
MINI-TUTORIAL ON AUTOMATED
DISCOVERY OF SECURITY
VULNERABILITIES USING
FUZZING

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Agenda

2

1. Motivation
2. Definition of Fuzzing and where it is in the security landscape
3. Targets that can be fuzzed
4. Fuzzing types: black-box, grey-box, and white-box
5. Fuzzing types: source code fuzzing and protocol fuzzing
6. Fuzzing metrics and coverage information
7. Fuzz test optimization: sanitizers, seeds, dictionaries, and parallelization
8. Challenges and good practices

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Motivation

3

while ((cc = getch()) != c)
{
buf[i++] = cc;
...

}

Example Vulnerability

1. No check on the length of buffer buf
2. Write own code on the stack
3.

One of the first bugs
discovered by fuzzing

(30 years old)

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What is Fuzzing?

4

"Fuzzing is a dynamic technique. To find bugs, it must trigger the code that contains these bugs.",
Hui Peng, T-Fuzz: fuzzing by program transformation, 2018

Fuzzer Program
(under test)

[;x1-GPZ+wcckc];,N9J+?#6^6\e?]9lu2_%'4GX"0VUB[E/r
~fApu6b8<{%siq8Zh.6{V,hr?;{Ti.r3PIxMMMv6{xS^+'Hq!
AxB"YXRS@!Kd6;wtAMefFWM(`|J_<1~o}z3K(CCzRH JIIvHz>_*.
\>JrlU32~eGP?lR=bF3+;y$3lodQ<B89!5"W2fK*vE7v{')KCi,
c{<[~m!]o;{.'}Gj\(X}EtYetrpbY@aGZ1{P!AZU7x#4(Rtn!
q4nCwqol^y6}0|Ko=*JK~;zMKV=9Nai:wxu{J&UV#HaU)*BiC<),`
+t*gka<W=Z.%T5WGHZpI30D<Pq>&]BS6R&j?#tP7iaV}-}`\?
[_[Z^LBMPG-FKj'\xwuZ1=Q`^`5,NQ@[!CuRzJ2D|vBy!
^zkhdf3C5PAkR?V hn|3='i2Qx]D



 Fuzzing was coined in 1989, when Miller et al. used a
random testing tool to investigate the reliability of UNIX tools.

 Fuzzing automatically generates
 unexpected, malformed or random data
 and provides this data as input to a software under test.
 Software under test is monitored, e.g. for crashes or hangs.

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What is Fuzzing?

5

"Fuzzing is a dynamic technique. To find bugs, it must trigger the code that contains these bugs.",
Hui Peng, T-Fuzz: fuzzing by program transformation, 2018

Fuzzer Program
(under test)

[;x1-GPZ+wcckc];,N9J+?#6^6\e?]9lu2_%'4GX"0VUB[E/r
~fApu6b8<{%siq8Zh.6{V,hr?;{Ti.r3PIxMMMv6{xS^+'Hq!
AxB"YXRS@!Kd6;wtAMefFWM(`|J_<1~o}z3K(CCzRH JIIvHz>_*.
\>JrlU32~eGP?lR=bF3+;y$3lodQ<B89!5"W2fK*vE7v{')KCi,
c{<[~m!]o;{.'}Gj\(X}EtYetrpbY@aGZ1{P!AZU7x#4(Rtn!
q4nCwqol^y6}0|Ko=*JK~;zMKV=9Nai:wxu{J&UV#HaU)*BiC<),`
+t*gka<W=Z.%T5WGHZpI30D<Pq>&]BS6R&j?#tP7iaV}-}`\?
[_[Z^LBMPG-FKj'\xwuZ1=Q`^`5,NQ@[!CuRzJ2D|vBy!
^zkhdf3C5PAkR?V hn|3='i2Qx]D



Overall goal is to validate a robust program behavior.
 When a program accepts data from an untrusted input (or faulty in general), unwanted and observable

behavior should be avoided.
 In more detail, fuzzing metrics, such as code coverage and time, can be maximized.

