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Abstract

Machine Learning (ML) involves training a model on a dataset and subsequently using that model to make

predictions on previously unseen data. While predictive performance is a crucial aspect of ML, we also want

ML methods to be able to quantify uncertainty and incorporate prior knowledge.

Bayesian Machine Learning approaches address these desiderata by explicitly or implicitly leveraging

Bayes’ theorem. Bayesian methods generate a posterior distribution over the model parameters, enabling

principled uncertainty quantification. Furthermore, Bayesian ML allows for incorporating expert knowledge

and additional information by specifying prior distributions.

The family of Bayesian ML techniques includes a wide range of methods, e.g. Monte Carlo sampling and

Variational Inference. While Bayesian approaches offer advantages, they can be computationally expensive.

The primary objective of this thesis is to develop fast and efficient Bayesian ML methods that maintain the benefits of

Bayesian ML while mitigating the computational burden.

We achieve fast inference by combining Laplace approximations, change of variables, exponential families, and

automatic differentiation. Laplace approximations can be analytically computed or efficiently approximated,

while exponential family properties and change of variables allow for analytical transformations between

distributions, avoiding costly iterative schemes.

First, we introduce Laplace Matching, which takes a non-Gaussian exponential family distribution, applies

a transformation of variable such that its support is matched with a Gaussian, and then applies a Laplace

approximation to the transformed variable. The result is a closed-form mapping between the parameters of

the exponential family and a Gaussian. The variable transform is chosen such that one sufficient statistic of

the exponential family matches the sufficient statistic of a Gaussian, yielding a much better approximation

than on the original basis. Laplace Matching can be used to unlock the benefits of Gaussian inference for

non-Gaussian exponential families while paying a small fixed approximation error. This allows, for instance,

the straightforward application of Gaussian processes to various data formats. We demonstrate its feasibility

by modeling the German election landscape and the trajectory of currency covariance matrices over time.

Second, we introduce the Laplace Bridge for Bayesian Deep Neural Networks, which is an application of

Laplace Matching. Bayesian Neural Networks typically have a Gaussian distribution over the logits, then

sample from this distribution and transform these samples using the softmax. The Laplace Bridge allows

to analytically transform the Gaussian distribution into a Dirichlet over the outputs. The properties of the

Dirichlet can be used to enable new applications. For example, marginals of Dirichlets are Dirichlets (or Betas

in the one-dimensional case). We use this fact to create “uncertainty-aware top-k”, a technique that uses

the marginal Beta distributions of the model’s predictions to individually determine how many classes it is

uncertain between. We demonstrate this approach on the 1000 classes of ImageNet.

Third, we develop PIHAM, a generative model explicitly designed to perform Probabilistic Inference in directed

and undirected Heterogeneous and Attributed Multilayer networks. PIHAM extends Laplace Matching from

single variables to combinations of variables, including multiplication and addition. It transforms all latent

variables to be Gaussian, then uses automatic differentiation to get a Laplace Approximation, and then uses

Laplace Matching to transform them into their intended basis. We show its feasibility in the concrete use case

of network inference, where we analyze the social support network of a rural Indian village. The flexibility of

PIHAM allows us to incorporate various types of information, including categorical data and interactions

between individuals.

In this thesis, we present the initial steps towards a broader paradigm of Bayesian approximate inference

methods that are, first and foremost, fast. We outline extensions to perform fast Bayesian inference on neural

networks and arbitrary probabilistic networks.





Zusammenfassung

Maschinelles Lernen (ML) beinhaltet das Training eines Modells auf einem Datensatz und die anschließende

Verwendung dieses Modells, um Vorhersagen für bisher unbekannte Daten zu treffen. Während die

Vorhersageakkuratheit ein entscheidender Aspekt von ML ist, wollen wir auch, dass ML-Methoden in der

Lage sind, Unsicherheiten zu quantifizieren und Vorwissen zu integrieren.

Ansätze des Bayesianischen Maschinellen Lernens adressieren diese Desiderata, indem sie explizit oder

implizit das Theorem von Bayes nutzen. Bayesianische Methoden erzeugen eine posteriore Verteilung über

die Modellparameter, was eine prinzipielle Quantifizierung der Unsicherheit ermöglicht. Darüber hinaus

erlaubt Bayesianisches ML die Einbeziehung von Expertenwissen und zusätzlichen Informationen durch die

Spezifikation von A-priori-Verteilungen.

Die Familie der Bayesianischen ML-Techniken umfasst eine Vielzahl von Methoden, z.B. Monte-Carlo-

Sampling und Variational Inference. Während Bayesianische Ansätze Vorteile bieten, können sie recheninten-

siv sein. Das primäre Ziel dieser Arbeit ist die Entwicklung schneller und effizienter Bayesianischer ML-Methoden,

die die Vorteile des Bayesianischen ML beibehalten und gleichzeitig den Rechenaufwand reduzieren.

Wir erreichen eine schnelle Inferenz durch die Kombination von Laplace-Approximationen, Variablen-

transformation, Exponentialfamilien und automatischer Differentiation. Laplace-Approximationen können

analytisch berechnet oder effizient approximiert werden, während die Eigenschaften der Exponentialfamilie

und der Variablentransformation analytische Transformationen zwischen Verteilungen ermöglichen und so

aufwändige iterative Schemata vermeiden.

Zunächst führen wir das Laplace Matching ein, das eine nicht-Gaußsche Exponentialfamilienverteilung

nimmt, eine Variablentransformation anwendet, so dass der Träger mit einer Gaußverteilung übereinstimmt,

und dann eine Laplace-Approximation auf die transformierte Variable anwendet. Das Ergebnis ist eine

analytische Abbildung zwischen den Parametern der Exponentialfamilie und einer Gaußverteilung. Die

Variablentransformation wird so gewählt, dass die kanonische Statistik der Exponentialfamilie mit der

kanonische Statistik der Gaußverteilung übereinstimmt, was zu einer wesentlich besseren Approximation

als auf der ursprünglichen Basis führt. Laplace Matching kann verwendet werden, um die Vorteile der

Gaußschen Inferenz für nicht-Gaußsche Exponentialfamilien zu nutzen. Dies ermöglicht beispielsweise die

unkomplizierte Anwendung von Gauß-Prozessen auf verschiedene Datenformate. Wir demonstrieren das,

indem wir die deutsche Wahllandschaft und die Entwicklung von Währungskovarianzmatrizen im Laufe

der Zeit modellieren.

Zweitens führen wir die Laplace-Bridge for Bayesian Neuronal Networks ein, die eine Anwendung des

Laplace Matching ist. Bayesianische Neuronale Netze haben typischerweise eine Gaußsche Verteilung

über die Logits, dann werden aus dieser Verteilung Stichproben gezogen und diese Stichproben mit der

Softmax-Funktion transformiert. Die Laplace-Bridge ermöglicht es, die Gaußsche Verteilung analytisch in eine

Dirichlet-Verteilung über die Ausgabewerte zu transformieren. Die Eigenschaften der Dirichlet-Verteilung

können genutzt werden, um neue Anwendungen zu ermöglichen. Zum Beispiel sind Marginalverteilungen

von Dirichlet-Verteilungen wieder Dirichlet-Verteilungen (oder Beta-Verteilungen im eindimensionalen Fall).

Wir nutzen diese Tatsache, um "unsicherheitsbewusste Top-k" zu erstellen, eine Technik, die die marginalen

Beta-Verteilungen der Modellvorhersagen verwendet, um individuell zu bestimmen, zwischen wie vielen

Klassen das Modell unsicher ist. Wir demonstrieren diesen Ansatz auf den 1000 Klassen von ImageNet.

Drittens entwickeln wir PIHAM, ein generatives Modell, das explizit für die probabilistische Inferenz in

gerichteten und ungerichteten heterogenen und attributierten Multilayer-Netzwerken entwickelt wurde.

PIHAM erweitert das Laplace Matching von einzelnen Variablen auf Kombinationen von Variablen, ein-

schließlich Multiplikation und Addition. Es transformiert alle latenten Variablen in Gaußsche Variablen,

verwendet dann automatische Differentiation, um eine Laplace-Approximation zu erhalten, und verwendet

dann Laplace Matching, um sie in ihre beabsichtigte Basis zu transformieren.



Wir zeigen die Durchführbarkeit am konkreten Anwendungsfall der Netzwerkinferenz, bei der wir das soziale

Unterstützungsnetzwerk eines ländlichen indischen Dorfes analysieren. Die Flexibilität von PIHAM ermög-

licht es uns, verschiedene Arten von Informationen, einschließlich kategorischer Daten und Interaktionen

zwischen Individuen, zu berücksichtigen.

In dieser Arbeit stellen wir die ersten Schritte zu einem breiteren Paradigma von Bayesianischen approxi-

mativen Inferenzmethoden vor, die in erster Linie schnell sind. Wir skizzieren Erweiterungen, um schnelle

Bayesianische Inferenz auf neuronalen Netzen und beliebigen probabilistischen Netzen durchzuführen.

x
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1.1 Introduction

Machine Learning (ML) has supported human decision-making for many

decades. Although methods and techniques have significantly advanced,

the fundamental principle of learning from data and generalizing to

unseen data points remains unchanged. However, many ML methods face

challenges in providing well-calibrated uncertainty estimates for their

predictions and incorporating prior knowledge. While Bayesian methods

tackle these issues, they often suffer from computational inefficiency.

In this thesis, we aim to develop fast approximations for Bayesian ML

methods to address these limitations.

The origins of Machine Learning can be traced back to Linear Regression,

which was introduced over two centuries ago by Legendre (Stigler, 1981). Remark 1.1 (Origin of regression)

There are some disputes over who in-

vented Linear Regression. Legendre

published the method in 1805 but

Gauss claimed in 1809 that he had

been using Linear Regression since

1795 and thus should be seen as the

true inventor. For more details see

Stigler (1981).

Building upon this foundation, researchers have developed increasingly

sophisticated, adaptable, and potent learning algorithms.

The family of regression techniques was expanded to accommodate vari-

ous data and function types, such as logistic and polynomial regression.

Additionally, kernel-based methods, including Support Vector Machines

(Cortes et al., 1995), Kernel PCA (Schölkopf et al., 1997), and others

(see e.g. Hofmann et al., 2008), were developed to further enhance the

capabilities of machine learning algorithms.

Neural networks have emerged as the dominant Machine Learning

(ML) technique over the past decade. Although early neural networks

were introduced in 1986 (Rumelhart et al., 1986), it took the wider

community more than twenty years to recognize and harness their

potential. The introduction of AlexNet (Krizhevsky, Sutskever, et al.,

2012) in 2012 marked a turning point in ML, setting a new state of

the art for image classification on ImageNet (Russakovsky et al., 2014).

Since then, the amount of compute, data, and model size have grown

exponentially (Sevilla et al., 2022; Villalobos, Sevilla, Besiroglu, et al.,

2022; Villalobos, Sevilla, Heim, et al., 2022). Deep Learning has surpassed

human performance in various games, including Go, Starcraft, and most

Atari games (Mnih et al., 2013; Vinyals et al., 2019; Silver et al., 2017).

Beyond its success in gaming, Deep Learning has also begun to impact the

lives of average citizens. Large language models are used for translation,

as spellcheckers, and in search engines like BingGPT or general-purpose

conversation tools such as ChatGPT (Brown et al., 2020) and Claude

(Anthropic, 2024).

Despite the increasing diversity of ML tools, the significant advance-

ments in their capabilities, and the broadening of their applications, the

fundamental concept remains consistent with linear regression. Namely,

the developers define a model, train it on data, and then use it to make

predictions on unseen data. Specifically, in most ML methods, the ML

model will get an input and predict a point estimate of the output. For

example, an ML model might be trained on historical house prices. Then,
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a user can enter the data for a new house, and the model will predict a

price for it.

However, many ML methods struggle to address two specific desider-

ata:

1. Quantified uncertainty: Point estimates are often sufficient as initial

guesses, but in some cases, it is crucial for the model to quantify

the uncertainty associated with its predictions. For instance, when

estimating house prices, a plausible range of estimates may be

more informative than a single value. Well-calibrated uncertainty

estimates are particularly vital in safety-critical applications, such

as medical diagnosis or autonomous vehicles, to enable better risk

assessment and decision-making.

2. Incorporating prior knowledge: ML models typically learn solely

from the training data and generalize patterns to unseen datapoints.

However, human experts may possess domain-specific knowledge

or informed hypotheses that are not captured in the training

data but should be incorporated into the model’s predictions. For

example, a potential home buyer who has personally visited a

property may wish to integrate their preferences into the price

estimation. Most ML methods find it challenging to incorporate

such prior knowledge effectively.

Bayesian Machine Learning aims to incorporate both of these desiderata.

Remark 1.2 (What does Bayesian
mean?) There are theoretical and

practical disagreements regarding

the precise definition of Bayesian ML.

For instance, there is debate about

whether Deep Ensembles can be con-

sidered a Bayesian method (A. G. Wil-

son and Izmailov, 2021). Moreover,

methods previously seen as "non-

Bayesian" often have Bayesian inter-

pretations. Ridge regression, for ex-

ample, can be viewed as Bayesian

linear regression with independent

Gaussian priors of equal variance on

the regression parameters 𝛽𝑖 . Sim-

ilarly, Korbak et al. (2022) demon-

strate that RL with KL penalties, a

common approach for fine-tuning

language models, can be interpreted

as Bayesian inference. Different com-

munities have also developed vary-

ing understandings of Bayesian ML.

Some consider it an umbrella term

for all ML methods that quantify un-

certainty, while others restrict it to

methods that explicitly use Bayes’

theorem in their computation. This

thesis adopts a pragmatic stance on

the “true” meaning of Bayesian ML,

focusing on the goal of accelerating

ML approaches that quantify uncer-

tainty and allow for the incorporation

of prior knowledge, regardless of the

exact definition of Bayesian.

1.1.1 Bayesian ML

Bayesian Machine Learning leverages Bayes’ theorem, either implicitly or

explicitly, to generate a posterior distribution over the parameters and/or

outputs:

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵) (1.1)

𝑃(𝐵) =
∫

𝑃(𝐵|𝐴)𝑃(𝐴)𝑑𝐴 (1.2)

In theory, the Bayesian formalism enables the incorporation of additional

knowledge through the prior distribution and yields a distribution over

the parameters, which can be used to obtain a distribution over outputs,

in contrast to point estimates.

In practice, Bayesian ML often faces challenges due to the intractability

of the evidence term 𝑃(𝐵), which is the integral in the denominator. As

a result, approximations to the posterior are commonly employed. For

instance, Laplace Approximations (D. J. C. MacKay, 1992) approximate the

distribution of interest as a Gaussian, while Variational Inference methods

introduce a parameterized approximate distribution and minimize its

KL divergence to the true posterior (Blei et al., 2017a). Additionally,

Markov Chain Monte Carlo methods use samples from the posterior as

an approximation (Gilks et al., 1995).

However, these approximations often remain computationally expensive,

leading practitioners to be either unable or reluctant to employ them.
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Consequently, a conventional narrative has emerged, suggesting that

"Bayesian methods are slower than non-Bayesian methods."

The primary objective of this thesis is to identify and develop approximate

Bayesian Inference methods that prioritize speed, even if they compromise

approximation quality.

Cost of the Method

Q
ua

lit
y

Slow high-quality solution

low-cost approximation

We’re aiming for high-quality, 
low cost approximations

The goal of the thesis is to find fast high-

quality approximate Bayesian Inference

methods.

1.1.2 Bayesian methods are not inherently slower than
non-Bayesian approaches

Intuitively, it makes sense that Bayesian methods should be more com-

putationally expensive than non-Bayesian methods. After all, they do

provide a distribution instead of a point estimate. However, in practice,

this comes with a myriad of clarifications, exceptions, and caveats. In the

following, we will discuss three examples to highlight the complexity of

this discussion.

Example 1: Linear Regression

Visualization of Bayesian Regression.

In linear regression, the goal is to obtain a parameter vector 𝛽 for the

equation

𝑌 = 𝛽𝑋 + 𝑏 (1.3)

where the bias term 𝑏 is commonly incorporated into 𝛽 by appending

a row of constant 1-terms to the data matrix 𝑋. To minimize the mean

squared error between the true labels 𝑌 and the predicted labels �̂�, the

parameters 𝛽 are computed using

𝛽 =
(
𝑋⊤𝑋

)−1

𝑋⊤𝑌 . (1.4)

The data matrix 𝑋 consists of 𝑁 datapoints, each with 𝐷 features.

Consequently, (𝑋⊤𝑋) is a 𝐷 × 𝐷 matrix. Since 𝐷 is typically much

smaller than 𝑁 , computing 𝛽 is generally feasible despite the O(𝑁3)
complexity of the matrix inversion.

In Bayesian linear regression, the goal is to find a distribution over the

parameters 𝛽 (including the bias term) that maximizes the posterior

probability for the model:

𝑌 = 𝛽𝑋 + 𝜖 (1.5)

where 𝜖 is an i.i.d. noise term. Unlike standard linear regression, Bayesian

linear regression does not generally have a closed-form solution. Instead,

it is typically computed using Markov chain Monte Carlo (MCMC)

sampling methods. Although modern sampling techniques like No U-

turn sampling (NUTS) (Hoffman et al., 2011) are more efficient than the

first MCMC methods such as Metropolis-Hastings (Chib et al., 1995), they

are still significantly slower than the closed-form solution of standard

linear regression. This would suggest that the Bayesian approach to linear

regression is computationally more expensive than the non-Bayesian

counterpart.

However, even this case is not straightforward. A common choice is

to use a normal distribution for 𝛽 conditioned on 𝜎2
, and an inverse-

gamma distribution for 𝜎2
. The conjugacy of these distributions allows
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the posterior to be computed in closed form (Gelman et al., 2013).

𝛽 |𝜎2 ∼ N (𝜇0 , 𝜎
2𝑉0) (1.6)

𝜎2 ∼ InvGamma(𝑎, 𝑏) (1.7)

𝛽 |𝑦 ∼ N (𝜇𝑛 , 𝜎2𝑉𝑛) (1.8)

𝜎2 |𝑦 ∼ InvGamma(𝑎𝑛 , 𝑏𝑛) (1.9)

where the updated parameters are given by:

𝑉𝑛 = (𝑉−1

0
+ 𝑋𝑇𝑋)−1

(1.10)

𝜇𝑛 = 𝑉𝑛(𝑉−1

0
𝜇0 + 𝑋𝑇𝑦) (1.11)

𝑎𝑛 = 𝑎 + 𝑛

2

(1.12)

𝑏𝑛 = 𝑏 + 1

2

[(𝑦 − 𝑋𝜇0)𝑇(𝐼 + 𝑋𝑉0𝑋
𝑇)−1(𝑦 − 𝑋𝜇0)] (1.13)

Consequently, in the conjugate case, the computational costs of the

Bayesian and non-Bayesian approaches are nearly equivalent. Conjugate

inference techniques can be applied to many ML techniques beyond linear

regression. They pose a prominent counter-example to the narrative that

Bayesian methods are always much slower than non-Bayesian methods.

