D|vBy!
AZkhdF3CEPAKR?V hn|3="120x]D

» Overall goal is to validate a robust program behavior.

» When a program accepts data from an untrusted input (or faulty in general), unwanted and observable
behavior should be avoided.

» In more detail, fuzzing metrics, such as code coverage and time, can be maximized.
» Fuzz testing can detect bugs which can lead to vulnerabilities.

» The generated input that triggers a bug is saved, and thus provides a reproducible test case.
» Therefore, fuzzing is limited to discovering symptoms for exploitable bugs.

Christopher Huth | 2020-04-02 BOSCH

Where is Fuzzing in the Security Landscape? (not complete)

System Security

Security by Proof Security by Testing
» Systems are provably secure » Systems are tested
» specific attacks are impossible » Low probability of successful attacks
» always behave as designed » Remaining attacks have high complexity
» Requires (expensive) mathematical proof > Cost-efficient if automated

» No guarantee of absence of bugs

Christopher Huth | 2020-04-02 BOSCH

What can be fuzzed?

Anything can be fuzzed that consumes What can a fuzzer detect?

untrusted, complex inputs. » The easiest is when a program crashes.
» (Crypto-) Functions

» NULL dereferences, uncaught exceptions, div-by-zero, ...

> Parsers of any kind » Additionally, with sanitizers, a fuzzer can detect
> Media codecs > use-after-free, buffer overflows

> Network protocols » uses of uninitialized memory, memory leaks

> Compression » data races, deadlocks

> Formatted output » int/float overflows, bitwise shifts by invalid amount
» Compilers and interpreters » Resource usage bugs

> Regular expression matchers » Memory exhaustion, hangs or infinite loops, infinite
» Text processing recursion (stack overflows)

» Databases

» Browsers, text editors

» OS Kernels, drivers, supervisors, VMs

Chstopher | 2020 0402 BOSCH

Fuzzing Types

Example: Fuzz some source code, i.e. no protocol

Black-box fuzzing Il Grey-box fuzzing
» Only requires the software » mixture of black-box and
under test to execute white-box fuzzing
» Assuming no source code » lightweight instrumentation
» Observes whether the » trace the program structure
program crashed (if at all) during monitoring

Program

(under test) -

Fuzzer

Fuzzer

Christopher Huth | 2020-04-02

White-box fuzzing [

» Heavy-weight program
analysis

» available source code

» maybe more sophisticated
reasoning
» Observe (and modify)
semantics of a program's
source code (including the
binary)

using namespage std;
int main
inta=1GQ
== 10 \ 1
Fuzzer > oo S
ald 20
3 " << eng)
1IN G, =
4) |
e Q' << end
:

BOSCH

Fuzzing Types
Protocol and source code fuzzing

Source code fuzzing Protocol fuzzing
» Focuses on bugs inside a program » Focuses on communication of a program
» program states are secondary » Messages are delayed, intercepted, replayed,
» Good measure is e.g. code coverage randomized, forged, etc.

» Fuzzer can be a MitM
» Protocol fuzzing is a black box test

Fuzzer

A
\ 4

Protocol

hello

Program
(under test)

Fuzzer

certificate
hello done
keys

Christopher Huth | 2020-04-02

Te rm I n O I O gy configuration gueue of interesting

parameters tet cases

» "Fuzzing" or "fuzz testing" is the overall term.