 Fuzz testing can detect bugs which can lead to vulnerabilities.
 The generated input that triggers a bug is saved, and thus provides a reproducible test case.
 Therefore, fuzzing is limited to discovering symptoms for exploitable bugs.

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Where is Fuzzing in the Security Landscape? (not complete)

6

System Security

Security by Proof Security by Testing

 Systems are provably secure
 specific attacks are impossible
 always behave as designed

Requires (expensive) mathematical proof

 Systems are tested
 Low probability of successful attacks
 Remaining attacks have high complexity
 Cost-efficient if automated

No guarantee of absence of bugs

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What can be fuzzed?

7

Anything can be fuzzed that consumes
untrusted, complex inputs.
 (Crypto-) Functions
 Parsers of any kind
 Media codecs
 Network protocols
 Compression
 Formatted output
 Compilers and interpreters
 Regular expression matchers
 Text processing
 Databases
 Browsers, text editors
 OS Kernels, drivers, supervisors, VMs

What can a fuzzer detect?
 The easiest is when a program crashes.
 NULL dereferences, uncaught exceptions, div-by-zero, ...

 Additionally, with sanitizers, a fuzzer can detect
 use-after-free, buffer overflows
 uses of uninitialized memory, memory leaks
 data races, deadlocks
 int/float overflows, bitwise shifts by invalid amount

 Resource usage bugs
 Memory exhaustion, hangs or infinite loops, infinite

recursion (stack overflows)

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

8

Fuzzing Types

Grey-box fuzzing 
mixture of black-box and

white-box fuzzing
 lightweight instrumentation
 trace the program structure

during monitoring

White-box fuzzing 
Heavy-weight program

analysis
 available source code
 maybe more sophisticated

reasoning
Observe (and modify)

semantics of a program's
source code (including the
binary)

Black-box fuzzing 
Only requires the software

under test to execute
 Assuming no source code
Observes whether the

program crashed (if at all)

Fuzzer

Program
(under test) 

Fuzzer

#include <iostream>
using namespace std;
int main () {
int a = 100;
if(a == 10) {
cout << "10" << endl;
} else if(a == 20) {
cout << "20" << endl;
} else if(a == 30) {
cout << "30" << endl;
} else {cout << “error" << endl; }
return 0; }

1
32

54
76

7

Fuzzer

#include <iostream>
using namespace std;
int main () {
int a = 100;
if(a == 10) {
cout << "10" << endl;
} else if(a == 20) {
cout << "20" << endl;
} else if(a == 30) {
cout << "30" << endl;
} else {cout << “error" << endl; }
return 0; }



Example: Fuzz some source code, i.e. no protocol

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

9

Fuzzing Types

Protocol fuzzing
 Focuses on communication of a program
Messages are delayed, intercepted, replayed,

randomized, forged, etc.
 Fuzzer can be a MitM
 Protocol fuzzing is a black box test

Source code fuzzing
 Focuses on bugs inside a program
 program states are secondary
Good measure is e.g. code coverage

Fuzzer

#include <iostream>
using namespace std;
int main () {
int a = 100;
if(a == 10) {
cout << "10" << endl;
} else if(a == 20) {
cout << "20" << endl;
} else if(a == 30) {
cout << "30" << endl;
} else {cout << “error" << endl; }
return 0; }



Protocol and source code fuzzing

Protocol
hello

certificate
hello done

keys
…

Program
(under test) 

Fuzzer

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Terminology

10

 "Fuzzing" or "fuzz testing" is the overall term.
 "Fuzzer" or "fuzzing engine" are programs that automatically generate inputs.
 Not connected to any software under test, nor any instrumentation done.
 Capabilities to instrument code, generate test cases and run programs under test.

 "Fuzz target" is a software program or function that is intended to be tested via
fuzzing.
 fuzz target consumes some untrusted input, which is then generated by a fuzzer.

 "Fuzz Test" is the combined version of a fuzzer and a fuzz target.
 A fuzz test is executable.