Example 2: Bayesian Neural Networks

Obtaining high-fidelity approximations to the posterior distribution of

neural network parameters can be computationally expensive. Izmailov

et al. (2021) demonstrate this by using full-batch Hamiltonian Monte

Carlo (HMC) to sample from the posterior of a ResNet (He et al., 2016)

architecture trained on CIFAR10 (Krizhevsky, Nair, et al., 2014). While

conventional methods like SGD and mini-batch training can typically

train the parameters of a standard neural network for this task within a

few hours on most laptops, the HMC approximation to the full posterior

required the authors to use 512 TPUv3 in parallel, which far exceeds a

typical academic compute budget.

Therefore, it is fair to say that for some choices of approximation tech-

niques, the Bayesian solution is much more computationally expensive

than the non-Bayesian alternative.

However, there are cheap approximations to the posterior of neural

network weights that do not meaningfully increase the training cost. For

instance, several methods based on Laplace approximations (e.g. Kristiadi

et al., 2020; Daxberger et al., 2021) only necessitate one additional training

epoch to approximate the uncertainty. Posterior networks (Charpentier

et al., 2020) are even more computationally efficient and provide a

better-calibrated estimate of the posterior.

In such cases, the computational cost of the Bayesian method is not

substantially higher than that of the non-Bayesian alternative.

Example 3: Bayesian Quadrature

Lastly, we will examine a case in which the Bayesian approach is faster

or more efficient than the corresponding non-Bayesian technique.



1.1 Introduction 5

A prominent example of such a case is the computation of integrals.

Bayesian Quadrature (Diaconis, 1988; O’Hagan, 1991; Ghahramani et al.,

2002; Briol et al., 2017; Hennig, Osborne, et al., 2022) is a probabilistic

numerical method to approximate intractable integration problems.

Commonly, Bayesian Quadrature uses a Gaussian Process as a prior

distribution to enable conjugate inference. While traditional quadrature

methods, such as Newton-Cotes or Gaussian quadrature are highly

accurate for low-dimensional integration problems, their performance

degrades for high-dimensional tasks due to the curse of dimensionality.

Visualization of Bayesian Quadrature.

Taken from (Tskarvon, 2024).

Since Bayesian Quadrature treats integration as a Bayesian inference

problem, it can incorporate prior knowledge about the function (e.g.

smoothness) and can use the quantified uncertainty to focus evaluations

on regions with the highest uncertainty.

Thus, Bayesian Quadrature scales better to high-dimensional problems

than traditional Quadrature and is thus more effective (see e.g. Gunter et al.,

2014; Kanagawa et al., 2019). This reverses the conventional narrative and

thus poses a clear counter-example to it.

1.1.3 Motivation

We established that the narrative that “Bayesian methods are inherently

slower than non-Bayesian methods” is not true in all cases. Therefore, it

is possible to build algorithms that provide quantified uncertainty and

allow for the incorporation of prior knowledge that are not prohibitively

expensive to run, at least for certain use cases. The goal of this thesis

is to expand the class of these algorithms and build fast Bayesian ML

algorithms for a wide range of use cases.

There are three concrete motivations for developing fast Bayesian ap-

proximate inference schemes, even if they may occasionally yield large

approximation errors:

1. Enabling new applications: Fast Bayesian techniques would enable

the application of Bayesian inference to large-scale problems that

were previously intractable. This could significantly impact fields

operating with big data, such as molecular biology or material

sciences, where uncertainty quantification and prior knowledge

integration are crucial.

2. Providing default baselines: Fast Bayesian inference schemes could

serve as go-to baselines for practitioners. Researchers could initially

use the fast approach and switch to more computationally intensive

but accurate methods if necessary. This would offer a quick and

efficient way to begin Bayesian analysis and determine the need

for more advanced techniques.

3. Informing priors for accurate methods: The posteriors obtained

from fast Bayesian inference approaches could be used as infor-

mative priors for slower, higher-fidelity methods. By leveraging

the parameters gained from the fast approach, this two-stage ap-

proach could significantly reduce the computational cost of the

more accurate methods.
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1.2 Other work

This thesis is focused on three papers that share a common narrative

centered on efficient Bayesian approximate inference. Beyond these

papers, I have worked on multiple other research projects unrelated to

Bayesian ML that will be briefly presented in this section.

1.2.1 AI forecasting

Key figures from my AI forecasting work.

Typically, years are on the x-axis and a

log-transformed AI-related quantity on

the y-axis.

The broader field of AI forecasting aims to understand and predict AI-

related trends. Our work at EpochAI specifically focused on quantifying

trends that enable the prediction of the most powerful models’ capabilities.

To this end, we collected data and estimated scaling laws for three
*

key

components of frontier model training: compute, data, and parameters.

In Sevilla et al. (2022), we analyze the historical compute usage of the

largest ML training runs and estimate that the compute requirements

of the biggest models grow by a factor of 6 annually. We also investi-

gate the potential limitations posed by the availability of training data

in Villalobos, Sevilla, Heim, et al. (2022), assessing whether it could

become a realistic bottleneck for training frontier models. Moreover, in

Villalobos, Sevilla, Besiroglu, et al. (2022), we discover that since 2018,

the number of parameters in frontier models has been increasing at a

rate of approximately 9 times per year.

In light of the crucial role that computational resources play in training

state-of-the-art models, we investigate the question of whether Moore’s

law is likely to persist and for what duration in Hobbhahn and Besiroglu

(2022). Furthermore, in Hobbhahn, Heim, et al. (2023), we conduct a

comprehensive analysis of various compute-related trends, encompassing

price-performance ratios, precision, memory, interconnect technologies,

and specialized hardware components.

1.2.2 AI safety

Remark 1.3 (Current work) You can

find most of my current work here:

Apollo Research

The field of AI safety aims to guarantee that artificial intelligence systems

remain aligned with human values, even as they become more capable

than humans in a large range of tasks.

In Hobbhahn, Lieberum, et al. (2022), we assess the causal understanding

of state-of-the-art large language models. A model without a solid

grasp of causality may fail to generalize to out-of-distribution scenarios,

potentially compromising its safety. The concept of “aligning AIs to

human values” is frequently used without clearly defining these “human

values.” In Hobbhahn, Landgrebe, et al. (2022), we survey around 1,000

people to gather their views on morality and AI, aiming to identify

possible alignment targets.

Moreover, in Scheurer et al. (2023), we red-team cutting-edge language

models and show that they can deceive users without being explicitly

instructed to do so. This work can be attributed to the wider field of AI

*
The three main factors for ML progress are compute, data, and algorithmic progress.

Parameters are coupled to compute and data through scaling laws. Nevertheless, trends

in parameter scaling are still worth investigating.

https://www.apolloresearch.ai/
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evaluations that try to establish how capable AI systems are and assess

their safety.

1.3 Outline

Chapter 2 presents the key statistical techniques that form the founda-

tion of our approaches: Laplace Approximations, Change of Variable,

Exponential Families, and Automatic Differentiation.

In Chapter 3, we present Laplace Matching (LM), an approximate in-

ference scheme that establishes a mapping between the parameters of

different exponential families. The central concept of LM is to transform

the variable of any exponential family into a domain where it closely

resembles a Gaussian distribution. Subsequently, a Laplace approxima-

tion is applied, and the resulting analytic mapping is used to efficiently

translate between exponential families defined on different domains.

In Chapter 4, we explore the Laplace Bridge for Bayesian Neural Networks,

an important application of Laplace Matching. We demonstrate that the

Laplace Bridge, which is the specific instance of Laplace Matching for

the Dirichlet distribution, can be used to substitute the sampling process

at the end of Gaussian-based neural network approximations.

In Chapter 5, we introduce PIHAM, a generative model explicitly de-

signed to perform Probabilistic Inference in directed and undirected

Heterogeneous and Attributed Multilayer networks. PIHAM extends

Laplace Matching from single variables to combinations of variables,

including multiplication and addition. It transforms all latent variables

to be approximately Gaussian and then uses automatic differentiation

to efficiently get a Laplace Approximation. Finally, it then uses Laplace

Matching to transform the resulting Gaussians into their intended basis.

In Chapter 6, we analyze the advantages and limitations of each approach

and outline potential avenues for future research.

Every main chapter includes a section titled “Practical Advice & Honest

Thoughts”, offering guidance for practitioners and my honest opinion of

the strengths and drawbacks of each method.





Part I.

Background





Background 2.
2.1 Laplace Approximations . . 11
2.2 Change of variable for pdfs 12
2.3 Exponential Families . . . . 13
2.4 Automatic Differentiation . 14

This section covers the core concepts and techniques to understand

the methods presented in the subsequent chapters. First, we introduce

Laplace approximations (Section 2.1), a powerful tool for approximat-

ing distributions in Bayesian inference. Next, we discuss the change of

variable technique for probability density functions (Section 2.2), which

plays a crucial role in transforming distributions and facilitating effi-

cient computation. We then explore exponential families (Section 2.3), a

broad class of probability distributions that exhibit desirable properties

and are widely used in various statistical models. Finally, we introduce

automatic differentiation (Section 2.4), a technique that enables the effi-

cient computation of derivatives, which is instrumental in implementing

gradient-based optimization algorithms and Laplace approximations.

2.1 Laplace Approximations

Visualization of a Laplace Approxima-

tion. The Gamma distribution is approx-

imated by a Gaussian.

The Laplace approximation fits a normal distribution to a given function,

in our case a probability density function (pdf). If �̂� denotes the mode

of a pdf ℎ(𝜃), then it is also the mode of the log-pdf 𝑞(𝜃) = log ℎ(𝜃)
since the logarithm is a monotonic transformation. The 2nd-order Taylor

expansion of 𝑞(𝜃) is

𝑞(𝜃) ≈ 𝑞(�̂�) + ∇𝑞(�̂�)(𝜃 − �̂�) + 1

2

(𝜃 − �̂�)∇∇⊤𝑞(�̂�)(𝜃 − �̂�) (2.1)

= 𝑞(�̂�) + 0 + 1

2

(𝜃 − �̂�)∇∇⊤𝑞(�̂�)(𝜃 − �̂�) [since ∇𝑞(𝜃) = 0]
(2.2)

= 𝑐 − 1

2

(𝜃 − 𝜇)⊤Σ−1(𝜃 − 𝜇) , (2.3)

where 𝑐 is a constant, 𝜇 = �̂� and Σ = {−∇∇⊤𝑞(�̂�)}−1
. Since the Gaussian

is fit at the mode, the gradient term is zero. The right-hand side of the

last line matches the log-pdf of a Gaussian. Therefore, the pdf ℎ(𝜃) is

approximated by the pdf of the normal distribution N (𝜇,Σ) where 𝜇 = �̂�
and Σ = {−∇∇⊤𝑞(�̂�)}−1

.

Since the Laplace approximation is based on the 2nd-order Taylor expan-

sion, it introduces a fixed approximation error. On the other hand, since it

is computed analytically, the Laplace approximation yields a closed-form

solution and doesn’t require any iterative approximation, making it very

fast. Thus, a core goal of this thesis is to transform the distribution that

is being approximated such that the Laplace approximation is a much

better fit to leverage its computational efficiency.
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2.2 Change of variable for pdfs

Visualization of a change of variable.

The Gamma distribution is being log-

transformed with a linear interpolation

between 𝑥 and log(𝑥). For more illustra-

tions see (Hobbhahn, 2021a).

Let 𝑋 have a continuous density 𝑓𝑋 .
*

Let 𝑔 : ℝ → ℝ be piecewise

strictly monotonic and continuously differentiable, i.e. there exist inter-

vals 𝐼1 , 𝐼2 , ..., 𝐼𝑛 that partition ℝ such that 𝑔 is strictly monotonic and

continuously differentiable on the interior of each 𝐼𝑖 . For each interval

𝑖 , 𝑔 : 𝐼𝑖 → ℝ is invertible on 𝑔(𝐼𝑖); let 𝑔−1

𝑖
be its inverse function. Let

𝑌 = 𝑔(𝑋) and 𝑟(𝑦) = {𝑦 | 𝑦 = 𝑔(𝑥), 𝑥 ∈ ℝ} be the range of 𝑔. Then, the

density function 𝑓𝑌 of 𝑌 exists and is given by

𝑓𝑌(𝑦) =
𝑛∑
𝑖=1

𝑓𝑋(𝑔−1

𝑖 (𝑦))
�����𝜕𝑔−1

𝑖
(𝑦)

𝜕𝑦

����� 1𝑟(𝑦) . (2.4)

This is also true for the multi-dimensional case

𝑓𝑌(y) =
𝑛∑
𝑖=1

𝑓x

(
𝑔−1(y)

) ������det


𝑑𝑔−1(x)
𝑑x

�����
x=y


������ 1𝑟(𝑦) . (2.5)

where the function in each interval is multiplied with the determinant of

the Jacobian of 𝑔−1
evaluated at y.

Laplace approximations (see Section 2.1) can be applied to probability

distributions represented in different bases, resulting in varying levels of

approximation quality. To minimize the approximation error introduced

by such an approximation, our objective is to transform the variable

of non-Gaussian distributions in a way that most closely resembles a

Gaussian distribution.

*
This definition follows “Probability Essentials” by Jacod et al. (2004)
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2.3 Exponential Families

Visualization of three exponential family

distributions.

A pdf that can be written in the form

𝑝(𝑥) = ℎ(𝑥) · exp

(
𝑤⊤𝜙(𝑥) − log𝑍(𝑤)

)
(2.6)

where

𝑍(𝑤) :=

∫
X
ℎ(𝑥) exp

(
𝑤⊤𝜙(𝑥)

)
𝑑𝑥 (2.7)

is called an exponential family. 𝜙(𝑥) : 𝕏 → ℝ𝑑
are the sufficient statistics,

𝑤 ∈ D ⊆ ℝ𝑑
the natural parameters with domain D, log𝑍(𝑤) : ℝ𝑑 → ℝ

is the (log) partition function (normalization constant), and ℎ(𝑥) : 𝕏 →
ℝ+ the base measure.

The product of two pdfs of different instances of the same exponential

family is proportional to another instance of this exponential family.

Products of two pdfs of an exponential

families are proportional to an exponen-

tial family with the sum of their param-

eters. For more illustrations see (Hobb-

hahn, 2021b).

Assume we have two instances of the same exponential family

𝑝(𝑥;𝑤𝑖) = ℎ(𝑥) · exp(𝜙(𝑥)⊤𝑤𝑖 − log𝑍(𝑤𝑖)) (2.8)

where 𝑖 ∈ {1, 2} and 𝑤𝑖 ∈ D. Then, the product of their pdfs is

𝑝(𝑥;𝑤1) · 𝑝(𝑥;𝑤2) ∝ 𝑝(𝑥;𝑤1 + 𝑤2) (2.9)

if𝑤1+𝑤2 ∈ D. Thus, the product of two pdfs can be computed by adding

their parameters.

Another important property of exponential families is that their expected

value is given by the differential of the normalizing constant

𝔼𝑝𝑤 (𝜙(𝑥)) = ∇𝑤 log𝑍(𝑤) . (2.10)

This makes the computation of moments easier since it replaces integra-

tion with differentiation.

The thesis aims to leverage the speed of Laplace approximations, which

yield Gaussian distributions, for distributions with limited support, such

as those confined to the positive real numbers or the probability simplex.

To achieve this, we apply a change of variable (see Section 2.2) to transform

these distributions to a new basis where their support aligns with that of

a Gaussian, prior to performing the Laplace approximation.
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2.4 Automatic Differentiation

Automatic differentiation (AD) is a technique used to compute derivatives

of functions efficiently and automatically. AD makes use of the chain rule

of partial derivatives of composite functions, i.e. it exploits the fact that

partial derivatives of composite functions, no matter how complicated,

are the product of local partial derivatives. For example, consider the

composition of functions

𝑦 = ℎ(𝑔( 𝑓 (𝑥))) = ℎ(𝑔( 𝑓 (𝑧0))) = ℎ(𝑔(𝑧1)) = ℎ(𝑧2) . (2.11)

Then the partial derivative of 𝑦 w.r.t 𝑥 is

𝜕𝑦

𝜕𝑥
=

𝜕𝑦

𝜕𝑧2

𝜕𝑧2

𝜕𝑧1

𝜕𝑧1

𝜕𝑧0

=
𝜕ℎ(𝑧2)
𝜕𝑧2

𝜕𝑔(𝑧1)
𝜕𝑧1

𝜕 𝑓 (𝑥)
𝜕𝑥

. (2.12)

The atomic partial derivatives, e.g.

𝜕 𝑓 (𝑥)
𝜕𝑥 , are known for most simple

functions. Therefore, if a computational graph consists of compositions

of functions with known partial derivatives, the partial derivative of

the entire graph can be computed automatically. This is fundamental

to modern ML since neural networks and many other ML methods are

compositions of simple functions with known derivatives. This allows

us to compute arbitrary gradients and use gradient-based optimization

such as SGD.

There are many important theoretical considerations going into automatic

differentiation such as whether to use forward or backward accumulation.

We refer interested readers to Griewank et al. (2008) for details. For the

purpose of this thesis, these choices have been made for us by the creators

of modern software packages. Therefore, for the rest of the thesis, we can

think of AD as a black-box tool that takes a composition of functions and

returns arbitrary gradients along the graph.

Importantly, AD can also compute higher-order partial derivatives. For

example, if the function 𝑓 (𝑥) is twice differentiable, AD can compute the

Hessian matrix

𝐻(𝑖 , 𝑗) =
𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
. (2.13)

When possible, we prefer to compute analytical approximations for our

distributions due to their efficiency. However, this approach is not always

feasible, particularly when dealing with compositions and combinations

of functions, such as addition and multiplication. In such cases, we resort

to Automatic Differentiation, which remains highly efficient in practice.

This will become evident in Chapter 5, where we approximate models

that involve such combinations of variables.
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Remark 3.1 The contents of this chapter are primarily based on:

Marius Hobbhahn, and Philipp Hennig. “Laplace Matching for fast
Approximate Inference in Latent Gaussian Models”. arXiv preprint

arXiv:2105.03109. 2022.