Fuzzer/ ™=
» "Fuzzer" or "fuzzing engine" are programs that automatically generate inputs. Fuzz engine |
» Not connected to any software under test, nor any instrumentation done. et case
» Capabilities to instrument code, generate test cases and run programs under test. Featceth oy o 1 rotimspn |

\>JrU32~eGP?IR=bF3+;y$31gHQ<B89 15" W2FK*VE7v{")KCi,|
n T c{<[~m!]o;{.'}Gj\(X}EtYetrpbY@ai\(_Szl{P!AZU7x#4(Etr_1! R

> "Fuzz target"’ is a software program or function that is intended to be tested via bl ysloliom ot i oicof

[_[Z"LBMPG-FKj "\xwuz1=Q "6, SN$SQ@[! CuRzJI2D | vBy!

fu ZZing.)) ~zkhdf3C5PAKR?V hn|3="i2Q4ID
instrumentatipn v
» fuzz target consumes some untrusted input, which is then generated by a fuzzer. during compifation B rorer
» "Fuzz Test" is the combined version of a fuzzer and a fuzz target. e T L
arge ¢ buf[i++ cc; —
» Afuzz testis executable.) S |
" e W
C) { {
> "Glue code" or "wrapper" or “harness" connects a fuzzer to a fuzz target. e era S35~ fepdback of
. epe . Perseirca= 305 g |n trumented
» "Test case" is one specific input and test run from a fuzz test. e o < Wi | cdverage

return 0; }

» Usually for reproducibility, interesting runs (finding new code paths or crashes) are saved.

» "Instrumentation® is used for metrics, which are then fed back to the fuzzer to
generate more interesting test cases.

» "Configuration parameters", such as "dictionary" or "seed" help the fuzzer to
generate relevant input more quickly.

Christopher Huth | 2020-04-02

BOSCH

Metrics

» Comparing different fuzzers, or fuzzing runs, is hard

gueue of interesting

configuration
test cases

parameters

Fuzzer/

» Best possible metric is the number of (possibly exploitable) bugs Fuzz engine
identified by crashing inputs. test case

[:x1-GPZ+wceke] ; ,N9J+2#6”g\e?]91u2_%" 4GX" OVUB[E/r
R ~FApubb8<{%siq8zh.6{V,hr? KTi.r3PIxXMMMV6{xS"+"Hq!

AXB"'YXRS@'Kd6 ;wtAMeFFWM(™ JP_<1~0}z3K(CCzRH J1IvHz> Jf.
> Oth e r I I letrl CS a re . \>JrlU32~eGP?IR=bF3+;y$31HQ<BBI I 5" W2FK*VE7v{")KCi
c{<[~m!Jo;{."}GI\(XJEtYetrpbY@aGZ1{P!AZU7x#4(Rtn!
g4nCwqo 17y63}0] Ko=*JK~; ZMKFONai :wxu{J&UV#HaU)*BiC<)f~

H +t*gka<Wi=Z .%TSWGHZp130D<Pd&]BS6R&] ?#tP7iav}-3"\?
> “unique” crashes e
. instrumentatipn
> inst ibn v
Execution Speed during compilation wrapper
. . #include iostream>
» Total runtime / timeout P e
while ((cc = getchQ)) 1= c) —
» Code Coverage I8 i - <o ‘T
> }:nt a-= : ¥
— or criticality regarding safety / security of software under test iy WA
} else |f(a==20) { L fepdback of
— or amount of interfaces Felse itca =55 C g m trumented
. §O:ESZ<{cht :z egg:'or << Verage
» Corpus Size e

» When comparing, use
» benchmark programs (e.g. LAVA, CGC, “old” software)
» same platform and configuration (dictionary, seed)

» mean of multiple runs for varying durations

Christopher Huth | 2020-04-02

BOSCH

Tools (Far from complete)

» Fuzzing: Art, Science, and Engineering,
VALENTIN J.M. MANES, KAIST CSRC, Korea, HYUNGSEOK
HAN, KAIST, Korea, CHOONGWOO HAN, Naver Corp.,
Korea, SANG KIL CHA=, KAIST, Korea, MANUEL EGELE,
Boston University, USA, EDWARD J. SCHWARTZ, Carnegie
Mellon University/Software Engineering Institute, USA,
MAVERICK WOO, Carnegie Mellon University, USA