 "Glue code" or "wrapper" or “harness" connects a fuzzer to a fuzz target.
 "Test case" is one specific input and test run from a fuzz test.
 Usually for reproducibility, interesting runs (finding new code paths or crashes) are saved.

 "Instrumentation“ is used for metrics, which are then fed back to the fuzzer to
generate more interesting test cases.

 "Configuration parameters", such as "dictionary" or "seed" help the fuzzer to
generate relevant input more quickly.

Fuzzer /
Fuzz engine

#include <iostream>
using namespace std;
int main () {
while ((cc = getch()) != c)
{
buf[i++] = cc;
...

}
int a = 100;
if(a == 10) {
cout << "10" << endl;
} else if(a == 20) {
cout << "20" << endl;
} else if(a == 30) {
cout << "30" << endl;
} else {cout << “error" <<
endl; }
return 0; }



[;x1-GPZ+wcckc];,N9J+?#6^6\e?]9lu2_%'4GX"0VUB[E/r
~fApu6b8<{%siq8Zh.6{V,hr?;{Ti.r3PIxMMMv6{xS^+'Hq!
AxB"YXRS@!Kd6;wtAMefFWM(`|J_<1~o}z3K(CCzRH JIIvHz>_*.
\>JrlU32~eGP?lR=bF3+;y$3lodQ<B89!5"W2fK*vE7v{')KCi,
c{<[~m!]o;{.'}Gj\(X}EtYetrpbY@aGZ1{P!AZU7x#4(Rtn!
q4nCwqol^y6}0|Ko=*JK~;zMKV=9Nai:wxu{J&UV#HaU)*BiC<),`
+t*gka<W=Z.%T5WGHZpI30D<Pq>&]BS6R&j?#tP7iaV}-}`\?
[_[Z^LBMPG-FKj'\xwuZ1=Q`^`5,NQ@[!CuRzJ2D|vBy!
^zkhdf3C5PAkR?V hn|3='i2Qx]D

wrapper

queue of interesting
test casesconfiguration

parameters

test case

fuzz
target

instrumentation
during compilation

feedback of
instrumented
coverage

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Metrics

11

Comparing different fuzzers, or fuzzing runs, is hard
 Best possible metric is the number of (possibly exploitable) bugs

identified by crashing inputs.
Other metrics are:
 “unique” crashes
 Execution Speed
 Total runtime / timeout
 Code Coverage

‒ or criticality regarding safety / security of software under test
‒ or amount of interfaces

 Corpus Size
When comparing, use
 benchmark programs (e.g. LAVA, CGC, “old” software)
 same platform and configuration (dictionary, seed)
 mean of multiple runs for varying durations

Fuzzer /
Fuzz engine

#include <iostream>
using namespace std;
int main () {
while ((cc = getch()) != c)
{
buf[i++] = cc;
...

}
int a = 100;
if(a == 10) {
cout << "10" << endl;
} else if(a == 20) {
cout << "20" << endl;
} else if(a == 30) {
cout << "30" << endl;
} else {cout << “error" <<
endl; }
return 0; }



[;x1-GPZ+wcckc];,N9J+?#6^6\e?]9lu2_%'4GX"0VUB[E/r
~fApu6b8<{%siq8Zh.6{V,hr?;{Ti.r3PIxMMMv6{xS^+'Hq!
AxB"YXRS@!Kd6;wtAMefFWM(`|J_<1~o}z3K(CCzRH JIIvHz>_*.
\>JrlU32~eGP?lR=bF3+;y$3lodQ<B89!5"W2fK*vE7v{')KCi,
c{<[~m!]o;{.'}Gj\(X}EtYetrpbY@aGZ1{P!AZU7x#4(Rtn!
q4nCwqol^y6}0|Ko=*JK~;zMKV=9Nai:wxu{J&UV#HaU)*BiC<),`
+t*gka<W=Z.%T5WGHZpI30D<Pq>&]BS6R&j?#tP7iaV}-}`\?
[_[Z^LBMPG-FKj'\xwuZ1=Q`^`5,NQ@[!CuRzJ2D|vBy!
^zkhdf3C5PAkR?V hn|3='i2Qx]D

wrapper

queue of interesting
test casesconfiguration

parameters

test case

fuzz
target

instrumentation
during compilation

feedback of
instrumented
coverage

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Tools (Far from complete)