Idea Analysis Exp. Code Writing
Marius Hobbhahn 80% 90% 90% 100% 90%

Philipp Hennig 20% 10% 10% 0% 10%

Abstract

Bayesian inference on non-Gaussian data is often non-analytic and re-

quires computationally expensive approximations such as sampling or

variational inference. We propose an approximate inference framework

primarily designed to be computationally cheap while still achieving

high approximation quality. The concept, which we call Laplace Match-
ing, involves closed-form, approximate, bi-directional transformations

between the parameter spaces of exponential families. These are con-

structed from Laplace approximations under custom-designed basis

transformations. The mappings can then be leveraged to effectively turn

a latent Gaussian distribution into an approximate conjugate prior to a

rich class of observable variables. This allows us to train latent Gaussian

models such as Gaussian Processes on non-Gaussian data at nearly no

additional cost. The method can be thought of as a pre-processing step

which can be implemented in <5 lines of code and runs in less than a

second. Furthermore, Laplace Matching yields a simple way to group

similar data points together, e.g. to produce inducing points for GPs.

We empirically evaluate the method with experiments for four different

exponential distributions, namely the Beta, Gamma, Dirichlet and inverse

Wishart, showing approximation quality comparable to state-of-the-art

approximate inference techniques at a drastic reduction in computational

cost.
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Figure 3.1: Laplace approximations for

the exponential distribution (top), the

Chi-squared distribution (middle row),

and the Beta distribution (bottom) in the

standard basis (left) and a more suitable

basis (middle column) for three different

sets of parameters ( , and ).

The Laplace approximations are then

transformed back to the standard base

for comparison (right). The parameter

for the red line does not have a valid

Laplace approximation in the standard

base, since the Hessian is not positive

definite. In the new basis, however, this

problem does not occur. Similar figures

for all other exponential families can be

found in the appendix.
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3.1 Introduction

Probabilistic inference often involves latent and observable variables of

different types, lying in different domains. Apart from the most basic

cases, one cannot expect to find a joint conjugate prior for all latent

quantities. For instance, when observing discrete samples from a latent

categorical distribution, the Dirichlet exponential family provides a

conjugate prior, enabling analytic and computationally efficient Bayesian

inference. However, if we observe several such discrete samples from

several latent categoricals that must be assumed to relate to each other

somehow, the Dirichlet is the wrong model. A common approach in

such scenarios is to construct a latent Gaussian model with a latent

multi-output Gaussian process prior, which is connected to the individual

categorical distributions via a softmax link function. However, the softmax

of a Gaussian random variable has no useful analytic form, and inference

is intractable. Approximate inference methods constructed from Laplace

approximations (cf. §3 in Rasmussen, 2006) or even custom-built Markov

Chain Monte Carlo (MCMC) methods (Murray et al., 2009) are available,

but they have significantly higher computational cost than conjugate

prior inference.

We introduce Laplace Matching (LM), a principled framework for con-

structing a fast, closed-form, bi-directional approximate transformation

between the parameters of any exponential family distribution and a

Gaussian. While Laplace approximations are well-studied, the key novel

aspect of our approach lies in first transforming the variable of the original

distribution to enable a better approximation by a Laplace approximation

in the new base (see Figure 3.1 for a visual illustration). Our work extends

and generalizes an insight by D. J. MacKay (1998). LM enables efficient

Gaussian inference on likelihoods with exponential family conjugate
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priors at minimal additional computational cost. Although this paper

primarily focuses on Gaussian Process (GP) inference, LM has broader

applicability and can be used in various settings to seamlessly translate

between exponential families and Gaussians.

Our contributions include

1. setting up the general framework for Laplace Matching (LM),

2. providing derivations for most commonly used exponential fami-

lies,

3. showcasing how LM leads to a natural and simple way to choose

inducing points in GP inference,

4. showing feasibility by applying LM to GPs on multiple non-

Gaussian, commonly used data types (binary, counts, categorical

and covariances) with a few lines of code, and

5. comparing LM to multiple alternatives w.r.t. approximation quality

and speed.

3.2 Laplace Matching

Algorithm 1 Laplace Matching

Require: Exponential family pdf 𝑝(𝑥 |𝜃) with parameters 𝜃, transforma-

tion 𝑔(𝑥)
𝑝𝑦(𝑦;𝜃) = 𝑝𝑥(𝑔−1(𝑦);𝜃) ⊲ Apply transformation of variable to pdf

𝜇 = arg max𝑦 𝑝𝑦(𝑦;𝜃) ⇔ 𝜕𝑝𝑦 (𝑦;𝜃)
𝜕𝜃 = 0 ⊲ Compute mode

Σ = −
(
𝜕2𝑝𝑦 (𝑦;𝜇)

𝜕2𝑦

)−1

⊲ Compute Hessian and invert

results in 𝑓 : 𝜃 → (𝜇,Σ)
𝑓 −1

: (𝜇,Σ) → 𝜃 ⊲ Invert mapping

return 𝑓 : 𝜃 ↔ (𝜇,Σ) ⊲ Return mapping between parameters

Parameters of a non-
Gaussian exponential 
family

Laplace Matching: 
bi-directional 
mapping between 
parameters

Parameters of a 
Gaussian distribution

High-level sketch of Laplace Matching

The goal of Laplace Matching is to fix the approximation of the likeli-

hood as a Laplace approximation and then to reduce the KL-divergence

between the true distribution and the Gaussian approximation by repre-

senting the likelihood in a new basis. Most other approximation schemes

(e.g. Murray et al., 2009; Nickisch, 2012; Minka, 2001; Neal, 1993; Seeger

et al., 2009; Williams et al., 1998; A. Wilson et al., 2010) are based on an

internal step of numerical optimisation. They define a loss for the approx-

imation quality, then define an approximation scheme and iteratively

adapt the approximation to improve the quality. Each iteration has some

cost. In contrast, Laplace Matching takes a different approach. It starts

by proposing an approximation with a fixed cost, such as the Laplace

approximation, and then transforms the representation of the data to

minimize the approximation loss. This transformation is performed in

closed form, eliminating the need for iterative updates. As a result, the

approximation error is fixed, and the cost of finding a good approxi-

mation is externalized because it is chosen beforehand. The primary

advantage of Laplace Matching lies in its computational efficiency. While

other methods invest computational resources to find a particularly good

approximation, Laplace Matching adopts a more simplistic approach by

proposing a specific approximation with known, very low computational

cost.
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While we thus specifically do not aim to numerically minimize some loss,

we instead motivate the choice of a particular analytic approximation by

the KL-divergence between an exponential family distribution and its

Gaussian approximation, under a variable transformation. This works as

follows. Let 𝑝(𝑥) be an exponential family distribution in the ‘standard

basis’ 𝑥:

𝑝𝑥(𝑥) = ℎ(𝑥) exp

(
𝑤𝑇𝜙(𝑥) − log𝑍(𝑤)

)
. (3.1)

Then, the random variable 𝑥 can be changed to another basis with

transformation 𝑔(𝑥) via Equation 2.4 (see Section 2.2). Let 𝑥(𝑦) = 𝑔−1(𝑥)
be the inverse transform of 𝑔(𝑥). The resulting distribution 𝑝𝑦(𝑥(𝑦)) in

basis 𝑦 is again an exponential family

𝑝𝑦(𝑥(𝑦)) = ℎ(𝑥(𝑦)) exp

(
𝑤𝑇𝜙(𝑥(𝑦)) − log𝑍(𝑤)

)
·
����𝜕𝑥(𝑦)𝜕𝑦

���� (3.2)

= exp

(
𝑤𝑇𝜙(𝑥(𝑦)) + log(ℎ(𝑥(𝑦))) + log

����𝜕𝑥(𝑦)𝜕𝑦

���� − log𝑍(𝑤)
)
. (3.3)

In the new basis 𝑦 a Laplace approximation is performed to yield a

Gaussian 𝑞(𝑦) = N (𝑦;𝜇,Σ), which can be written as

𝑞(𝑦) = exp

©«
(Σ−1

𝑔 𝜇𝑔)⊤𝑦 −
1

2

Tr

(
Σ−1

𝑔 𝑦𝑦
⊤
)

︸                              ︷︷                              ︸
𝑤𝑇𝑞 𝜙𝑞 (𝑦)

− 𝑘

2

log(2𝜋)︸     ︷︷     ︸
log ℎ𝑞 (𝑦)

+ 1

2

𝜇⊤
𝑔Σ

−1

𝑔 𝜇𝑔 −
1

2

log |Σ𝑔 |︸                        ︷︷                        ︸
− log𝑍𝑞 (𝑤𝑞 )

ª®®®®®¬
, (3.4)

where the mean and covariance

𝜇𝑔 = arg max

𝑦

𝑝(𝑥(𝑦)) ⇔
𝜕𝑝𝑦(𝑥(𝑦))

𝜕𝑦
= 0 (3.5)

Σ𝑔 = −
{
𝜕2𝑝(𝑥(𝑦);𝜇)

𝜕2𝑦

}−1

(3.6)

depend on the choice of parameters 𝑤 of 𝑝(𝑥(𝑦)), which in turn depends

on 𝑔(𝑥). We then define Laplace Matching as the procedure of finding a

transformation 𝑔−1(𝑥) = 𝑥(𝑦) with accompanying basis 𝑦 for distribution

𝑝(𝑥) such that KL (𝑝(𝑥(𝑦))| |𝑞(𝑦)) is small. Thus, LM describes a map

from the parameters 𝜃 of 𝑝(𝑥) to the parameters (𝜇,Σ) of the Gaussian

approximation 𝑞(𝑦). The aim is to invert this map to also have a function

from (𝜇,Σ) to 𝜃. However, since not all variable transformations are

bĳective (e.g. the softmax), the inverse map has to be approximated in

some cases. Therefore, Laplace Matching ultimately yields a bi-directional,

closed-form mapping between the parameters 𝜃 and (𝜇,Σ). One way

to define an optimal transformation 𝑔 would be that which minimizes
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KL (𝑝(𝑥(𝑦))| |𝑞(𝑦)).

KL(𝑝𝑦(𝑥(𝑦))| |𝑞(𝑦)) =
∫

𝑝(𝑦) log

(
𝑝(𝑦)
𝑞(𝑦)

)
𝑑𝑦 (3.7)

=

∫
𝑝(𝑦) log(𝑝(𝑦))𝑑𝑦 −

∫
𝑝(𝑦) log(𝑞(𝑦))𝑑𝑦 (3.8)

=

∫
𝑝(𝑦)

(
log ℎ𝑝(𝑦) + 𝑤⊤

𝑝 𝜙𝑝(𝑦) − log𝑍(𝑤𝑝)
)
𝑑𝑦 (3.9)

−
∫

𝑝(𝑦)
(
log ℎ𝑞(𝑦) + 𝑤⊤

𝑞 𝜙𝑞(𝑦) − log𝑍(𝑤𝑞)
)
𝑑𝑦

= 𝔼𝑝
[
log ℎ𝑝(𝑦)

]
+ 𝑤⊤

𝑝 𝔼𝑝
[
𝜙𝑝(𝑦)

]
− log𝑍(𝑤𝑝) (3.10)

− 𝔼𝑝
[
log ℎ𝑞(𝑦)

]
− 𝑤𝑇𝑞𝔼𝑝

[
𝜙𝑞(𝑦)

]
+ log𝑍(𝑤𝑞)

The objective KL (𝑝(𝑥(𝑦))| |𝑞(𝑦)) is in general not differentiable w.r.t. 𝑔(𝑥),
due to the arg max-function in the mode (see Equation 3.5). So even

numerical optimization is challenging, let alone finding a global analytic

extremum. Thus, other strategies have to be used to find an optimal

transformation 𝑔(𝑥).

It is generally known (see, e.g. (cf. §10.7 in Bishop, 2006)) that the KL

divergence between a distribution 𝑝(𝑦) and its Gaussian approximation

𝑞(𝑦) is minimized when the first two moments match. This comes from

optimizing KL

(
𝑝𝑦(𝑥(𝑦))| |𝑞(𝑦)

)
w.r.t. 𝑤𝑞 . Writing Equation 3.10 as a

function of 𝑤𝑞 yields

const. − 𝑤𝑇𝑞𝔼𝑝
[
𝜙𝑞(𝑦)

]
+ log𝑍(𝑤𝑞) (3.11)

which, if differentiated w.r.t 𝑤𝑞 , yields

−𝔼𝑝
[
𝜙𝑞(𝑦)

]
+ ∇𝑤𝑞 log𝑍(𝑤𝑞)

!

= 0 (3.12)

⇔ 𝔼𝑝
[
𝜙𝑞(𝑦)

]
= ∇𝑤𝑞 log𝑍(𝑤𝑞) (3.13)

⇔ 𝔼𝑝
[
𝜙𝑞(𝑦)

]
= 𝔼𝑞

[
𝜙𝑞(𝑦)

]
(3.14)

due to the properties of exponential families described in Section 2.3.

Consequently, the optimal choice for the transformation 𝑔(𝑥) is one

that matches both sufficient statistics of the Gaussian, namely [𝑥, 𝑥𝑥⊤]⊤.

However, it is not possible to simultaneously match both moments with

a single transformation 𝑔, as this would imply that our distribution is

already Gaussian. Therefore, we propose two alternative approaches:

The first approach is to choose 𝑔 such that the mode 𝜇 of 𝑝𝑦(𝑥(𝑦))
matches the mean, i.e., �̄� = arg max𝑤 log 𝑝(𝑥;𝑤) !

= 𝑔−1

(
𝔼𝑝(𝑥;𝑤)

)
. The

second approach is to choose 𝑔 such that the second moment matches, i.e.

𝔼(𝑥𝑥⊤) = − [∇∇⊤
log 𝑝(𝑥; �̄�)]−1

.

Note that while neither of these two approaches necessarily provides a

minimum of the KL divergence, both are analytically tractable! Without a

clear formal motivation to prefer one option over the other, Section 3.5.6

provides an empirical comparison.

Furthermore, as a second constraint for the transformation used by

Laplace Matching, the domain of 𝑝𝑦(𝑥(𝑦)) should be ℝ𝑑
since this is

the domain of the 𝑑-dimensional Gaussian 𝑞(𝑦), which is given by the

Laplace approximation. If this is not the case, the support of 𝑝𝑦(𝑥(𝑦))
is smaller than the support of 𝑞(𝑦) and therefore KL

(
𝑝𝑦(𝑥(𝑦))| |𝑞(𝑦)

)
is
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Table 3.1: Overview of the transforma-

tions and the sufficient statistics and do-

mains of the exponential families in the

standard and new basis. Bold notation

for the new sufficient statistics denotes

which moment has been matched by the

transformation. Beta and Dirichlet only

have one transformation each, as they

have only one kind of sufficient statistic,

namely log(𝑥𝑖). ℝ𝑑×𝑑
++ and ℝ𝑑×𝑑

𝑆
describe

the spaces of positive definite and sym-

metric matrices respectively.

Distribution 𝑔(𝑥) 𝑔−1(𝑥) standard 𝜙(𝑥) new 𝜙(𝑦) Standard domain New domain

Exponential

log exp 𝑥 (y, exp(𝑦)) ℝ+ ℝ

sqrt sqr 𝑥 (log(𝑦), y2) ℝ+ ℝ

Gamma

log exp (log(𝑥), 𝑥) (y, exp(𝑦)) ℝ+ ℝ

sqrt sqr (log(𝑥), 𝑥) (log(𝑦), y2) ℝ+ ℝ

Inv. Gamma

log exp (log(𝑥), 𝑥) (y, exp(𝑦)) ℝ+ ℝ

sqrt sqr (log(𝑥), 𝑥) (log(𝑦), y2) ℝ+ ℝ

Chi-squared

log exp (log(𝑥), 𝑥) (y, exp(𝑦)) ℝ+ ℝ

sqrt sqr (log(𝑥), 𝑥) (log(𝑦), y2) ℝ+ ℝ

Beta logit logistic (log(𝑥), log(1 − 𝑥)) (log(𝜎(y))), (1 − log(𝜎(𝑦))) ℙ ℝ

Dirichlet - softmax (log(𝑥𝑖)) log(𝜋𝑖(y)) ℙ𝑑 ℝ𝑑

Wishart

logm expm (logm(𝑋), 𝑋) (Y, expm(𝑌)) ℝ𝑑×𝑑
++ ℝ𝑑×𝑑

𝑆

sqrtm sqrm (logm(𝑋), 𝑋) (logm(𝑌),Y2) ℝ𝑑×𝑑
++ ℝ𝑑×𝑑

𝑆

Inv. Wishart

logm expm (logm(𝑋), 𝑋) (Y, expm(𝑌)) ℝ𝑑×𝑑
++ ℝ𝑑×𝑑

𝑆

sqrtm sqrm (logm(𝑋), 𝑋) (logm(𝑌),Y2) ℝ𝑑×𝑑
++ ℝ𝑑×𝑑

𝑆

undefined. Matching the first or second moment provides the correct

domain, which is an additional reason for moment matching.

Laplace Matching (LM), as presented in this thesis, is applicable to a

wide range of latent Gaussian models, including Gaussian Process (GP)

regression, Kalman filters, stochastic differential equations, and the last

layer of Neural Networks (see Chapter 4). In essence, Laplace Matching

allows any operation that can be applied to Gaussian random variables to

be similarly applied to random variables with exponential family conju-

gate priors. While this transformation introduces a fixed approximation

loss, it enables the application of Gaussian-based techniques to a broader

class of distributions. This makes Laplace Matching a powerful tool for

simplifying and unifying the treatment of various probabilistic models.

3.2.1 Bases and Transformations

The basis transformations presented in the following sections have been

selected using the different approaches discussed earlier, ensuring that

they always match either the first or second sufficient statistic. Table 3.1

provides a comprehensive overview of the distributions, their transfor-

mations, their standard and new sufficient statistics, and their respective

domains. This table is complemented by Table 3.2, which presents the

explicit transformations between the parameters of various exponential

families and a Gaussian for a given basis. For a visual interpretation of

these transformations, we refer the reader to Figure 3.1, which illustrates

three different distributions along with their corresponding Laplace

approximations.