Christopher Huth | 2020-04-02

?m o iller et ol [130
e]
A FROTOS B 1] -w
AN
. GFF
[SFIKERID | 186 I
[antiparser | 13£)
FlkeFur | 155! Autodati @ | |'.!.‘
Ml T
SHOOZE B |2 G ED — | Sidowiinder 73]
AN
EIF @12 Sulley |13] ———{CalFuszer @ [174] —{EFs 8 |62} [SAcE @ (a1, 52,841]
e T
L Frx B |35 =
TEIED] e TED R () e
isfuniuzr [143]
0w iz | 143)
00 wed_firr | 2148 ‘
" Fuzzer @ 08 F 7
(Wi T3] [Deadlock Fuzzer @ [109]]
e 111 r
S - - —=TE (Bueums @ o]
EFF [45] T (Auszot Furrer | 121] r{honggiurs 128 [
—
e 1] TaintScope B [201]
(Fadamsa [[} Furr BALL i |24, 44, 134]
Wi
Doups cf ol & |57 | .
Magick urrer @ €3] [l\.l amha & |1 10 l\.'lahrood etal 8| 133]
.[| immchokder & |79 |n'.-|]- Wi
5 1210]
[E nhum B (210) Trinity | 108
v | £ FOE [45]
(orangfum (1441 oo ot al B |206}e— R Dowsor 911 }
m
W
[kamaleonFurr & (53]] (Rohart ot ai & [165
—0mi L] Malkor |39]) Tawor [219] EI[EI—nn: | 138
E Dorwesy o al & |63, &4
FULEAR & [79 —+{Charcrzon B 179 (L urrer [7] GHT @137]
testursar | 115 (symiurz & [45] [perf_farror @i2031] [Dharma[37] o] MutaCion @ 115]
Iz er [123] - I: 1"]
CLsmith & [137
Fufter otal & | 163 -—J i
Wk Narada & | 169
CyickFuers & [28])= _"'_mm Conosrency
1] F . o | 6| 3 150] CRRE|IT
[r_;_.\ﬂx.grﬂ 18 |] L —iFurzer @ | 155] :h:nelllnmr, 15 l«\:dur |.g SRR [T 31Ikrﬂ:'4¢|‘-
NauralFurrer |56] P-\I LFast &) 13— l
chsshor B [53]) [Mowr & [1607)
e |l
Skyiine & | 195 —{kar [
(igtool & | 156 I kArL 811721
B
[DELTA @ 1] DIFUZE @ |53 GLADE B (7] Kermned A @
W Lirrer & | 164) — -
M F 93] L
(EESTH) Y e Eemnel
v]]
AI'ED':I.' [ET] T Fuer 8 | 155]
Sphe 0Tk File Kernel Concurmency (CollarL & | 7] Chopper & (103 }——
Elack b Croy b While-boa

Let’s fuzz

» We look at two of the most popular fuzzers, AFL++ (a community-driven successor of AFL) and
libFuzzer

» Both are coverage-guided grey-box source code fuzzers

» As an example target software we use a snapshot from WOFF2 (font compression) and a wrapper
from fuzzer-test-suite https://github.com/google/fuzzer-test-suite/tree/master/woff2-2016-05-06

» We compile with afl-clang-fast for AFL++ and clang for libfuzzer to reuse the same wrapper

2LLVM

a0 0 M PI1LER
INFRASTRUCTURE

» https://github.com/AFLplusplus/AFLplusplus » https://llvm.org/docs/LibFuzzer.html

13 Christopher Huth | 2020-04-02

BOSCH

https://github.com/AFLplusplus/AFLplusplus
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/fuzzer-test-suite/tree/master/woff2-2016-05-06

Let’s fuzz

» Wrapper from https://github.com/google/fuzzer-test-suite/blob/master/woff2-2016-05-06/target.cc

// Copyright 2016 Google Inc. All Rights Reserved.