12

 Fuzzing: Art, Science, and Engineering,
VALENTIN J.M. MANES, KAIST CSRC, Korea, HYUNGSEOK
HAN, KAIST, Korea, CHOONGWOO HAN, Naver Corp.,
Korea, SANG KIL CHA∗, KAIST, Korea, MANUEL EGELE,
Boston University, USA, EDWARD J. SCHWARTZ, Carnegie
Mellon University/Software Engineering Institute, USA,
MAVERICK WOO, Carnegie Mellon University, USA

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Let’s fuzz

 https://github.com/AFLplusplus/AFLplusplus  https://llvm.org/docs/LibFuzzer.html

13

We look at two of the most popular fuzzers, AFL++ (a community-driven successor of AFL) and
libFuzzer
 Both are coverage-guided grey-box source code fuzzers

 As an example target software we use a snapshot from WOFF2 (font compression) and a wrapper
from fuzzer-test-suite https://github.com/google/fuzzer-test-suite/tree/master/woff2-2016-05-06
 We compile with afl-clang-fast for AFL++ and clang for libfuzzer to reuse the same wrapper

https://github.com/AFLplusplus/AFLplusplus
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/fuzzer-test-suite/tree/master/woff2-2016-05-06

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Let’s fuzz

 In short, LLVMFuzzerTestOneInput ‘replaces’
the main function of the software under test
 Indicated by -fsanitize=fuzzer during

compilation and linking
 test case provided via data and size
 test case injected into software by function

woff2::ConvertWOFF2ToTFF

14

Wrapper from https://github.com/google/fuzzer-test-suite/blob/master/woff2-2016-05-06/target.cc

https://github.com/google/fuzzer-test-suite/blob/master/woff2-2016-05-06/target.cc

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Let’s fuzz

Clone and build from
https://github.com/AFLplusplus/AFLplusplus

Clone https://github.com/google/fuzzer-test-
suite

$ export FUZZING_ENGINE=afl

$ export CC=afl-clang-fast

$ export CXX=afl-clang-fast

$./build.sh

Download clang (or build from sources)
https://github.com/google/fuzzing/blob/master
/tutorial/libFuzzerTutorial.md

 clone https://github.com/google/fuzzer-test-
suite

$ export FUZZING_ENGINE=libfuzzer

$ export CC=clang

$ export CXX=clang++

$./build.sh

15

The build script then clones the WOFF2 snapshot and compiles (and instruments) the source code.

https://github.com/AFLplusplus/AFLplusplus
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzing/blob/master/tutorial/libFuzzerTutorial.md
https://github.com/google/fuzzer-test-suite

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Let’s fuzz

16

$ afl-fuzz -i seeds/ -o CORPUS-
woff2-2016-05-06-afl/ ./woff2-
2016-05-06-afl

./woff2-2016-05-06-fsanitize_fuzzer

Both fuzzers then try to maximize coverage by mutating interesting test cases.

Coverage information

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Let’s fuzz

17

AFL++ fuzzes for an unlimited amount of time. libFuzzer fuzzes until a crash is found.

Both fuzzers save a reproducible crashing file.
For our WOFF2 example, both can find a multi-byte-write-heap-buffer-overflow.

A crash looks like:

https://github.com/google/fuzzer-test-suite/tree/master/woff2-2016-05-06

https://github.com/google/fuzzer-test-suite/tree/master/woff2-2016-05-06

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Optimization: Sanitizers (heartbleed example)

18

https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://xkcd.com/1354/

Sanitizers ‘provoke’ a crash on certain behaviour, to make certain bug types
detectable for fuzzers, e.g. for a reading buffer overflow.

https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://xkcd.com/1354/

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Optimization: Seeds

$ afl-fuzz -i seeds/ -o CORPUS-
woff2-2016-05-06-afl/ ./woff2-
2016-05-06-afl

$./$woff2-2016-05-06-fsanitize_fuzzer
CORPUS seeds

19

Seeds are initial (small and valid) test cases, so that the fuzzer does not have to start from thin air.
In our example the build.sh downloads the Roboto font as seed.