Although Figure 3.1 does not include all the distributions listed in Table

3.1, the Beta distribution can be considered as a representative for the

Dirichlet distribution, as it is its one-dimensional special case. Similarly,

the Gamma distribution can be seen as a representative for the Chi-

square, (inverse-) Gamma, and (inverse-) Wishart distributions, since the

Chi-square and Gamma distributions are one-dimensional special cases

of the (inverse-) Wishart distribution. Visualizations of all distributions

can be found in Appendix A.
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Distribution Basis 𝜃 → N N → 𝜃

Exponential

log

𝜇 = log( 1

𝜆 ) 𝜆 = 1

exp(𝜇)
𝜎2 = 1

sqrt

𝜇 =

√
1

2𝜆 𝜆 = 1

2𝜇2

𝜎2 = 1

4𝜆

Gamma

log

𝜇 = log

( 𝛼
𝜆

)
𝛼 = 1

𝜎2

𝜎2 = 1

𝛼 𝜆 = 1

exp(𝜇)𝜎2

sqrt

𝜇 =

√
𝛼−0.5
𝜆 𝛼 =

𝜇2

4𝜎2
− 0.5

𝜎2 = 1

4𝜆 𝜆 = 4

𝜎2

Inv. Gamma

log

𝜇 = log

( 𝜆
𝛼

)
𝛼 = 1

𝜎2

𝜎2 = 1

𝛼 𝜆 =
exp(𝜇)
𝜎2

sqrt

𝜇 =

√
𝜆
𝛼 𝛼 =

𝜇2

4𝜎2
− 0.5

𝜎2 = 𝜆
4𝛼2

𝜆 =
𝜇4

4𝜎2

Chi-squared

log

𝜇 = log(𝑘) 𝑘 = exp(𝜇)
𝜎2 = 2/𝑘

sqrt

𝜇 =
√
𝑘 𝑘 = 𝜇2

𝜎2 = 1/2

Beta logit

𝜇 = log( 𝛼𝛽 ) 𝛼 =
exp(𝜇)+1

𝜎2

𝜎2 =
𝛼+𝛽
𝛼𝛽 𝛽 =

exp(−𝜇)+1

𝜎2

Dirichlet* softmax
−1

𝜇𝑘 = log 𝛼𝑘 − 1

𝐾

∑𝐾
𝑙=1

log 𝛼𝑙 𝛼𝑘 =
1

Σ𝑘𝑘

(
1 − 2

𝐾 + 𝑒𝜇𝑘

𝐾2

∑𝐾
𝑙=1
𝑒−𝜇𝑙

)
Σ𝑘ℓ = 𝛿𝑘ℓ

1

𝛼𝑘
− 1

𝐾

[
1

𝛼𝑘
+ 1

𝛼ℓ
− 1

𝐾

∑𝐾
𝑢=1

1

𝛼𝑢

]
Wishart

logm

𝜇 = logm((𝑛 − 𝑝 + 1)𝑉) 𝑉 =
expm(𝜇)
(𝑛−𝑝+1)

Σ = 2

(𝑛−𝑝+1) (𝐼𝑝⊗⊖𝐼𝑝)
−1 𝑛 =

2𝑝2

tr(Σ) + 𝑝 − 1

sqrtm

𝜇 = sqrtm ((𝑛 − 𝑝)𝑉) 𝑉 = ∗∗

Σ =

(
𝑉

1

2 ⊗⊖𝑉 1

2

) (
𝐼𝑝2 +𝑉 1

2 ⊗⊖𝑉− 1

2

)−1

𝑛 = ∗∗

Inv. Wishart

logm

𝜇 = logm

(
1

(𝜈+𝑝−1)Ψ

)
Ψ = (𝜈 + 𝑝 − 1) expm(𝜇)

Σ = 2(𝜈 + 𝑝 − 1)(𝐼𝑝⊗⊖𝐼𝑝)−1 𝜈 =
tr(Σ)
2𝑝2

− 𝑝 + 1

sqrtm

𝜇 = sqrtm( 1

(𝜈+𝑝)Ψ
−1) Ψ = ∗∗

Σ = 1

(𝜈+𝑝)2
(
𝐼𝑝⊗⊖Ψ

) (
Ψ

1

2 ⊗⊖Ψ 1

2 + 𝐼𝑝
)−1

𝜈 = ∗∗

Table 3.2: Overview of all closed-form

transformations for Laplace Matching.

* indicates an approximate inversion

since the transformation is not bĳective.

** means that the solution has to be

looked up in Appendix A, which also

contains practical tips for the (inverse-

) Wishart.

3.3 Laplace Matching with Gaussian Processes

Remark 3.2 (LM+GP) We sug-

gest two different ways to combine

Laplace Matching and Gaussian Pro-

cesses. For the rest of this thesis, we

use the first definition, which we refer

to as V1.

Algorithm 2 Laplace Matching + Gaussian Process (LM+GP) V1

Require: non-Gaussian data distribution 𝑑 which is conjugate to an EF,

Transformation

EF(𝑥( 𝑓 ); 𝜖𝜃 + 𝜃𝑑) ⊲ Use EF to define pseudo-likelihoods in the data

domain

GP( 𝑓 ;𝜇𝑝 ,Σ𝑝) = 𝐿𝑀−1(EF) ⊲ Use LM to map EF to Gaussian

fit GP ⊲ Apply standard GP toolbox on resulting Gaussian

𝑋′ = 𝑥(𝑦), 𝑦 ∼ GP ⊲ Draw samples from latent GP and apply

transformation

return GP( 𝑓 ;𝜇𝑝 ,Σ𝑝), 𝑋′ ⊲ Return GP and transformed samples

There are several approaches for performing latent Gaussian inference

on non-Gaussian data (see Section 3.4 for a detailed comparison). Many

of these methods, such as Variational Inference (VI), Expectation Propa-

gation (EP), and Markov Chain Monte Carlo (MCMC), require multiple

iterations of optimization or sampling, which can be computationally

expensive. While there exist fast one-step approaches based on approxi-

mate inference, most of them are specialized for specific types of data.

For example, Milios et al. (2018) focuses on classification, while Jia et al.

(2021) is tailored for count data.
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Algorithm 3 Laplace Matching + Gaussian Process (LM+GP) V2

Require: non-Gaussian data distribution 𝑑 which is conjugate to an EF,

Transformation

GP( 𝑓 ;𝜇0 ,Σ0) ⊲ Define prior GP in Gaussian latent space

EF(𝑥( 𝑓 );𝜃0) = 𝐿𝑀(𝐺𝑃) ⊲ Transform GP with LM

EF(𝑥( 𝑓 );𝜃0 + 𝜃𝑑) ⊲ Update Exp. Fam. with data

GP( 𝑓 ;𝜇𝑝 ,Σ𝑝) = 𝐿𝑀−1(EF) ⊲ Transform back to latent Gaussian

process

𝑋′ = 𝑥(𝑦), 𝑦 ∼ GP( 𝑓 ;𝜇𝑝 ,Σ𝑝) ⊲ Draw samples from latent GP and

apply transformation return GP( 𝑓 ;𝜇𝑝 ,Σ𝑝), 𝑋′ ⊲ Return GP and

transformed samples

latent

transformed

latent

data

GP( 𝑓 ;𝜇0 ,Σ0)

EF(𝑥( 𝑓 );𝜃0)

L
M

EF(𝑥( 𝑓 );𝜃0 + 𝜃)

𝑝(𝑥 | 𝜃) = ∏
𝑖 𝑝(𝑥𝑖)

B
a
y
e
s

EF(𝑥( 𝑓 );𝜃𝑝)

GP( 𝑓 ;𝜇𝑝 ,Σ𝑝)
L

M
−1

𝑌′

𝑋′

𝑥
(𝑦
)

latent prior

transformed prior

approximate posterior

likelihood

approximate posterior
GP sample

transformed sample

Figure 3.2: Visual description of Bayesian Inference with LM+GP. A latent prior GP is transformed to the latent exponential family of

choice via Laplace Matching. It is then updated by the likelihood which is conjugate to the latent exponential family. This posterior

distribution is then transformed back via LM and used to update the latent GP. From this approximate posterior GP we can draw samples

and apply the original transformation 𝑥(𝑦) = 𝑔−1(𝑥) yielding a transformed sample in the desired space. Rather than using the full

pipeline, we can skip the latent prior and replace it with a pseudo-likelihood (see Algorithm 2).

In contrast, Laplace Matching with Gaussian Processes (LM+GP) offers a

more general framework that can be applied to any likelihood that is a

conjugate prior to an exponential family, while maintaining the compu-

tational efficiency of specialized one-step approaches. The versatility of

LM+GP lies in its ability to handle a wide range of data types without

sacrificing speed. Moreover, Laplace Matching can be viewed as a fast

pre-processing step that enables the application of conventional Gaussian

inference tools to non-Gaussian data, thereby expanding the scope of

these tools and facilitating their use in a broader range of scenarios.

Laplace Matching (LM) can be combined with Gaussian Processes (GPs)

in two different ways. The first approach involves modeling the likelihood

using an exponential family distribution and then applying LM to

transform the likelihood into a Gaussian form. Subsequently, standard

GP inference can be performed (see Algorithm 2). In this case, the

exponential family is fitted by creating pseudo-observations for each

data point or groups of data points. The choice of exponential family

distributions is made such that their respective likelihoods are conjugate

to them. Since LM is computationally efficient, the transformation cost

is negligible, allowing GPs to be fitted on non-Gaussian data with

minimal additional computational overhead (see Section 3.5.5 for further

details).

The second approach involves defining a latent GP and transforming

the GP prediction at the training data points using LM. The resulting
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exponential family is then updated via conjugacy, and the updated

exponential family is transformed back using the inverse LM map (see

Algorithm 3 for details). This more elaborate approach may be preferable

in cases where the prior GP is highly structured due to specific prior

knowledge.

For the purposes of this thesis, we employ the first version of the

algorithm, referred to as "LM+GP" for brevity, as it is simpler and faster

to implement.

In both versions, the GP posterior in the latent domain can then be

transformed into a posterior in the data domain either by applying

𝑥(𝑦) to samples from the latent Gaussian or by drawing latent sample

functions and transforming them individually through LM
−1

. Figure

3.2 shows a high-level summary of the concept for the entire inference

pipeline.

Remark 3.3 (Conjugacy and
LM+GP) The conjugacy of expo-

nential families allows us to already

perform meaningful operations

like grouping before transforming

into the latent domain. This is a

benefit compared to traditional GP

approaches.

By default, we employ pseudo-likelihoods to model the data points. For

instance, in binary classification, a data point with label 1 would be

modeled as B(1 + 𝜖𝑎 , 𝜖𝑎). One of the benefits of selecting exponential

families for the pseudo-likelihoods is the ease of grouping data points

together through conjugacy. When multiple data points are close in

time or belong to the same cluster after k-means clustering, they can

be summarized using a single instance of the respective exponential

family. This approach provides a natural way to group numerous data

points into a smaller set of inducing points for Gaussian Process (GP)

inference.

Since Laplace Matching (LM) provides both a mean estimate and a covari-

ance estimate for each inducing point, we can employ a heteroskedastic

noise model for our GP. Specifically, we can utilize the measured covari-

ance obtained from LM as an approximation of the noise variable of the

GP.

3.4 Related Work

The original idea to use basis changes to increase the quality of Laplace

approximations goes back to D. J. MacKay (1998), who specifically studied

Laplace approximations of Dirichlet distributions. This was extended

to a bi-directional map by Hennig (2010). This work generalizes this

idea to most of the popular exponential family distributions, provides

explicit parameter mappings, and analyzes their costs and approximation

quality.

There is a host of other approximate inference schemes for latent Gaus-

sian models, including a Laplace approximation on the joint posterior

(Williams et al., 1998), Expectation Propagation (Minka, 2001), Markov

Chain Monte Carlo (MCMC) (Murray et al., 2009; Neal, 1993), vari-

ational approximations (Seeger et al., 2009; Challis et al., 2013), and

Integrated Nested Laplace Approximations (INLA) (Rue et al., 2009;

Martínez-Minaya et al., 2019).

Approximate inference schemes inevitably involve a trade-off between

approximation quality and computational speed. Markov Chain Monte

Carlo (MCMC) methods are asymptotically correct as the number of
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samples approaches infinity. Variational approximations, on the other

hand, converge to an approximation with a finite error within a finite

amount of time. LM can be considered to lie at the extreme end of this

spectrum, offering a closed-form approximation with a fixed quality.

Despite the fixed approximation error, the experiments presented in this

paper demonstrate that the resulting approximation error of LM is often

sufficiently small, making it a viable alternative to the aforementioned

methods, especially when considering its very low computational cost

(see Section 3.5.5). The computational efficiency of LM makes it an

attractive first choice for various scenarios, such as testing purposes or

low-level implementations where computational efficiency is of utmost

importance.

3.5 Experiments

We first provide a number of experiments that explain the setup and

provide quantitative results on four different non-Gaussian exponential

families, namely the Beta (Section 3.5.1), Gamma (Section 3.5.2), Dirichlet

(Section 3.5.3) and inverse Wishart (Section 3.5.4). Then we measure

the time it took for LM to pre-process the data in all experiments in

(Section 3.5.5) to showcase its speed. Finally, we investigate the quality of

the proposed LM approximations by measuring the local KL divergence

(Section 3.5.6). Code for all experiments is available.
*

3.5.1 Binary Classification (Beta)

In this section, we demonstrate the application of Laplace Matching

combined with Gaussian Processes (LM+GP) in binary classification.

Binary classification predictions are probabilities, which poses a challenge

when training a vanilla GP as it yields predictions in the wrong domain.

To address this, we translate binary labels into Beta pseudo-likelihoods

by adding a small value 𝜖𝑎 to both parameters. For example, a data point

with label 1 would be modeled as B(1+ 𝜖𝑎 , 𝜖𝑎). Laplace Matching is then

employed to map these pseudo-likelihoods to Gaussians, enabling the

training of a vanilla GP on the resulting means and variances (see Figure

3.3).

The mapping between the Beta distribution parameters and the Gaussian

parameters is given by:

𝜇 = log

(
𝛼
𝛽

)
𝜎2 =

𝛼 + 𝛽

𝛼𝛽
(3.15)

Since Laplace Matching provides estimates for both mean and variance,

we can utilize the 𝜎2
to specify a heteroskedastic noise model. Further-

more, by leveraging the conjugacy of the Beta distribution, we can group

multiple classes together, particularly when they are close in time (see

bottom panel in Figure 3.3). This grouping allows us to use conjugacy to

create a single "representative" for each cluster, which can then be used

as inducing points.

* https://github.com/mariushobbhahn/Laplace_Matching_for_GLMs

https://github.com/mariushobbhahn/Laplace_Matching_for_GLMs
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Figure 3.3: Conceptual figure for Dirich-

letGPC and LM(Beta)+GP;

Left: latent GP in ℝ;

Right: transformed GP on the 1-simplex;

Top: DirichletGPC;

Middle: LM(Beta)+GP;

Bottom: LM(Beta)+GP using the conju-

gacy of the Beta to group datapoints

that are close in time into one pseudo-

likelihood

Table 3.3: Dataset specifications for classification experiments: Adapted from (Milios et al., 2018). The experiments with binary

classification can be found in the Beta section and multi-class classification can be found in the Dirichlet section.

Dataset Classes Training instances Test instances Dimensionality Inducing points

EEG 2 10980 4000 14 200

HTRU2 2 12898 5000 8 200

MAGIC 2 14020 5000 10 200

MINIBOO 2 120064 5000 50 400

LETTER 26 15000 2000 16 200

DRIVE 11 48509 2000 48 500

MOCAP 5 68095 2000 37 500

We have two options for making predictions: draw samples and transform

them using the logistic function or translate the GP back via Laplace

Matching. We use the toy example from Milios et al. (2018) to conceptually

compare LM(Beta)+GP with DirichletGPC which is another fast way of

doing GP classification. In Figure 3.3 we can see that LM(Beta)+GP pro-

duces estimates of similar visual quality to DirichletGPC but additionally

allows for a simple way of aggregating inducing points.

Furthermore, we compare DirichletGPC with LM(Beta)+GP on four

benchmarks from the UCI ML repository (Dua et al., 2017) that were

already used in (Milios et al., 2018) (see Table 3.3). For all experiments

classification experiments, we use an RBF kernel. All inducing points

are the centers of k-means clustering applied to the training data set. We

compare the results using the three common metrics of accuracy, mean

negative log-likelihood (MNLL) and expected-calibration error (ECE).

The results can be found in Figure 3.4. We find that LM(Beta)+DP is com-

petitive with DirichletGPC and that LM(Beta)+GP using the conjugacy of

the Beta to create inducing points often outperforms DirichletGPC. Since

Milios et al. (2018) have extensively compared DirichletGPC with many

other methods for binary GP classification, we argue that LM(Beta)+DP

is also competitive with their comparisons.

3.5.2 Count data (Gamma)

In this section, we demonstrate the application of LM(Gamma)+GP on a

toy dataset and compare its performance against various alternatives on

a set of benchmarks.

We use a dataset from Bruin (2011) containing integer counts representing

the number of awards and math scores of students belonging to three
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Figure 3.4: Results for binary classifi-

cation experiment: LM(Beta)+GP is of-

ten competitive with DGPC, and outper-

forms both alternatives when the conju-

gacy of the Beta is leveraged to create

inducing points.
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Figure 3.5: Probability of award as a func-

tion of math score. Top left: ground truth

data (integers) with small noise added for

visibility. The three other figures show

LM+GP with count data and Gamma

conjugate prior for the three classes re-

spectively. The shadings in the figure

show the transformed Gaussian measure

on the domain 𝑥 = exp(𝑦) (hence the

constraint to positive values).
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groups: general, academic, and vocational. Given the nature of the data,

where the number of awards are integers and reflect rare events, we

assume a Poisson likelihood. The Gamma distribution serves as the

conjugate prior for Poisson count data, allowing its parameters to be

updated through simple addition. We construct a marginal Gamma

pseudo-likelihood distribution 𝑝(𝑥(𝑦)) at each math score for all three

classes. By applying LM in the log-base, we transform this Gamma

distribution into a latent space 𝑝(𝑦) where a GP 𝑞(𝑦) is constructed:

𝜇 = log

(𝛼
𝜆

)
𝜎2 =

1

𝛼
(3.16)

As the kernel function, we employ a sum of a rational quadratic and

a linear kernel. Through the inverse transformation, we represent the

GP posterior back in the original space, ℝ+, by transforming the mean

function and two standard deviations using the exponential function.

The result is a GP 𝑞(𝑥(𝑦)) defined exclusively on the positive domain and

fitted to Poisson likelihoods. The key advantage of this simple yet fast

procedure is the ability to leverage the benefits of GPs on non-Gaussian

data with minimal additional computational cost. Figure 3.5 illustrates

the resulting GPs.

We evaluate the performance of LM(Gamma)+GP on five different
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datasets from (Kleiber et al., 2008) where the target variable is a non-

negative integer. LM(Gamma)+GP is well-suited for these variables since

the Gamma distribution is defined on ℝ+
. We compare LM(Gamma)+GP

against three alternative methods: a vanilla GP (ignoring the data domain),

a GP trained on log-transformed data, and SVIGP on log-transformed

data.

To assess the performance of each method, we employ three metrics:

Root Mean Squared Error (RMSE), mean Negative Log-Likelihood (NLL)

using Poisson likelihoods, and the number of test points within two

standard deviations of the mean posterior prediction (in2std). Table 3.4

presents the results of our experiments.

The findings demonstrate that LM(Gamma)+GP achieves comparable

or superior performance compared to the alternative methods in many

cases. By leveraging the properties of the Gamma distribution and the

flexibility of GPs, LM(Gamma)+GP effectively captures the characteristics

of non-negative integer target variables.