// Licensed under the Apache License, Version 2.8 (the "License");

ginclude <stddef.h> » In short, LLVMFuzzerTestOnelnput ‘replaces’
finclude cstdint.h> the main function of the software under test
#include "woff2_dec.h” » Indicated by -fsanitize=fuzzer during

compilation and linking
» test case provided via data and size

// Entry point for LibFuzzer.

extern "C" int LLVMFuzzerTestOneInput(const uintg8 t* data, size t size) {
St::‘st"i”g buf; - » test case injected into software by function
woff2: 1WOFF25tringout out uf);
¢ woFf2: :ConvertWOFF2ToTFF

out.SetMaxSize(30 * 1024 * 1024);
wofft2::ConvertWOFF2ToTTF(data, size, &out);

return @;

14 Christopher Huth | 2020-04-02 BOSCH

https://github.com/google/fuzzer-test-suite/blob/master/woff2-2016-05-06/target.cc

Let’s fuzz

ALLVM
» Clone and build from » Download clang (or build from sources)
https://github.com/AFLplusplus/AFLplusplus https://github.com/google/fuzzing/blob/master
[tutorial/libFuzzerTutorial.md
» Clone https://github.com/google/fuzzer-test- » clone https://github.com/google/fuzzer-test-
suite suite
$ export FUZZING_ENGINE=afl $ export FUZZING_ENGINE=libfuzzer
$ export CC=afl-clang-fast $ export CC=clang
$ export CXX=afl-clang-fast $ export CXX=clang++
$./build.sh $./build.sh

The build script then clones the WOFF2 snapshot and compiles (and instruments) the source code.

15 Christopher Huth | 2020-04-02

BOSCH

https://github.com/AFLplusplus/AFLplusplus
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzing/blob/master/tutorial/libFuzzerTutorial.md
https://github.com/google/fuzzer-test-suite

L et’s fuzz ZALLVM

C O MPILER
INFRASTRUCTURE

$ afl-fuzz -i seeds/ -o CORPUS- ./woff2-2016-05-06-fsanitize_ fuzzer
woff2-2016-05-06-afl/ ./woff2-
2016-05-06-afl

american fuzz!" ll:lp ++2.60d (woff2-2016-085-086-afl) [';'"-I"L' H : modules (9611 inline 8-bit counters): 9611 [B8x93a71@, Bx93cc9b),
: Loaded 1 PC tables (9611 PCs): 9611 [Ox6e67e8,0x70cBog),
8 days, 0 hrs, 1 44 sec H %x_len is not provided; libFuzzer will not generate inputs larger than 4896 bytes
- . - = - a3 - is not provided, starting from an empty corpus
@ days, @ hrs, 6 min, 33 sec ; INITED cov: 16 corp: 1/1b : 0 rss: 37Mb
none seen yet : \ : 17 corp: 2/18b exec/s: © rss: 38Mb L: 9/9 MS: 3 ShuffleBytes-CopyPart-CMP- DE: "\x01\x00
none seen v \ \XBOYx08Y
; REDUCE cov : 17 Y X B rss: 38Mb L: 5/5 MS: 3 ChangeBinInt-PersAutoDict-EraseBytes- DE:
C 01\x00\x00\xAn \
. 3 # REDUCE \ 1 3 0 rss: 38Mb L: MS: 2 ChangeByte-EraseBytes-
e (0.8 1.88 bits/tupre #3802 REDUCE cov: : corp: 3/9b e : 8 rss: 41Mb L: 4 : 2 ShuffleBytes-CMP- DE: "wOF2"-
E MNEW. cov: H C H x : @ rss: 41Mb L: CopyPart-CrossOver-
havoc NEW cov:) Ha C 1 5/34 < : B rss: 4IMb L: ChangeByte-InsertRepeatedBytes-
p . - REL JCE cov: ! C H f { : 0@ rss: 4 HE I EraseBytes-
383/384 (99.74%)) s #3744 REDICE cov: 19) c 5/ 3 : 0 rss: 4 : 14 . :ZhangeEyte—Era5eByte5—
(e unquEh : B REDUTE cov] H C 1 5/: 1 : B rss: 4 r 12710 EraseBytes-
(@ unique] #5252 REDUCY, cov: 26 #21 c H : B rss: 4 H : 2 ChangeBinInt-ChangeBin

2.6625 (18.2]

U, v

Coverage information

e/e 76.00%

Both fuzzers then try to maximize coverage by mutating interesting test cases.