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Optimization: Dictionaries

$ -x dict=DICTIONARY_FILE $ -dict=DICTIONARY_FILE

20

Dictionaries help the fuzzer by replacing part of the test case by a dictionary entry, rather than e.g.
random. Dictionary entries should be often used symbols and words by the target software.

There are multiple pre-built dictionaries available, e.g. for SQL, XML, JSON, …

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Optimization: Parallelization

Run first fuzzer as ‘master’ –M
$./afl-fuzz -i seeds -o sync_dir
-M fuzzer01 [...]

then, start up secondary instances
$./afl-fuzz -i seeds -o sync_dir
-S fuzzer02 [...]

$./afl-fuzz -i seeds -o sync_dir
-S fuzzer03 [...]

Each fuzzer will keep its state in a separate
subdirectory in sync_dir, and the master
syncs all fuzzing instances.

Run multiple libfuzzer processes in parallel with a
shared corpus directory.
$JOBS is by default half of available CPU cores
$./$woff2-2016-05-06-fsanitize_fuzzer
CORPUS -workers=$JOBS CORPUS

21

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Challenges

22

 Find a suited fuzz target.
 E.g. an API function, which consumes untrusted

input under the control of a potential attacker.
Write a fuzz test.
 Connecting the software under test to the

fuzzing engine is manual work.
 E.g. wrapper connecting a single function to the

fuzzing engine, fuzz a complete running system,
or concentrate on parts of the system.

 Fuzzing results should be observable.
 E.g. crashes in black-box fuzzing could be hard

to detect.
 Instrumentation can be hard (different

compilers, debug vs. productive software)

 Speed up your fuzzing, as it relies on
thousands of test case executions.
 Keeping the current test case corpora at a

relevant minimum.
 Parallelize your fuzz tests while working on the

same test corpora (synchronize and do regular
clean-ups).

 Provide a useful structure of the input.
 Grammar, dictionary, or seed

No fixed value for timeout.
 Typical tests vary from hours over days to

weeks.

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Good Practices

23

Don’t fuzz everything.
 The fuzz target should consume input which is under control of a potential attacker.

 Fuzz at least for a realistic threat, optionally dig deeper.
 E.g. HW system level testing: Fuzz components at least over the bus, optionally fuzz component’s internals
 E.g. SW component level testing: Fuzz components over interface, optionally fuzz internal methods

 Validate your programmed fuzz test before fuzzing.
 The fuzz test should consume the generated input, the fuzz test should not crash for valid inputs, and code

coverage tracking of the fuzzer should work.
 Design your tests for testability and observable results

Use different fuzzers, potentially working on the same test corpora, in parallel.
 Provide an input structure for the fuzzer.
 Such as a grammar, dictionary or seed. Typically, there exist prebuilt structures for fuzzing engines, which

should be used and refined.

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Fuzzing in DevOps

24

code

bu
ild

test

deploy

operate

monitor

 Integrate fuzzing in your test stack.
 Best, fuzz independently, e.g. over night or over weekend.
 In the test pyramid, fuzz tests can be small (unit), medium (integration), and large (system) tests.

Christopher Huth | 2020-04-02
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

25

Thank you!
More:

Automated security testing to provide more
protection from the start
Automated software testing by Bosch

https://www.bosch.com/stories/automated-security-testing/

Dr.-Ing.
Christopher Huth
Corporate Sector Research and Advance Engineering
Security, Privacy, Safety

christopher.huth@de.bosch.com

	Mini-Tutorial on Automated Discovery of Security Vulnerabilities using Fuzzing
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