Table 3.4: Quantitative results on count data. We find that GP+LM is either the best or comparable with alternative methods in many

cases.

vanilla GP log GP LM(Gamma)+GP SVIGP
Dataset RMSE ↓ MNLL ↓ in2std RMSE ↓ MNLL ↓ in2std RMSE ↓ MNLL ↓ in2std RMSE ↓ MNLL ↓ in2std

CreditCard 0.963 1.265 0.991 1.521 11.818 0.837 1.301 1.490 0.344 1.304 1.576 0.275

Doctor 0.851 1.247 0.982 0.910 4.618 0.265 0.780 0.704 0.169 0.811 0.724 0.008

Citations 57.996 46.393 0.256 66.491 104.156 0.047 41.556 15.038 0.972 51.950 26.337 0.888

GSS7402 1.255 1.628 0.949 2.249 2.921 0.253 1.262 1.633 0.428 1.312 1.656 0.207

Medicaid 3.662 2.665 0.948 4.120 22.337 0.748 3.590 2.580 0.489 3.831 3.367 0.132

3.5.3 Multi-class classification (Dirichlet)

To demonstrate the application of LM+GP to categorical data, we utilize

the results from the German federal elections for the entire country

between 1949 and 2017. The dataset contains 𝑇 different election dates, 𝑃

different political parties, and 𝐶 different election counties. Each data

point is represented as a tuple (t, p, c) with an associated vote count v for

party p in election year t and county c.

For every year t and county c, we construct a Dirichlet distribution given

the p parties using 𝑝(𝑥(𝑦)) = D𝑡 ,𝑐(𝑣𝑝). This is possible because the votes

form a categorical distribution, for which the Dirichlet distribution serves

as a conjugate prior. To transform the Dirichlet distribution into a latent

Gaussian distribution 𝑞(𝑦) and vice versa, we employ the LM equations:

𝜇𝑘 = log 𝛼𝑘 −
1

𝐾

𝐾∑
𝑙=1

log 𝛼𝑙 (3.17a)

Σ𝑘ℓ = 𝛿𝑘ℓ
1

𝛼𝑘
− 1

𝐾

[
1

𝛼𝑘
+ 1

𝛼ℓ
− 1

𝐾

𝐾∑
𝑢=1

1

𝛼𝑢

]
(3.17b)

𝛼𝑘 =
1

Σ𝑘𝑘

(
1 − 2

𝐾
+ 𝑒𝜇𝑘

𝐾2

𝐾∑
𝑙=1

𝑒−𝜇𝑙

)
. (3.17c)

to yield 𝜇t,c andΣt,c. Since some parties received 0 votes in some elections
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Figure 3.6: German elections from 1949

to 2017. Top left: Ground truth data

points; Top right: LM+GP cumulative

predictions for all parties with attached

uncertainty (dark means low uncer-

tainty); Bottom left: 2009 election has

been left out of the training data; Bottom

right: predictions for the next 3 elections

(2021, 2025, 2029). The uncertainties are

meaningful, e.g. the existence of data im-

plies low uncertainty and vice versa.
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we set the prior of each Dirichlet to 𝛼 = 1. The likelihood for all election

data under the latent Gaussian is then given by

𝑞(𝑦) = 𝐿𝑀−1(𝑝(𝑣 |𝜋𝑑)) =
∏
𝑑

𝐿𝑀−1(D(𝑣𝑑))) =
∏
𝑑

N ( 𝑓 ;𝜇𝑑 ,Σ𝑑), (3.18)

where 𝑓 describes the latent Gaussian. Integrating all of the above into

the general equation for GP regression (Rasmussen, 2006)

𝑞( 𝑓 |𝑣) = GP
(
𝑓 ;𝑚𝑘 + 𝑘𝑥𝑋(𝑘𝑋𝑋 + Σ𝑋)−1(𝜇𝑋 − 𝑚𝑑), 𝑘𝑥𝑥 − 𝑘𝑥𝑋(𝑘𝑋𝑋 + Σ𝑋)−1𝑘𝑋𝑥

)
(3.19)

we can construct a 𝑁 = 𝑇 · 𝑃 · 𝐶 dimensional GP over all combinations

of elections, parties and counties. The kernel function 𝑘 is defined as

𝑘[(t, p, c), (t′, p′, c′)] = 𝑘𝑇(t, t′) · 𝑘𝑃(p, p′) · 𝑘𝐶(c, c′) (3.20)

where the kernels 𝑘𝑇 , 𝑘𝑃 and 𝑘𝐶 can be hand-crafted to their specific

domain. The party kernel 𝑘𝑃 could, for example, display the distance of

parties on the political spectrum or the county kernel 𝑘𝐶 could incorporate

information about the relative differences in average income, education,

crime, etc. as long as they correlate with voting behavior. The kernel

matrix 𝑘𝑋𝑋 ∈ ℝ𝑁×𝑁
is created through Equation 3.20. The noise matrix

Σ𝑋 ∈ ℝ𝑁×𝑁
is a block diagonal matrix with 𝑇 · 𝐶 blocks of size 𝑃 × 𝑃

containing the respective Σt,c from the Laplace Matching.

In our experiment, we restrict ourselves to the 𝑇 = 19 elections held

between 1949 and 2017, to the 𝑃 = 9 political parties that gained more

than 5% of the vote at least once in these elections, and to the 9 federal

states that continuously existed across this time-frame – plus Germany

as a whole, such that 𝐶 = 10.

After building the GP we can draw sample functions at different points in

time and transform them back to probability space through the softmax

function 𝜎(𝑦) = exp(𝑦𝑖 )∑
𝑗 exp(𝑦𝑗 ) to get our GP predictions. The resulting election

landscape can be found in Figure 3.6.

Timing & Efficiency

To evaluate the speedup of LM+GP over alternatives, we compare LM+GP

with elliptical slice sampling (Murray et al., 2009) (ESS). ESS is an efficient
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Figure 3.7: Comparison of approxima-

tion quality of LM vs MCMC-samples

dependent on the number of samples.

In both cases, the approximation quality

of the samples meets that of LM after

ca. 1000 samples. The green dot indicates

the ratio of drawing one sample vs. ap-

plying LM. We see that LM costs slightly

more than drawing one ESS sample to

compute the latent Gaussian.

sampling method specifically designed for the combination of non-

Gaussian likelihoods and GP priors. We calculate the log-likelihood for

ESS with

𝑙(t, c, p) = log

(∏
t

∏
c

∏
p

𝜎( 𝑓 (t, c))𝑦t,c,p
𝑝

)
=

∑
t

∑
c

∑
p
𝑦t,c,p log(𝜎( 𝑓 (t, c))

(3.21)

The predictions with ESS are made by projecting the samples 𝑓 to the

desired space with

𝑞( 𝑓𝑥 |𝑦, 𝑓 ) =
∑
𝑖

N
(
𝑓𝑥 ;𝑚𝑥 + 𝑘𝑥𝑋 𝑘−1

𝑋𝑋( 𝑓𝑖 − 𝑚𝑥), 𝑘𝑥𝑥 − 𝑘𝑥𝑋 𝑘−1

𝑋𝑋 𝑘𝑋𝑥

)
(3.22)

To evaluate the timing trade-off between a fast but fixed approxima-

tion strategy like Laplace Matching (LM) and a more computationally

intensive but asymptotically exact iterative strategy such as Elliptical

Slice Sampling (ESS), we compare the approximation quality on a sig-

nificantly smaller subset of the data. Specifically, we focus on the local

results (approximately 1000 votes per election) of a single voting precinct

(the "Wanne" neighborhood in Tübingen) from 2002 to 2017. The true

distribution is approximated by drawing 10000 samples from ESS. Figure

3.7 presents the results of this comparison. We observe that it requires

around 1000 MCMC samples for ESS to achieve the same quality of mean

and variance estimates as the static LM results. Moreover, the difference

between the mean obtained from LM and the true mean is smaller than

one standard deviation of the true distribution. Since the standard devia-

tion serves as a measure of aleatoric uncertainty in our posterior, having

the LM mean within one standard deviation of the true mean provides

strong evidence for the quality of the LM approximation.

Quality of the Marginals

To evaluate the quality of the predictions provided by LM+GP in compar-

ison to sampling-based methods, we utilize their marginal predictions on

the smaller dataset. We compare three different prediction approaches:

samples obtained through ESS, samples from LM+GP transformed via

the softmax function, and Beta marginals from the Dirichlet distribu-

tion generated directly by the inverse LM transformation from the GP,

since variable 𝑥𝑖 from a Dirichlet distribution follows a Beta(𝛼𝑖 ,
∑
𝑗≠𝑖 𝛼 𝑗)

distribution. Figure 3.8 illustrates the resulting marginals.

Our findings reveal two key observations. First, the transformed samples
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Figure 3.8: Marginal plot of the four

largest parties for the prediction of a

local election in 2004 (i.e. when no actual

election took place). We compare predic-

tions of ESS samples (dark histograms)

with transformed samples from LM+GP

(light histograms) and Beta marginals

from the LM-Dirichlet transformation

(solid lines). The reasons for their differ-

ences are discussed in the text.
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from LM+GP exhibit slight differences compared to the Beta marginals

obtained from the direct transformation. This discrepancy arises because

the inverse transformation for the LM-Dirichlet is an approximation and

not a bĳective transformation. Second, the samples from ESS and the

transformed samples from LM+GP show high similarity, with only minor

differences. This can be attributed to the use of a small uniform prior

for LM+GP, which is absent in ESS. Consequently, smaller probabilities

are shifted to the right, while larger probabilities are shifted to the left,

precisely as observed in Figure 3.8.

Although both approximations to ESS are not perfectly exact, they offer a

trade-off in terms of computational speed. The LM-transformation has a

computational complexity of O(𝑛), sampling from LM+GP takes O(𝑛2),
while sampling for ESS incurs a cost of O(𝑛3).

Quantitative Experiments

In addition to the conceptual and timing experiments, we compare

LM(Dirichlet)+GP with DirichletGPC (Milios et al., 2018) on three of the

benchmarks provided in their paper. The setup is similar to the Beta

experiments detailed in Subsection 3.5.1 and the details of the datasets

can be found in Table 3.3. The results of the experiments can be found in

Figure 3.9. We find that LM(Dirichlet)+GP is competitive or better than

DirichletGPC.

3.5.4 Currencies & Covariances (Inverse Wishart)

In this experiment, we aim to estimate the covariance of currency exchange

rates over time. The inverse Wishart distribution is a conjugate prior

for covariance matrices. However, modeling temporal variations within
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Figure 3.9: Results of the mul-

ticlass classification. We find that

LM(Dirichlet)+GP is competitive or bet-

ter than DirichletGPC.
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Figure 3.10: LM+GP applied to the co-

variances of 4 currencies (Euro, Swiss

Franc, UK Pound and US Dollar).

Top: the values of the currencies;

Middle: sample covariances from the

posterior GP;

Bottom: selected covariance matrices

from the Posterior - the grey lines (top)

show the date of the samples.

the Wishart framework presents challenges (further discussed below).

LM+GP offers a solution by transforming the cavity distribution at each

datapoint 𝑋𝑋⊤
of the inverse Wishart into a Gaussian. By applying LM

and following a similar approach to the previous sections, we can create

a GP that captures the temporal dynamics of the covariance structure.

We use

𝜇 = sqrtm

(
1

(𝜈 + 𝑝)Ψ
−1

)
(3.23a)

Σ =
1

(𝜈 + 𝑝)2
(
𝐼𝑝 ⊗Ψ

) (
Ψ

1

2 ⊗Ψ
1

2 + 𝐼𝑝
)−1

(3.23b)
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to compute the mean and covariance function for the inverse Wishart (see

Appendix A for derivation). This time we have 𝑇 = 235 months between

1998 and 2018 with 𝐶 = 4 currencies (Euro, Swiss Franc, UK Pound, US

Dollar).

Designing a custom kernel enables the incorporation of information

about real-world events, such as financial crises, or statistical correlations,

like the relationship between GDP and currency value, into our model.

This flexibility allows us to tailor the model to specific domain knowledge

and capture relevant patterns in the data.

To illustrate the potential benefits of the additional uncertainty provided

by LM+GP, we visualize the covariance of different sample functions

drawn from the GP posterior and different samples of covariance matrices

at four distinct points in time, as shown in Figure 3.10. The results

demonstrate the high quality of the resulting posterior, particularly

considering the simplicity of the LM+GP approach.

We also compare LM(inv. Wishart)+GP with the results of a vanilla

GP fit on the covariances in Table 3.5. We find that the quality of the

approximation is comparable on the currency dataset but the LM+GP

variant has the advantage of actually reflecting covariance matrices,

i.e. p.s.d matrices that correspond to the covariances of an underlying

process rather than matrices that just roughly track values that happen

to be covariances.

Table 3.5: Quantitative results on cur-

rency data. We find that both methods

have comparable accuracy but LM+GP is

slightly better calibrated (0.95 is optimal

for in2std).

vanilla GP LM(inv. Wishart)+GP
Dataset RMSE ↓ in2std RMSE ↓ in2std

Currencies 0.074 1.0 0.123 0.973

In general, modeling time-dependent covariance matrices is non-trivial.

(A. Wilson et al., 2010) developed the Generalized Wishart Process (GWP),

which uses a product of Gaussian processes in combination with MCMC

to model time-dependent covariance matrices. However, we observed

empirically that the associated MCMC method mixes very slowly, to

the point where it did not yield usable results for us, even after 24h of

wall-clock time on the currency dataset. In contrast, LM(inv. Wishart)+GP

trained in a few seconds and provided good results. Table 3.6 provides a

comparison of the timing and complexity.

Table 3.6: Timing and Complexity for Bayesian Inference on p.s.d. matrices: The LM+GP step is split into an inference and a

transformation step. The complexity of the transformation step depends on the basis transformation. For our experiment we chose the

sqrtm-transformation as it yielded better results. Since 𝐷 << 𝑛𝑋 LM+GP is much faster than GWP. For both methods 𝑛𝑋 = 235 and

𝐷 = 4. For GWP we draw 𝑛𝑠 = 5000 samples of which we only used 100 since they were very correlated.

Inference 𝜇𝑋 ,Σ𝑋 (LM) GWP

Complexity O(𝐷2𝑛𝑥𝑛
2

𝑋
+ 𝐷2𝑛3

𝑋
) O(𝑛𝑋𝐷2·2)/O(𝑛𝑋𝐷2) O(𝑛𝑠(𝐷𝑛3

𝑋
+ 𝜈𝐷2))

Time in 𝑠 1.59 0.09 82530

3.5.5 Timing

Table 3.7 provides time overhead for the application of LM across the

datasets and settings presented in the experiments. We note that this
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Table 3.7: Timings and complexity for LM in all experiments: In all cases, LM costs less than 0.1 seconds to apply and scales linearly in

the number of datapoints.

Dataset Outputs Training instances Dimensionality Time in 𝑠 Complexity

EEG 2 10980 14 0.0024 O(𝑁)
HTRU2 2 12898 8 0.0067 O(𝑁)
MAGIC 2 14020 10 0.0021 O(𝑁)
MINIBOO 2 120064 50 0.0037 O(𝑁)
CREDIDCARD 1 833 12 0.0018 O(𝑁)
DOCTOR 1 3477 11 0.0017 O(𝑁)
CITATIONS 1 434 12 0.0005 O(𝑁)
GSS7402 1 2219 9 0.0004 O(𝑁)
MEDICAID 1 667 13 0.0004 O(𝑁)
LETTER 26 15000 16 0.0149 O(𝑁𝑂)
DRIVE 11 48509 48 0.0077 O(𝑁𝑂)
MOCAP 5 68095 37 0.0082 O(𝑁𝑂)
CURRENCY 16 235 4 0.0653 O(𝑁𝑂2)
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Figure 3.11: Visualization of small (𝛼 =

1,𝜆 = 1), medium (𝛼 = 4,𝜆 = 2) and

large (𝛼 = 15,𝜆 = 3) 𝜃 for the Gamma

distribution.

number never exceeded 0.1s, corroborating that LM can indeed be thought

of as a fast pre-processing step for standard Gaussian inference.

3.5.6 Distance Measures

Figure 3.1 suggests that the distributions are more Gaussian in other bases.

We aim to quantify this similarity by comparing each approximation to

the true distribution in every base for ten sets of parameters 𝜃 using two

metrics. The ten parameter sets are selected to increase linearly, represent-

ing a cross-section of the entire parameter space. The parameter sets are

chosen such that the first two sets yield no valid Laplace approximation

in the standard base but do yield one in the transformed basis (e.g., 𝛼 < 1

for the Gamma distribution). This choice emphasizes the capability of

LM to handle such cases.

For large parameter values, many exponential family distributions ap-

proach a Gaussian distribution (e.g., Gamma with 𝛼 > 10). The parameter

sets are increased in a manner that ensures the last set reflects this property.

To illustrate these scenarios, Figure 3.11 presents a Gamma distribution

with 𝛼 = 1, 4, 15 and 𝜆 = 1, 2, 3 for small, medium, and large scenarios,

respectively. By comparing the approximations to the true distribution

across different bases and parameter sets, we can assess the effectiveness

of LM in capturing the Gaussian behavior of the distributions.

The first metric to compare the distributions is KL-divergence and the

second is maximum mean discrepancy (MMD) (Gretton et al., 2012). We

calculate the KL-divergence by drawing samples from the distribution we
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Table 3.8: Comparison of Distances.

MMD and KL-divergence for increas-

ing values of 𝜃. shows distances

in the standard base, when trans-

formed by the logarithm, logit or inverse-

softmax, and by the square root. In

general, the approximation in the stan-

dard base is worse than in the trans-

formed base, and all approximations im-

prove towards larger 𝜃s. See Appendix

A.3 for more detailed explanations and

further discussion.

Distribution KL-Divergence ↓ MMD ↓

Exponential

0 2 4 6 8

0.0

0.2

0 2 4 6 8

0.00

0.02

·10
−2

Gamma

2 4 6 8

0

1

2 4 6 8

0.0

0.2

Inv. Gamma

0 2 4 6 8

0

5

0 2 4 6 8

0.0

0.1

Chi-squared

2 4 6 8 10

0

1

2 4 6 8 10

0.0

0.2

Beta

0 2 4 6 8

0.0

0.5

0 5

0.00

0.05

·10
−2

Dirichlet

0 2 4 6 8

0.00000

0.00025

·10
−4

0 2 4 6 8

0.00

0.05

·10
−2

Wishart

0 2 4 6 8

0

10

0 2 4 6 8

0.0

0.1

Inv. Wishart

0 2 4 6 8

0

10

0 2 4 6 8

0.00

0.25

want to approximate, i.e. 𝑥 ∼ 𝑝(𝑥), and then compute
1

𝑁

∑𝑁
𝑖=1

log

(
𝑝(𝑥)
𝑞(𝑥)

)
where 𝑞(𝑥) is the Gaussian given by the Laplace approximation. A table

of the exact parameters chosen can be found in Appendix A. The results

can be found in Table 3.8.