Christopher Huth | 2020-04-02 BOSCH

Let’s fuzz

2LILVM

a)C O MPILER
INFRASTRUCTURE

AFL++ fuzzes for an unlimited amount of time. libFuzzer fuzzes until a crash is found.

Both fuzzers save a reproducible crashing file.
For our WOFF2 example, both can find a multi-byte-write-heap-buffer-overflow.
A crash looks like:

ERROR: AddressSanitizer: heap-buffer-overflow
WRITE of size G67@7 at 8x623080868534d thread T@
#3 Bxda95d3 in _ asan_memcpy
#1 8x62faSc in woff2::Buffer::Read(unsigned char*, unsigned long) src/./buffer.h:86:7
#2 Bx62fabc in woff2::(anonymous namespace)::ReconstructGlyf src/woff2 dec.cc:568
#3 @x62fa5c in woff2::(anonymous namespace)::ReconstructFont src/woff2_dec.cc:917
#4 Bxb2fabc in woff2::ConvertWOFF2ToTTF src/woff2 dec.cc:1282

https://github.com/google/fuzzer-test-suite/tree/master/woff2-2016-05-06

1 7 Christopher Huth | 2020-04-02

BOSCH

https://github.com/google/fuzzer-test-suite/tree/master/woff2-2016-05-06

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY *POTATO" (6 LETTERS).

Optimization: Sanitizers (heartbleed example))

ﬂO
Try running the fuzzer: l
0

.fopenssl-1.8.1f-fsanitize fuzzer

You whould see something like this in a few seconds:

SERVER, ARE YOU STILL THERE?
IF 50, REPLY “BIRD" (4 LETTERS), User Meg wants
==5781==ERROR: AddressSanitizer: heap-buffer-overflow on address @x629808009748 at pc OxB0@00E4a0817...)
0
(o]

READ of size 19715 at @x629900009748 thread T R
#9 0x4a9816 in _ asan_memcpy (heartblesd/openssl-1.8.1f+8x4a39816) l
#1 @xdfd54a in tlsl process_heartbeat heartbleed/BUILD/ss1/t1 1ib.c:2586:3
#2 @x58027d in ss13_read_bytes heartbleed/BUILD/ssl/s3 pkt.c:1892:4
#3 @x585357 in ss13_get message heartbleed/BUILD/ssl/s3 both.c:457:7 f'/‘ﬂM.,.
#4 @x54781la in ss13 _get client_hello heartbleed/BUILD/ss1l/s3 srvr.c:941:4 [

o}
#5 @x543764 in ssl3 accept heartbleed/BUILD/ssl/s3 srvr.c:357:9 l“
#b6 @xdeed3a in LLVMFuzzerTestOnelnput FTS/openssl-1.8.1f/target.cc:38:3

Ll dioy o A pasqean e
Sanitizers ‘provoke’ a crash on certain behaviour, to make certain bug types

detectable for fuzzers, e.g. for a reading buffer overflow.

https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://xkcd.com/1354/

Christopher Huth | 2020-04-02

https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://xkcd.com/1354/

Optimization: Seeds

Seeds are initial (small and valid) test cases, so that the fuzzer does not have to start from thin air.
In our example the build.sh downloads the Roboto font as seed.

ALLVM
$ afl-fuzz -i seeds/ -o CORPUS- $./$woff2-2016-05-06-Fsanitize fuzzer
woff2-2016-05-06-afl/ ./woff2- CORPUS seeds
2016-05-06-afl
Christopher Huth | 2020-04-02 BOSCH

Optimization: Dictionaries

Dictionaries help the fuzzer by replacing part of the test case by a dictionary entry, rather than e.g.

random. Dictionary entries should be often used symbols and words by the target software.