We find that both the KL-divergence and MMD are are smaller in the

base provided by LM compared to the standard base. This suggests that

LM offers a more suitable representation for approximating exponential

family distributions with Gaussians. Additionally, we observe that both

metrics decrease for the standard base as the parameters increase, indicat-

ing that exponential families exhibit more Gaussian-like behavior when

their parameters are large. It is worth noting that no single transforma-

tion consistently outperforms the others across all exponential families.

Consequently, we recommend selecting the appropriate transformation

based on the specific requirements and characteristics of the application

at hand.
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3.6 Conclusion

We introduce an approximate inference scheme designed to achieve fast

computation while maintaining sufficient approximation quality. The

proposed approach uses a change of basis for various exponential family

distributions, followed by the application of a Laplace approximation

and the derivation of an explicit closed-form transformation between the

parameters of the resulting Gaussian and the original distribution. This

process enables the use of closed-form Gaussian (process) inference on

non-Gaussian data without requiring any iterative optimization scheme,

provided that the data type has an exponential family conjugate prior. We

present two closed-form transformations for each of the most common

exponential families, showcasing the simplicity and functionality of

Laplace Matching by applying a GP to non-trivial data types, including

binary data, count data, categorical data, and positive semi-definite

matrices. In all cases, we provide conceptual and empirical evidence

supporting the approximation quality of the model.

3.7 Practical Advice & Honest Thoughts

Laplace Matching’s primary strength lies in its speed and ease of im-

plementation. There is a wide range of well-established Gaussian-based

techniques available for various use-cases and applications. Laplace

Matching simplifies the process of extending the Gaussian toolbox to

arbitrary data types, provided they have an exponential family conjugate

prior.

However, the fixed nature of the approximation in Laplace Matching can

be limiting in certain scenarios. Unlike iterative methods, it does not im-

prove with additional computational resources, which may be frustrating

in cases where better results are desired but unattainable. Determining

the quality of the approximation in advance can be challenging. It is

often difficult to predict whether Laplace Matching will provide a good

approximation for a specific problem.

In practice, I recommend using Laplace Matching as a baseline. It is

cheap to set up and significantly faster than iterative approximate in-

ference schemes. Throughout the development of this project, I was

pleasantly surprised by how quickly and effectively Laplace Matching

combined with Gaussian Processes (LM+GP) performed out of the box

when integrated with existing GP libraries. In many of my experiments,

alternative methods that were conceptually more sophisticated, more

complex to implement, and more computationally demanding did not

yield substantially better results compared to Laplace Matching.
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Abstract

In Bayesian Deep Learning, distributions over the output of classification

neural networks are often approximated by first constructing a Gaussian

distribution over the weights, then sampling from it to receive a distri-

bution over the softmax outputs. This is costly. We reconsider old work

(Laplace Bridge) to construct a Dirichlet approximation of this softmax

output distribution, which yields an analytic map between Gaussian

distributions in logit space and Dirichlet distributions (the conjugate

prior to the Categorical distribution) in the output space. Importantly,

the vanilla Laplace Bridge comes with certain limitations. We analyze

those and suggest a simple solution that compares favorably to other

commonly used estimates of the softmax-Gaussian integral. We demon-

strate that the resulting Dirichlet distribution has multiple advantages,

in particular, more efficient computation of the uncertainty estimate and

scaling to large datasets and networks like ImageNet and DenseNet. We

further demonstrate the usefulness of this Dirichlet approximation by

using it to construct a lightweight uncertainty-aware output ranking for

ImageNet.
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4.1 Introduction

In Neural Network classification, a softmax function is applied after the

final layer. Therefore, the output of classification networks is a vector

of probabilities. In theory, these probabilities could be used to quantify

the uncertainty of the Neural Network which matters in safety-critical

applications such as self-driving cars (McAllister et al., 2017; Michelmore

et al., 2018) or medical AI (Begoli et al., 2019). However, it has been shown

that this vector of probabilities is overconfident (Nguyen et al., 2015; Hein

et al., 2019). Many approaches attempt to provide more well-calibrated

quantified uncertainty predictions (e.g. Blei et al., 2017a)

The predictive distribution from these approaches is typically non-

analytic, i.e. they are approximated via Monte Carlo (MC) integration.

MC integration is an unbiased estimator which makes it desirable from a

theoretical perspective. In practice, on the other hand, sampling increases

computational costs. The more classes the classification task has, the larger

the distribution’s dimensionality and therefore the sampling procedure’s

computational requirements.

Thus, practitioners face a trade-off between asymptotically exact but

more expensive methods with MC sampling and fast but less exact

approximations. Both ends of this spectrum have plausible use-cases.

In the following, we describe an approach that falls on the fast-but-

approximate end end of the spectrum: the Laplace Bridge for Bayesian

Neural Networks.

The Laplace Bridge (LB) has been proposed in D. J. MacKay (1998) in

a different setting (which is arguable the inverse of the Deep Learning

setting). The LB applies a transformation of variable to a Dirichlet distri-

bution using the inverse-softmax function. The shape of the transformed

Dirichlet effectively approximates a Gaussian. This allows us to fit a

Laplace approximation which yields an analytical map between the

parameters of a Gaussian and a transformed Dirichlet.

As described by Hennig (2010) the original LB can be inverted and yield

a mapping from Gaussian to Dirichlet. Approximate Gaussian inference

in Bayesian NNs often use MC integration to translate Gaussian samples

through the softmax into a distribution over probabilities. The Dirichlet

is a distribution over probability vectors and we therefore propose to

leverage the LB as a mapping from Gaussian to Dirichlet for very fast

inference in Gaussian-based BNNs. Figure shows a sketch of the LB.

4.2 The Laplace Bridge

The LB used in this chapter is equivalent to Laplace Matching for the

Dirichlet which was already described in Chapter 3. However, since it is

the key feature of this chapter, we will briefly revisit the most important

considerations.

In the standard form, the Dirichlet distribution has the density function

Dir(𝝅|𝜶) :=
Γ

(∑𝐾
𝑘=1

𝛼𝑘
)∏𝐾

𝑘=1
Γ(𝛼𝑘)

𝐾∏
𝑘=1

𝜋𝛼𝑘−1

𝑘
, (4.1)
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Figure 4.1: (Adapted from Hennig, Stern, et al. (2012)). Visualization of the Laplace Bridge for the Beta distribution (1D special case of

the Dirichlet) for three sets of parameters. Left: “Generic” Laplace approximations of standard Beta distributions by Gaussians. Note

that the Beta Distribution (red) does not have a valid approximation because its Hessian is not positive semi-definite. Middle: Laplace

approximation to the same distributions after basis transformation through the softmax equation A.34a. The transformation makes the

distributions “more Gaussian” (i.e. uni-modal, bell-shaped, with support on the real line), thus making the Laplace approximation more

accurate. Right: The same Beta distributions, with the back-transformation of the Laplace approximations from the middle figure to the

simplex, yielding an improved approximate distribution. In contrast to the left-most image, the dashed lines now actually are probability

densities (they integrate to 1 on the simplex). The parameters are from left to right𝛼, 𝛽 = (0.8, 0.9), (4, 2, ), (2, 7).

It is defined on the probability simplex and can be “multimodal” in the

sense that the distribution diverges in the 𝑘-corner of the simplex when

𝛼𝑘 < 1. These two constraints preclude a Laplace approximation in the

standard basis.

However, when we apply a variable transformation using the inverse-

softmax function, we can elegantly fix both problems. Consider the

𝐾-dimensional variable𝝅 ∼ Dir(𝝅|𝜶) defined as the softmax of z ∈ ℝ𝐾
:

𝜋𝑘(z) :=
exp(𝑧𝑘)∑𝐾
𝑙=1

exp(𝑧𝑙)
, (4.2)

for all 𝑘 = 1, . . . , 𝐾. We will call z the logit of 𝝅. When expressed as a

function of z, the density of the Dirichlet in 𝝅 has to be multiplied by the

absolute value of the determinant of the Jacobian

det

𝜕𝝅

𝜕z
=

∏
𝑘

𝜋𝑘(𝑧𝑘), (4.3)

thus removing the “−1” terms in the exponent:

Dirz(𝝅(z)|𝜶) :=
Γ

(∑𝐾
𝑘=1

𝛼𝑘
)∏𝐾

𝑘=1
Γ(𝛼𝑘)

𝐾∏
𝑘=1

𝜋𝑘(z)𝛼𝑘 (4.4)

This density of z, the Dirichlet distribution in the softmax basis, can now be

accurately approximated by a Gaussian through a Laplace approximation

(see Figure 4.1), yielding an analytic map from the parameter 𝜶 ∈ ℝ𝐾
+ to

the parameters of the Gaussian (𝝁 ∈ ℝ𝐾
and symmetric positive definite

𝚺 ∈ ℝ𝐾×𝐾
), given by

𝜇𝑘 = log 𝛼𝑘 −
1

𝐾

𝐾∑
𝑙=1

log 𝛼𝑙 , (4.5)

Σ𝑘ℓ = 𝛿𝑘ℓ
1

𝛼𝑘
− 1

𝐾

[
1

𝛼𝑘
+ 1

𝛼ℓ
− 1

𝐾

𝐾∑
𝑢=1

1

𝛼𝑢

]
. (4.6)
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The corresponding derivations require care because the Gaussian param-

eter space (𝑁, 𝑁𝑥𝑁) is evidently larger than that of the Dirichlet (𝑁)
and not fully identified by the transformation. A pseudo-inverse of this

map was provided in Hennig, Stern, et al. (2012). It maps the Gaussian

parameters to those of the Dirichlet as

𝛼𝑘 =
1

Σ𝑘𝑘

(
1 − 2

𝐾
+ 𝑒𝜇𝑘

𝐾2

𝐾∑
𝑙=1

𝑒−𝜇𝑙

)
(4.7)

Together, Eqs. A.43a, A.43b and A.44 will be called the Laplace Bridge.
For Bayesian Deep Learning, we only use Equation A.44 which maps

from 𝝁,𝚺 to 𝜶. Due to the different sizes of the parameter spaces, the LB

implies a reduction of the distribution’s expressiveness. We investigate

the effects of this reduction in Section 4.4 and 4.5.

4.3 The Laplace Bridge for BNNs

Figure 4.2: High-level sketch of the

Laplace Bridge for BNNs. 𝑝(𝑦 |𝑥, 𝐷) de-

notes the marginalized softmax output,

i.e. the mean of the Dirichlet.

Laplace
Bridge

Logit
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Our goal is to provide an analytic transformation that is as fast as possible.

Therefore, we use a last-layer Laplace approximation of the network.

However, in theory, the Laplace Bridge can be applied to any NN setup

that maps from a Gaussian to a distribution over probabilities by using

the softmax including all-layer Laplace approximations or variational

inference. The last-layer Laplace approximation, as e.g. used by Kristiadi

et al. (2020) and Snoek et al. (2015), is given by

𝑞(z|x) ≈ N (z|𝝁W(𝐿)𝜙(x), 𝜙(x)𝑇𝚺W(𝐿)𝜙(x)) , (4.8)

where𝜙(x)denotes the output of the first 𝐿−1 layers,𝝁W(𝑙) is the maximum

a posteriori (MAP) estimate for the weights of the last layer, and 𝚺W(𝑙) is

the inverse of the negative loss Hessian w.r.t. W(𝑙)
, 𝚺W(𝐿) = −(∇2

W(𝐿)L)−1

around the MAP estimate W(𝐿)
. In all cases we use diagonal and Kronecker

approximations to the Hessian.

The LB provides an analytical approximation to the density of the softmax-

Gaussian output of the BNN. As shown in Eq. A.44, it requires O(𝐾)
computations to construct the 𝐾 parameters 𝛼𝑘 of the Dirichlet. In

contrast, MC-integration has computational costs of O(𝑀𝐽), where 𝑀 is

the number of samples and 𝐽 is the cost of sampling from 𝑞(z|x) (typically

𝐽 is of order𝐾2
after an initialO(𝐾3) operation for a matrix decomposition

of the covariance). The MC approximation has the usual sampling error of

O(1/
√
𝑀), while the LB has a fixed but small error (empirical comparison

in Section 4.5.4). This means that computing the LB is faster than drawing

a single MC sample while yielding a full distribution.
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Furthermore, the Dirichlet exponential family comes with a range of

convenient analytical properties. For example, a point estimate of the pos-

terior predictive distribution is directly given by the Dirichlet’s mean,

𝔼[𝝅] =
(

𝛼1∑𝐾
𝑙=1

𝛼𝑙
, . . . ,

𝛼𝐾∑𝐾
𝑙=1

𝛼𝑙

)⊤
. (4.9)

Thus, the MC integration is not necessary to compute the expected value.

Additionally, Dirichlets have Dirichlet marginals: If 𝑝(𝝅) = Dir(𝝅|𝜶),
then

𝑝

(
𝜋1 , . . . ,𝜋 𝑗 ,

∑
𝑘> 𝑗

𝜋𝑘

)
= Dir

(
𝛼1 , . . . , 𝛼 𝑗 ,

∑
𝑘> 𝑗

𝛼𝑘

)
. (4.10)

Thus, marginal distributions of arbitrary subsets of outputs (including

binary marginals) can be computed in closed form.

An additional benefit of the LB for BNNs is that it is more flexible than

an MC-integral. Concretely, the LB allows us to access quantities that

are non-trivial to compute with the MC-integral. If we let 𝑝(𝝅) be the

distribution over 𝝅 := softmax(z) := [𝑒𝑧1/∑𝑙 𝑒
𝑧𝑙 , . . . , 𝑒𝑧𝐾/∑𝑙 𝑒

𝑧𝑙 ]⊤, then

the MC-integral can be seen as a “point-estimate” of this distribution

since it approximates𝔼[𝝅]. In contrast, the Dirichlet distribution Dir(𝝅|𝜶)
approximates the distribution 𝑝(𝝅). Thus, the LB enables tasks that can

be done only with a distribution but not a point estimate. For instance,

one could ask “what is the distribution of the softmax output of the

first 𝐿 classes?” when one is dealing with 𝐾-class (𝐿 < 𝐾) classification.

Since the marginal distribution can be computed analytically with Eq.

equation 4.10, the LB provides a convenient yet cheap way of answering

this question.

4.4 Limitations of the Laplace Bridge

There are two limitations to applying the LB as presented in Equation A.44.

First, the LB assumes that the random variable of the Gaussian sums

to zero due to the difference in degrees of freedom between Dirichlet

and Gaussian (see Appendix B.3). Thus, we have to add a correction that

projects from any arbitrary Gaussian to one that fulfills this constraint.

The resulting Gaussian (see Appendix B.1) is

N
(
x|𝜇 − Σ11⊤𝜇

1⊤Σ1
,Σ − Σ11⊤Σ

1⊤Σ1

)
(4.11)

where 1 is the one-vector of size 𝐾.

Second, the softmax-Dirichlet distribution is asymmetric for extremely

sparse cases (see Figure 4.4). These arise in regions where the logistic

transform (the 1D special case of the softmax) is nearly flat (as indicated

by its derivative in Figure 4.4). Therefore, the LA is suboptimal in these

high-variance cases.

This limitation can also be explained by looking at Equation A.44. We

observe that Σ contributes linearly to 𝛼 with
1

Σ𝑘𝑘
while 𝜇 contributes

exponentially with exp(𝜇𝑘). For settings where Σ is small, this doesn’t

have a large effect. However, when Σ𝑘𝑘 and 𝜇𝑘 grow the LB results differ
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MAP Diag.-LA + MC Kron.-LA + MC Full.-LA + MC

Diag.-LA + LB Kron.-LA + LB Full.-LA + LB

Diag.-LA + LB-norm Diag.-LA + LB-norm Diag.-LA + LB-norm

Figure 4.3: Left column: vanilla MAP estimate which is overconfident. Top row: mean of softmax applied to Gaussian samples. Middle
row: mean of the vanilla LB. Bottom row: mean of the corrected LB. The vanilla LB yields overconfident prediction far from the data.

Our proposed correction fixes this issue, making the LB’s approximation close to MC.

Figure 4.4: In most scenarios (upper

row) the LB provides a good fit. How-

ever, in some high-variance scenarios

(lower row) the softmax-Dirichlet be-

comes asymmetric and thus the Gaus-

sian is a suboptimal fit. We propose a

correction (right column) that projects

the Gaussian into a lower-variance re-

gion before applying the LB. This can be

understood as “pulling back” the Dirich-

let to the dynamic of the logistic function

(indicated here by its derivative 𝜕𝜎) and

thus yields a better approximation.
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from softmax Gaussian samples. In the LB, the resulting 𝛼 is dominated

by the mean and the linear influence of the variance cannot correct

sufficiently. For MC sampling, on the other hand, the result is mostly

determined by the large variance and then amplified through the softmax.

Our proposed normalization to the LB reduces this effect (see Figure

4.3).

In BNNs, we often encounter such cases, especially far away from the

data (see Figure 4.3 top). Therefore, we propose an additional correction
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for practical purposes:

𝑐 = 𝑣mean(Σ) ·
1√
𝐾/2

(4.12)

𝜇′ =
𝜇
√
𝑐

(4.13)

Σ′ =
Σ

𝑐
(4.14)

where 𝑣mean(Σ) denotes the mean variance of Σ, 𝑣mean(Σ) =
∑
𝑖 Σ𝑖𝑖 . The

factor of
1√
𝐾/2

is added because we found that higher dimensionalities re-

quire less correction. Since our correction is just a rescaling, the zero-sum

constrained is still fulfilled. This normalization that can be understood

as “pulling back” the distribution into a space where it is symmetric

has higher approximation quality. This correction is applied after the

zero-sum constraint correction.

Remark 4.2 (Notes on the correction)

While the correction term fixes some

problems of the approximation, it

doesn’t solve all of them. Also, the

fact that we need to add a correction

term to an approximation makes the

LB overall less appealing as a method.

We want to point out that our correction

is motivated by experimentation and the theoretical insights detailed

above. There is no theoretical derivation from first principles for the

correction. We provide additional explanations and figures in Appendix

B.1.

Throughout the paper, we will call this normalizing correction LB-norm
and explicitly state when we use it. Otherwise, we will use the vanilla

version with zero-sum correction.

4.5 Experiments

Table 4.1: OOD detection results: In all scenarios, the Laplace Bridge (LB) or its normalized version yield comparable results to the MC

estimate while being much faster. For MC experiments, we draw 100 samples.

Diag.-LA + MC Diag.-LA + LB Diag.-LA + LB-norm Kron.-LA + MC Kron.-LA + LB Kron.-LA + LB-norm
Train Test ECE ↓ AUROC ↑ ECE ↓ AUROC ↑ ECE ↓ AUROC ↑ ECE↓ AUROC ↑ ECE ↓ AUROC ↑ ECE ↓ AUROC ↑
MNIST FMNIST 0.464 0.975 0.478 0.981 0.498 0.951 0.390 0.987 0.553 0.977 0.364 0.990
MNIST notMNIST 0.396 0.965 0.600 0.930 0.360 0.955 0.366 0.974 0.634 0.912 0.294 0.986
MNIST KMNIST 0.429 0.974 0.617 0.949 0.391 0.970 0.374 0.985 0.619 0.956 0.328 0.991
CIFAR10 CIFAR100 0.379 0.887 0.691 0.859 0.220 0.883 0.577 0.878 0.670 0.855 0.558 0.866

CIFAR10 SVHN 0.309 0.948 0.652 0.928 0.155 0.948 0.447 0.955 0.635 0.924 0.327 0.965
SVHN CIFAR100 0.615 0.957 0.667 0.962 0.679 0.944 0.583 0.959 0.659 0.962 0.575 0.953

SVHN CIFAR10 0.600 0.958 0.659 0.960 0.662 0.947 0.567 0.960 0.651 0.959 0.556 0.955

CIFAR100 CIFAR10 0.474 0.788 0.239 0.791 0.834 0.757 0.479 0.787 0.202 0.790 0.855 0.749

CIFAR100 SVHN 0.470 0.795 0.207 0.815 0.842 0.748 0.469 0.798 0.183 0.807 0.849 0.761

Table 4.2: Comparison of the extended probit approximation with the normalized version of the LB norm. While the probit approximation

performs well on in-dist problems, the LB norm is better on out-of-distribution tasks.

Diag Probit Diag LB norm
Train Test MMC ↓ AUROC ↑ NLL ↓ ECE ↓ Brier ↓ MMC ↓ AUROC ↑ NLL ↓ ECE ↓ Brier ↓
MNIST MNIST 0.967 - 0.050 0.024 0.002 0.944 - 0.078 0.045 0.003

MNIST FMNIST 0.597 0.971 3.827 0.523 0.128 0.589 0.951 3.538 0.498 0.124
MNIST notMNIST 0.616 0.958 3.839 0.488 0.123 0.492 0.955 3.070 0.360 0.111
MNIST KMNIST 0.580 0.969 4.276 0.489 0.126 0.484 0.970 3.288 0.391 0.115

CIFAR10 CIFAR10 0.869 - 0.237 0.083 0.009 0.517 - 0.727 0.433 0.029

CIFAR10 CIFAR100 0.589 0.882 3.334 0.485 0.123 0.319 0.883 2.590 0.220 0.099
CIFAR10 SVHN 0.510 0.946 3.097 0.394 0.114 0.273 0.948 2.457 0.155 0.094

We conduct multiple experiments. Firstly, we compare the LB to the

MC-integral on a 2D toy example (Section 4.5.1). Secondly, we apply
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Table 4.3: Comparison of last-layer vs. full-layer Laplace approximation. Last-layer results are in the upper half and full-layer results are

in the bottom half. We find that, as expected, full-layer results are slightly better than for the last-layer approximation.

Diag.-LA + MC Diag.-LA + LB Diag.-LA + LB-norm Kron.-LA + MC Kron.-LA + LB Kron.-LA + LB-norm
Train Test ECE ↓ AUROC ↑ ECE ↓ AUROC ↑ ECE ↓ AUROC ↑ ECE↓ AUROC ↑ ECE ↓ AUROC ↑ ECE ↓ AUROC ↑

MNIST FMNIST 0.464 0.975 0.478 0.981 0.498 0.951 0.390 0.987 0.553 0.977 0.364 0.990

MNIST notMNIST 0.396 0.965 0.600 0.930 0.360 0.955 0.366 0.974 0.634 0.912 0.294 0.986

MNIST KMNIST 0.429 0.974 0.617 0.949 0.391 0.970 0.374 0.985 0.619 0.956 0.328 0.991

MNIST FMNIST 0.317 0.980 0.322 0.990 0.123 0.986 0.288 0.985 0.528 0.980 0.135 0.991

MNIST notMNIST 0.280 0.960 0.566 0.924 0.126 0.952 0.282 0.958 0.629 0.915 0.171 0.973

MNIST KMNIST 0.309 0.976 0.557 0.955 0.112 0.972 0.279 0.981 0.615 0.958 0.152 0.986

Table 4.4: Comparison of Prior Networks with the normalized version of the LB norm. PNs consistently outperform the LB. For discussion

see main text.

Prior Network Diag LB norm
Train Test MMC ↓ AUROC ↑ ECE ↓ NLL ↓ Brier ↓ MMC ↓ AUROC ↑ ECE ↓ NLL ↓ Brier ↓
MNIST MNIST 0.802 - 0.184 0.246 0.008 0.944 - 0.045 0.078 0.003
MNIST FMNIST 0.273 0.995 0.212 2.659 0.098 0.589 0.951 0.498 3.538 0.124

MNIST notMNIST 0.447 0.938 0.314 2.962 0.105 0.492 0.955 0.360 3.070 0.111

MNIST KMNIST 0.372 0.976 0.261 3.142 0.104 0.484 0.970 0.391 3.288 0.115

the same comparison to out-of-distribution (OOD) detection in many

settings (Section 4.5.2). Thirdly, we compare the commonly used probit

approximation to the LB in Section 4.5.3 Fourthly, we compare their

computational cost and contextualize the speed-up for the prediction

process in Section 4.5.4. Finally, in Section 4.5.5, we present analysis on

ImageNet (Russakovsky et al., 2014) to demonstrate the scalability of

the LB and the advantage of having a full Dirichlet distribution over

softmax outputs. We extended Laplace torch (Daxberger et al., 2021)

for the experiments. Code can be found in the accompanying GitHub

repository.
*

For all experiments, a last-layer Laplace approximation is applied. This

scheme has been successfully used by Kristiadi et al. (2020) and Snoek et

al. (2015). We use diagonal and Kronecker-factorized (KFAC)(Ritter et al.,

2018; Martens et al., 2015) approximations of the Hessian, since inverting

the exact Hessian is too costly. A detailed mathematical explanation and

setup of the experiments can be found in Appendix B.4. While the LB

could also be applied to different approximations of a Gaussian posterior

predictive such as Variational Inference (Graves, 2011; Blundell et al.,

2015), we used a Laplace approximation in our experiments to construct

such an approximation. This is for two reasons: (i) it is one of the fastest

ways to get a Gaussian posterior predictive and (ii) it can be applied to

pre-trained networks which is especially useful for large problems such

as ImageNet. Nevertheless, we want to emphasize again that the LB can

be applied to any Gaussian over the outputs independent of the way it

was generated.

4.5.1 2D Toy example

We train a simple ReLU network on the 2D half-moon problems from

scikit-learn (Pedregosa et al., 2011). As can be seen in Figure 4.3 the MAP

estimate and vanilla LB are overconfident for the reasons discussed in

Section 4.4 but the normalized version yields a near-perfect fit.

* https://github.com/mariushobbhahn/LB_for_BNNs_official

https://github.com/mariushobbhahn/LB_for_BNNs_official
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Figure 4.5: KL-divergence plotted against the number of samples (left) and wall-clock time (right). The Monte Carlo density estimation

becomes as good as the LB after around 750 to 10k samples and takes at least 100 times longer. The three lines (blue, yellow, green)

represent three different sets of parameters. The short vertical bars indicate where the KL divergence of the samples overtake that of the

LB.

Table 4.5: Contextualization of the timings for the entire predictive process of a ResNet-18 on CIFAR-10. We see that with 1000 samples

the forward pass only uses 6% of the time whereas the sampling uses 94%. In contrast the split for the LB is 96% and 4% respectively. We

conclude that the LB provides a significant speed-up of the process as a whole.

# samples in brackets Forward pass +MC(1000) +MC(100) +MC(10) +Laplace Bridge

Time in seconds 0.300 ± 0.003 4.712 ± 0.063 0.488 ± 0.009 0.059 ± 0.001 0.013 ± 0.000

Fraction of overall time 0.06/0.38/0.83/0.96 0.94 0.62 0.17 0.04

4.5.2 OOD detection

We compare the performance of the LB to the MC-integral (Diagonal and

KFAC) on a standard OOD detection benchmark suite, to test whether

the LB gives similar results to the MC sampling methods. Following prior

literature, we use the standard expected calibration error (ECE) and area

under the ROC-curve (AUROC) metrics (Hendrycks et al., 2016).

For the exact setup, we refer the reader to Appendix B.4. We use the mean

of the Dirichlet to obtain a comparable approximation to the MC-integral.

The results are presented in Table 4.1.

We find that the results of the LB or its normalized version are comparable

throughout the entire benchmark suite. Since the LB is much faster it can

be a good replacement for MC in time-sensitive applications.

Furthermore, we compare the LB to prior networks (PNs) in Table 4.4

since PNs also yield a Dirichlet distribution as an output on classification

tasks. We find that PNs outperform the LB in most cases. However, we

don’t think this is a major problem since they have different aims and

use cases. The LB creates a Dirichlet distribution on top of an already

existing Gaussian model while PNs describe a training procedure and

have to be trained from scratch. Thus, the primary comparison for the

LB should be against sampling and other integral approximations like in

Table 4.2.

Lastly, we compare the LB for a full-layer vs. last-layer Laplace approxi-

mation of the network in Table 4.3. We find that, as expected, the full-layer

setting yield slightly better results. However, since the primary advan-

tage of the LB is its speed, we think the natural fit for it is a last-layer

approximation.
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Figure 4.6: Upper row: images from the “laptop” class of ImageNet. Bottom row: Beta marginals of the top-𝑘 predictions for the respective

image. In the first column, the overlap between the marginal of all classes is large, signifying high uncertainty, i.e. the prediction is “do

not know”. In the second column, “notebook” and “laptop” have confident, yet overlapping marginal densities and therefore yield

a top-2 prediction: “either notebook or laptop”. In the third column “desktop computer”, “screen” and “monitor” have overlapping

marginal densities, yielding a top-3 estimate. The last case shows a top-1 estimate: the network is confident that “laptop” is the only

correct label.

4.5.3 Comparison to the probit approximation

The multi-class probit approximation (Gibbs, 1997; Lu et al., 2020) is a

commonly used approximation for the softmax-Gaussian integral. We

compare it to the diagonal normalized LB in Table 4.2. We find that

the LB norm outperforms the probit approximation in most OOD tasks.

When we use a KFAC approximation of the Hessian, this trend still holds

(see Table B.1 in Appendix B.4).

4.5.4 Time comparison

We compare the computational cost of the density-estimated 𝑝sample

distribution via sampling and the Dirichlet obtained from the LB 𝑝LB

for approximating the true 𝑝true over MC-sampling. Different numbers

of samples are drawn from the Gaussian, the softmax is applied and

the KL-divergence between the histogram of the samples with the true

distribution is computed. We use KL-divergences 𝐷KL(𝑝true∥𝑝sample)
and 𝐷KL(𝑝true∥𝑝LB), respectively, to measure similarity between approx-

imations and ground truth while the number of samples for 𝑝sample is

increased exponentially. The true distribution 𝑝true is constructed via

MC with 100k samples. The experiment is conducted for three different

Gaussian distributions over ℝ3
. Since the softmax applied to a Gaussian

does not have an analytic form, the algebraic calculation of the approxi-

mation error is not possible and an empirical evaluation via sampling is

the best option. The fact that there is no analytic solution is part of the

justification for using the LB in the first place.

Figure 4.5 suggests that the number of samples required such that the

distribution 𝑝sample approximates the true distribution 𝑝true as good as

the Dirichlet distribution obtained via the LB is large, i.e. somewhere
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between 750 and 10k. This translates to a wall-clock time advantage of at

least a factor of 100 before sampling becomes competitive in quality with

the LB.

To further demonstrate the low compute cost of the LB, we timed different

parts of the process for our setup. On our hardware and setup, training a

ResNet-18 on CIFAR10 over 130 epochs takes 71 minutes and 30 seconds.

Computing a Hessian for the network from the training data can be

done with BackPACK (Dangel et al., 2020) at the cost of one backward

pass over the training data or around 29 seconds. This one additional

backward pass is the only change to the training procedure compared

to conventional training. Since the LB only applies to the last step of the

prediction pipeline, it is important to compare it to a forward pass through

the rest of the network. Re-using the ResNet-18 and CIFAR10 setup we

measure the time in seconds for a forward pass, for the application of

the LB, and for the sampling procedure with 10, 100, and 1000 samples.

The resulting sum total time for the entire test set is given in Table 4.5.

We find that sampling takes up between 94% (for 1000 samples) and

17% (for 10 samples) of the entire prediction while the LB is only 4%.

Thus, the acceleration through the LB is a significant improvement for

the prediction process as a whole, not only for a part of the pipeline.

4.5.5 Uncertainty-aware output ranking on ImageNet

Due to the cost of sampling-based inference, classification on large

datasets with many classes, like ImageNet, is rarely done in a Bayesian

fashion. Instead, models for such tasks are often compared along a top-𝑘

metric (e.g. 𝑘 = 5).

Although widely accepted, this metric has some pathologies: Depending

on how close the point predictions are relative to their uncertainty, the

total number of likely class labels should be allowed to vary from case to

case. Figure 4.6 shows examples: In some cases (panel 2) the classifier is

quite confident that the image in question belongs to one out of only two

classes and all others are highly unlikely. In others (e.g. panel 1), a larger

set of hypotheses are all nearly equally probable.

The Laplace Bridge, in conjunction with the last-layer Laplace approxima-

tions, can be used to address this issue. To this end, the analytic properties

of its Dirichlet prediction are particularly useful: Recall that the marginal

distribution 𝑝(𝜋𝑖 ,
∑
𝑗≠𝑖 𝜋 𝑗) over each component of a Dirichlet relative to

all other components is Beta(𝛼𝑖 ,
∑
𝑗≠𝑖 𝛼 𝑗).

We leverage this property to propose a simple uncertainty-aware top-𝑘
decision rule inspired by statistical tests. Instead of keeping 𝑘 fixed, it

uses the model’s confidence to adapt 𝑘 (pseudo-code in Algorithm 4).

We begin by sorting the class predictions in order of their expected

probability 𝛼𝑖 . Then we compute the Beta marginal of the most likely

class. Now, we compute the overlap of the next marginal and add that

class to the list iff the overlap is more than some threshold (e.g. 0.05).

Continuing in this fashion, the algorithm terminates with a finite value

𝑘 ≤ 𝐾 of “non-separated” top classes.

The intuition behind this rule is that, if any Beta density overlaps with

the most likely one more than the threshold of, say, 5%, the classifier
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Figure 4.7: A histogram of ImageNet

predictions’ length using the proposed

uncertainty-aware top-𝑘. Results with

more than 10 proposed classes have been

put into the 10-bin for visibility.
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cannot confidently predict one class over the other. Thus, all classes

sufficiently overlapping with the top contender should be returned as

the top estimates.

We evaluate this decision rule on the test set of ImageNet. The overlap

is calculated through the inverse CDF
†

of the respective Beta marginals.

The original top-1 accuracy of DenseNet on ImageNet is 0.744. In contrast,

the uncertainty-aware top-k method yields accuracies of over 0.85 while

average list lengths stay below 3 (see Figure 4.7). Furthermore, we find

that most of the predictions given by the uncertainty-aware metric still

yielded a top-1 prediction. This means that using uncertainty does not

imply adding meaningless classes to the prediction. Furthermore, there

are non-negligibly many cases where 𝑘 equals to 2, 3, or 10 (all values

larger than 10 are in the 10 bin).

Thus, using the uncertainty-aware prediction rule above, the classifier

can use its uncertainty to adaptively return a longer or shorter list of

predictions. This not only allows it to improve accuracy over a hard

top-1 threshold. Arguably, the ability to vary the size of the predicted

set of classes is a practically useful functionality in itself. As Figure 4.6

shows anecdotally, some of the labels (like “notebook” and “laptop”) are

semantically so similar to each other that it would seem only natural for

the classifier to use them synonymously.

Algorithm 4 Uncertainty-aware top-𝑘

Require: A Dirichlet parameter 𝜶 ∈ ℝ𝐾
obtained by applying the LB to

the Gaussian over the logit of an input, a percentile threshold 𝑇 e.g.

0.05, a function class_of that returns the underlying class of a sorted

index.

1: �̃� = sort_descending(𝜶) ⊲ start with the highest confidence

2: 𝛼0 =
∑
𝑖 𝛼𝑖

3: C = {class_of(1)} ⊲ initialize top-𝑘, must include at least one class

4: 𝐹1 = Beta(�̃�1 , 𝛼0 − �̃�1) ⊲ the first marginal CDF

5: 𝑙1 = 𝐹−1

1
(𝑇/2) ⊲ left

𝑇
2

percentile of the first marginal for 𝑖 = 2, . . . , 𝐾

do
6:

𝐹𝑖 = Beta(�̃�𝑖 , 𝛼0 − �̃�𝑖) ⊲ the current marginal CDF

7: 𝑟𝑖 = 𝐹−1

𝑖
(1 − 𝑇/2) ⊲ right

𝑇
2

percentile of the current marginal if
𝑟𝑖 > 𝑙1 then

8:

C = C ∪ {class_of(𝑖)} ⊲ overlap detected, add the current class

else
9:

break ⊲ No more overlap, end the algorithm

10: return C ⊲ return the resulting top-𝑘 prediction

†
Also known as the quantile function or percent point function
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4.6 Related Work

In BNNs, analytic approximations of posterior predictive distributions

have attracted a great deal of research. In the binary classification case,

for example, the probit approximation (Gibbs, 1997; Lu et al., 2020)

has been proposed already in the 1990s (Spiegelhalter et al., 1990; D. J.

MacKay, 1992). However, while there exist some bounds (Titsias, 2016)

and approximations of the expected log-sum-exponent function (Ahmed

et al., 2007; Braun et al., 2010), in the multi-class case, obtaining a

good analytic approximation of the expected softmax function under a

Gaussian measure is an open problem. Our LB can be used to produce

a close analytical approximation of this integral. It thus furthers the

trend of sampling-free solutions within Bayesian Deep Learning (Wu

et al., 2018; Haussmann et al., 2019, etc.). The crucial difference is that,

unlike these methods, the LB approximates the full distribution over the

softmax outputs of a deep network.

Previous approaches proposed to model the distribution of softmax

outputs of a network directly. Similar to the LB, Malinin and Gales

(2018), Malinin and Gales (2019), and Sensoy et al. (2018) proposed to

use the Dirichlet distribution to model the posterior predictive for non-

Bayesian networks. They further proposed novel training techniques

in order to directly learn the Dirichlet. Additionally, different work on

Distillation (Malinin, Mlodozeniec, et al., 2019; Vadera et al., 2020) takes

larger models and distills them into a smaller one. The result of some

distillation methods is a Dirichlet similar to the LB. We compare against

prior nets in the experiments.