There are multiple pre-built dictionaries available, e.g. for SQL, XML, JSON, ...

2LLVM

=C O MPILER
INFRASTRUCTURE

$ -x dict=DICTIONARY_FILE $ -dict=DICTIONARY_FILE

Christopher Huth | 2020-04-02

BOSCH

Optimization: Parallelization

Z2LILVM
Run first fuzzer as ‘master’ =M Run multiple libfuzzer processes in parallel with a
$./afl-fuzz -i seeds -o sync_dir shared corpus directory.
-M fuzzerOl [...] $JOBS is by default half of available CPU cores
then, start up secondary instances $./Swoff2-2016-05-06-Fsanitize fuzzer

$./afl-fuzz -i seeds -0 sync dir CORPUS -workers=$JOBS CORPUS

-S fuzzer02 [...]

$./afl-fuzz -i seeds -0 sync dir
-S fuzzer03 [...]

Each fuzzer will keep its state in a separate

subdirectory in sync_dir, and the master
syncs all fuzzing instances.

Christopher Huth | 2020-04-02 BOSCH

Challenges

» Find a suited fuzz target. » Speed up your fuzzing, as it relies on
» E.g. an API function, which consumes untrusted thousands of test case executions.
input under the control of a potential attacker. » Keeping the current test case corpora at a
» Write a fuzz test. relevant minimum.

» Parallelize your fuzz tests while working on the

» Connecting the software under test to the .
same test corpora (synchronize and do regular

fuzzing engine is manual work.

» E.g. wrapper connecting a single function to the cle.an-ups). .
fuzzing engine, fuzz a complete running system, » Provide a useful structure of the input.
or concentrate on parts of the system. » Grammar, dictionary, or seed

» Fuzzing results should be observable. » No fixed value for timeout.

» E.g. crashes in black-box fuzzing could be hard » Typical tests vary from hours over days to
to detect. weeks.

» Instrumentation can be hard (different
compilers, debug vs. productive software)

Christopher Huth | 2020-04-02 BOSCH

Good Practices

» Don’t fuzz everything.
» The fuzz target should consume input which is under control of a potential attacker.

» Fuzz at least for a realistic threat, optionally dig deeper.
» E.g. HW system level testing: Fuzz components at least over the bus, optionally fuzz component’s internals

» E.g. SW component level testing: Fuzz components over interface, optionally fuzz internal methods

» Validate your programmed fuzz test before fuzzing.

» The fuzz test should consume the generated input, the fuzz test should not crash for valid inputs, and code
coverage tracking of the fuzzer should work.

» Design your tests for testability and observable results
» Use different fuzzers, potentially working on the same test corpora, in parallel.

» Provide an input structure for the fuzzer.

» Such as a grammar, dictionary or seed. Typically, there exist prebuilt structures for fuzzing engines, which
should be used and refined.

Christopher Huth | 2020-04-02 BOSCH

7T

Fuzzing in DevOps

» Integrate fuzzing in your test stack.
» Best, fuzz independently, e.g. over night or over weekend.
» In the test pyramid, fuzz tests can be small (unit), medium (integration), and large (system) tests.

24 Christopher Huth | 2020-04-02 @ BOSC
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights H

] “

Thank yau! ’ i§

More: A J \

Automated security testing to provide more ({, *
protection from the start

Automated software testing by Bosch

S ——

https://www.bosch.com/stories/automated-security-testing/

- -\ TN
TR

BOSCH

Dr.-Ing.

Christopher Huth

Corporate Sector Research and Advance Engineering
Security, Privacy, Safety

\ christopher.huth@de.bosch.com

Lot W TEEE) T N

	Mini-Tutorial on Automated Discovery of Security Vulnerabilities using Fuzzing
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