In contrast, the LB tackles the problem of approximating the distribution

over the softmax outputs of the ubiquitous Gaussian-approximated

BNNs (Graves, 2011; Blundell et al., 2015; Louizos et al., 2016; Sun et al.,

2017, etc) without any additional training procedure. Therefore the LB

can, for example, be used with pre-trained weights on large datasets while

prior networks and distillation usually require training from scratch.

4.7 Conclusion

The Laplace Bridge for BNNs is a fast approximation scheme for Bayesian

Deep Learning. For any Gaussian approximation to the weight-space

posterior of an NN, and an input, the Laplace Bridge analytically maps the

marginal Gaussian prediction on the logits onto a Dirichlet distribution

over the softmax vectors. This map is linear in the number of classes and

thus much faster than ML sampling.

In our experiments we found that the LB empirically preserves predictive

uncertainty and is thus a low-cost alternative to MC sampling. Especially

when combined with a low-cost, last-layer Gaussian approximation it is

useful for real-time applications that require uncertainty. Furthermore,

the LB can easily be scaled to larger networks and datasets like ResNet

and ImageNet.

However, the vanilla LB has some limitations, i.e. it doesn’t perfectly map

points from one distribution to another. We proposed a simple correction
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that outperforms alternative softmax-integral approximations such as

the commonly used multi-class probit.

4.8 Practical Advice & Honest Thoughts

The main advantages of the LB for BNNs are a) that it is extremely

fast, b) that it can scale to larger networks and datasets, and c) that it is

very easy to apply (it should require less than 10 lines of code in most

circumstances).

However, it also has some disadvantages. Most importantly, the LB is an

imperfect approximation and, therefore, yields an imperfect prediction.

Specifically, as shown in this chapter, the approximation error can be

arbitrarily large for certain niche cases and the correction also makes

the approximation more conceptually unclean in some sense. Therefore,

the only practical use case of the LB for BNNs is when speed is of

extreme importance. Otherwise, standard MC schemes or ensembles are

preferable. We expect such situations to be very rare and thus think that

the LB is almost never the best choice for most practitioners.

I recommend using other methods, such as those mentioned in the

related work section or their successors, to obtain high-quality uncertainty

approximations of the outputs.
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Abstract

Networked datasets are often enriched by different types of information

about individual nodes or edges. However, most existing methods for

analyzing such datasets struggle to handle the complexity of heteroge-

neous data, often requiring substantial model-specific analysis. In this

paper, we develop a probabilistic generative model to perform inference

in multilayer networks with arbitrary types of information. Our approach

employs a Bayesian framework combined with the Laplace matching

technique to ease interpretation of inferred parameters. Furthermore, the

algorithmic implementation relies on automatic differentiation, avoiding

the need for explicit derivations. This makes our model scalable and

flexible to adapt to any combination of input data. We demonstrate

the effectiveness of our method in detecting overlapping community

structures and performing various prediction tasks on heterogeneous

multilayer data, where nodes and edges have different types of attributes.

Additionally, we showcase its ability to unveil a variety of patterns in

a social support network among villagers in rural India by effectively

utilizing all input information in a meaningful way.
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Motivation: Network Analysis

This section offers an intuitive introduction to provide context for readers

less acquainted with the field rather than a formal presentation.

Network analysis is a domain of research that investigates the structure,

dynamics, and behavior of intricate networks. These networks can rep-

resent diverse systems, including social networks, biological networks,

transportation networks, and communication networks.

The approach we describe in the following sections is applicable to

various types of networks. However, we demonstrate its implementation

using the specific example of community detection in social networks.

A social scientist studying the social structure of a village might survey its

𝑁 inhabitants using 𝐿 questionnaires. These surveys would capture two

types of information: relational data and individual attributes. Relational

questions, such as friendships or financial obligations, would each gen-

erate an 𝑁 × 𝑁 adjacency matrix 𝐴, where 𝐴𝑖 𝑗 represents individual i’s

response regarding individual j. Questions about personal characteristics

like religion, age, or education would produce 𝑁 × 𝑃 matrices, with 𝑃

denoting the number of categories for categorical data (e.g., different

religions) or 𝑃 = 1 for continuous variables (e.g., net worth). This com-

prehensive data collection approach enables a multifaceted analysis of

the village’s social dynamics and individual characteristics.

A researcher seeking to draw general conclusions about the village’s social

structure would want to aggregate the data in a principled way. In our

case, we want to analyze the social communities in the village, i.e. which

individuals belong to which community and how these communities

interact with each other. Specifically, we’re interested in creating an

𝑁×𝐾 community matrix𝑈 where each row𝑈𝑖 is a vector of probabilities

denoting the community membership of individual 𝑖. Since community

membership can be fuzzy and we want to explicitly incorporate our

uncertainty, we use probabilistic inference. Thus, our goal is to create a

probabilistic graphical model that finds the community matrix 𝑈 and

other latent parameters of interest that best explain the observed data 𝐴

and 𝑋.

5.1 Introduction

Networks effectively represent real-world data from various fields, in-

cluding social, biological, and informational systems. In this framework,

nodes within the network correspond to individual components of the

system, and their interactions are illustrated through network edges (M.

Newman, 2018). With the advancement of data collection and represen-

tation techniques, networks have evolved to become more versatile and

informative. Notably, attributed multilayer networks have emerged as a

significant development, allowing the inclusion of additional information

related to nodes and edges. This enriches the representation of real-world

systems, where nodes naturally have specific characteristics and are

connected through different types of interactions. For instance, in social

networks, individuals can be described by attributes like age, gender, and
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height, while engaging in various types of relationships like friendship,

co-working, and kinship.

The analysis of attributed multilayer networks has primarily been tackled

using techniques like matrix factorization (Liu et al., 2020; Xu et al., 2023),

network embedding (Pei et al., 2018; Cen et al., 2019), and deep learn-

ing (Cao et al., 2018; Park et al., 2020; Han et al., 2022; Martirano et al.,

2022). However, in this work, we focus on a less investigated methodology

that involves probabilistic generative models (Goldenberg et al., 2010).

Unlike the aforementioned approaches, these methods provide a princi-

pled and flexible framework to incorporate prior knowledge and specific

assumptions, while also accounting for the inherent uncertainty present

in real-world data (Peel et al., 2022). Moreover, they can be applied to

perform inference on networks, including tasks such as predictions or

the detection of statistically meaningful network structures. The latter

task is commonly referred to as community detection problem, and is

relevant in many applications (Fortunato, 2010).

Our goal is to develop a probabilistic generative model that can flexibly

adapt to any attributed multilayer network, regardless of the type of

information encoded in the data. Acting as a “black box”, our method can

enable practitioners to automatically analyze various datasets, without

the need to deal with mathematical details or new derivations. This

approach aligns with some practices in the machine learning community,

where principled black box methodologies have been introduced to

simplify the inference of latent variables in arbitrary models (Ranganath

et al., 2014; Tran et al., 2016). In this context, more specific probabilistic

methods have been developed to address the challenge of performing

inference on heterogeneous data (Valera et al., 2020; Nazabal et al., 2020).

However, these techniques are tailored for tabular data and do not

provide a general solution to adapt them to network data.

Probabilistic generative models specifically designed for attributed net-

works aim to combine node attributes effectively with network interac-

tions. Existing methods (Tallberg, 2004; Yang et al., 2013; Hric et al., 2016;

M. E. Newman and Clauset, 2016; White et al., 2016; Stanley et al., 2019;

Fajardo-Fontiveros et al., 2022; Contisciani et al., 2020) have highlighted

the importance of incorporating extra information to enhance network

inference, resulting in improved prediction performance and deeper

insights on the interplay between edge structure and node metadata.

However, these models mainly focus on single-layer networks, assume

the same generative process for all interactions, and consider only one

type of attribute – typically categorical. These limitations restrict their

capability to represent complex scenarios characterized by heterogeneous

information. As a consequence, addressing the challenge of effectively

incorporating various sources of information and evaluating their col-

lective impact on downstream network inference tasks remains an open

issue.

We address this gap by introducing PIHAM, a generative model explicitly

designed to perform Probabilistic Inference in directed and undirected

Heterogeneous and Attributed Multilayer networks. Our approach differs

from previous studies in that PIHAM flexibly adapts to any combination

of input data, while standard probabilistic methods rely on model-specific

analytic derivations that highly depend on the data types given in input.

This can dramatically hinder the flexibility of a model, as any small



56 Chapter 5 Probabilistic Inference in Directed and Undirected Heterogeneous and Attributed Multilayer

change in the data, e.g., adding a new node attribute or a new type

of interaction, usually requires new derivations. As a result, the vast

majority of these models work only with one type of edge weight for all

layers, and one type of attribute. In contrast, PIHAM takes in input any

number of layers and attributes, regardless of their data types.

At its core, PIHAM assumes the existence of a mixed-membership com-

munity structure that drives the generation of both interactions and

node attributes. In addition, the inference of the parameters is performed

within a Bayesian framework, where both prior and posterior distri-

butions are modeled with Gaussian distributions. Importantly, PIHAM

employs the Laplace matching technique (Hobbhahn and Hennig, 2021)

and conveniently maps the posterior distributions to various desired

domains, to ease interpretation. For instance, to provide a probabilistic

interpretation of the inferred communities, our method properly maps

the parameters of a Gaussian distribution into those of a Dirichlet dis-

tribution. The latter operates within a positive domain and enforces

normalization on a simplex, making it a valuable tool for this purpose.

Notably, the inference process is flexible and scalable, relying on auto-

matic differentiation and avoiding the need for explicit derivations. As a

result, PIHAM can be considered a “black box” method, as practitioners

only need to select the desired probabilistic model and a set of variable

transformation functions, while the remaining calculations and inference

are performed automatically. This versatility enables our model to be

flexibly applied to new modeling scenarios.

We apply our method to a diverse range of synthetic and real-world

data, showcasing how PIHAM effectively leverages the heterogeneous

information contained in the data to enhance prediction performance

and provide richer interpretations of the inferred results.

5.2 Methods

We introduce PIHAM, a versatile and scalable probabilistic generative

model designed to perform inference in attributed multilayer networks.

Our method flexibly adapts to any combination of input data, regardless

of their data types. For simplicity, in what follows, we present examples

with Bernoulli, Poisson, Gaussian, and categorical distributions, which

collectively cover the majority of real-world examples. Nevertheless, our

model can be easily extended to include new distributions, as well as

applied to single-layer networks with or without attributes.

General framework

Attributed multilayer networks provide an efficient representation of

complex systems in which the individual components have diverse at-

tributes (often referred to as covariates or metadata) and are involved

in multiple forms of interactions. Mathematically, these interactions are

depicted by an adjacency tensor 𝑨 of dimension 𝐿 × 𝑁 × 𝑁 , where 𝑁

is the number of nodes common across all 𝐿 layers. Each entry 𝐴ℓ
𝑖𝑗

in

this tensor denotes the weight of a directed interaction of type ℓ from

node 𝑖 to node 𝑗. Notably, different layers can incorporate interactions
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of diverse data types, depending on the nature of the underlying re-

lationship. For instance, in social systems, one layer might represent

binary relationships like friendships, another could describe nonnegative

discrete interactions such as call counts, and a third might contain contin-

uous real-valued measurements such as geographical distances between

locations. In this scenario, the adjacency tensor would be represented

as 𝑨 = {𝑨1 ∈ {0, 1}𝑁×𝑁 ,𝑨2 ∈ ℕ𝑁×𝑁
0

,𝑨3 ∈ ℝ𝑁×𝑁
+ }. Node metadata

describes additional information about the nodes. They are stored in a

design matrix 𝑿 with dimensions 𝑁 × 𝑃, where 𝑃 is the total number

of attributes and the entries 𝑋𝑖𝑥 represent the value of an attribute 𝑥 for

a node 𝑖. Similar to network interactions, different attributes can have

different data types. An example of input data is given in Figure 5.1A.

Remark 5.3 (Summary of PIHAM)

Procedure:

1. Define your model, i.e. how

the community matrices gen-

erate the observations.

2. Define the likelihood terms

to match the correct datatype,

e.g. Bernoulli for binary data

and Poisson for count data.

3. Define all latent variables

to be transformations of

Gaussians, e.g. probability

vectors would be softmax-

transformed Gaussians.

4. Use Automatic differentiation

to get a Laplace approxima-

tion of the latent Gaussian

posteriors.

5. Use Laplace matching to

transform the latent Gaus-

sians into posteriors in the

correct domain.

6. Analyze these latent posteri-

ors.

PIHAM describes the structure of attributed multilayer networks, rep-

resented by 𝑨 and 𝑿 , through a set of latent variables 𝚯. The goal is

to infer 𝚯 from the input data. In particular, we want to estimate pos-

terior distributions, as done in a probabilistic framework. These can be

approximated as:

𝑃(𝚯 | 𝑨,𝑿 ) ∝ 𝑃(𝑨,𝑿 |𝚯)𝑃(𝚯)
= 𝑃(𝑨 |𝚯)𝑃(𝑿 |𝚯)𝑃(𝚯) . (5.1)

In this general setting, the proportionality is due to the omission of an

intractable normalization term that does not depend on the parameters.

The term 𝑃(𝑨,𝑿 |𝚯) = 𝑃(𝑨 |𝚯)𝑃(𝑿 |𝚯) represents the likelihood of

the data, where we assume that 𝑨 and 𝑿 are conditionally independent

given the parameters. This assumption allows to model separately the

network structure and the node metadata. The term 𝑃(𝚯) denotes the

prior distributions of the latent variables, which we assume to be indepen-

dent and Gaussian distributed, resulting in 𝑃(𝚯) = ∏
𝜽∈𝚯 N (𝜽;𝝁𝜽 ,𝚺𝜽).

Importantly, we also make the assumption that the posterior distribu-

tions of the parameters can be approximated with Gaussian distribu-

tions, for which we have to estimate mean and covariance matrices:

𝑃(𝚯 | 𝑨,𝑿 ) ≈ ∏
𝜽∈𝚯 N (𝜽; �̂�𝜽 , �̂�

𝜽).

In the following subsections, we provide additional details on the role of

the latent variables in shaping both interactions and node attributes, as

well as the methods for inferring their posterior distributions.

Modelling the network structure

The interactions encoded in the adjacency tensor 𝑨 are assumed to

be conditionally independent given the latent variables, resulting in

a decomposition of the likelihood across individual entries 𝐴ℓ
𝑖𝑗

. This

factorization can be further unpacked by explicitly considering the

distributions that describe each layer. For instance, in the scenario with

binary, count-based, and continuous interactions, we can express the
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A B

Figure 5.1: Input data and graphical model representation. (A) The attributed multilayer network is represented by the interactions

𝐴ℓ
𝑖𝑗

and the node attributes 𝑋𝑖𝑥 . (B) PIHAM describes the observed data through a set of latent variables 𝚯 = (𝑼 ,𝑽 ,𝑾 ,𝑯). 𝑼 𝒊

and i respectively depict the out-going and in-coming communities of node 𝑖; 𝑾 ℓ
is the affinity matrix associated to the layer ℓ and

characterizes the edge density between different community pairs in the given layer; 𝑯 ·𝒙 is a 𝐾-dimensional vector that explains how

an attribute 𝑥 is distributed among the 𝐾 communities. All latent variables are independent and normally distributed, and 𝑓 (·) and

𝑔(·) are transformation functions to ensure that the expected values 𝜆ℓ
𝑖𝑗

and 𝜋𝑖𝑥 belong to the correct parameter space for the various

distribution types.

likelihood as follows:

𝑃(𝑨 |𝚯) =
∏
ℓ ,𝑖, 𝑗

𝑃(𝐴ℓ𝑖𝑗 |𝚯)

=
∏

ℓ∈𝐿𝐵 ,𝑖 , 𝑗
Bern(𝐴ℓ𝑖𝑗 ;𝜆

ℓ
𝑖𝑗(𝚯))

×
∏

ℓ∈𝐿𝑃 ,𝑖 , 𝑗
Pois(𝐴ℓ𝑖𝑗 ;𝜆

ℓ
𝑖𝑗(𝚯))

×
∏

ℓ∈𝐿𝐺 ,𝑖 , 𝑗
N (𝐴ℓ𝑖𝑗 ;𝜆

ℓ
𝑖𝑗(𝚯), 𝜎2) , (5.2)

where 𝜎2
is a hyperparameter and 𝐿𝐵 , 𝐿𝑃 , and 𝐿𝐺 are the sets of Bernoulli,

Poisson, and Gaussian layers, respectively. We assume that each distri-

bution is fully parametrized through the latent variables 𝚯 and these

explicitly define the expected values 𝜆ℓ
𝑖𝑗

, regardless of the data type.

Specifically, we adopt a multilayer mixed-membership model (De Bacco et

al., 2017), and describe the observed interactions through 𝐾 overlapping

communities shared across all layers. Following this approach, the

expected value of each interaction of type ℓ from node 𝑖 to 𝑗 can be

approximated as:

𝜆ℓ𝑖𝑗(𝚯) ≈
𝐾∑

𝑘,𝑞=1

𝑈𝑖𝑘𝑊
ℓ
𝑘𝑞
𝑉𝑗𝑞 , (5.3)

where the latent variables𝑈𝑖𝑘 and𝑉𝑗𝑞 denote the entries of𝐾-dimensional

vectors 𝑼 𝒊 and i, which respectively represent the out-going and in-

coming communities of node 𝑖. In undirected networks, we set 𝑼 =

𝑽 . Moreover, each layer ℓ is associated with an affinity matrix 𝑾 ℓ

of dimension 𝐾 × 𝐾, which characterizes the edge density between

different community pairs in the given layer ℓ . This setup allows having

diverse structural patterns in each layer, including arbitrarily mixtures of

assortative, disassortative and core-periphery structures.
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As a final remark, the approximation in Equation 5.3 arises from a

discrepancy between the parameter space of the latent variables and that

of the expected values of the distributions. In fact, while all variables are

normally distributed, 𝜆ℓ
𝑖𝑗

has to satisfy different constraints according

to the distribution type. For instance, 𝜆ℓ
𝑖𝑗

∈ [0, 1] ∀ ℓ ∈ 𝐿𝐵 and 𝜆ℓ
𝑖𝑗

∈
(0,∞)∀ ℓ ∈ 𝐿𝑃 . For further details, we refer to the section Parameter

space and transformations.

Modelling the node metadata

Similarly to the network edges, the node metadata are also considered

to be conditionally independent given the latent variables. Therefore,

when dealing with data that encompass categorical, count-based, and

continuous attributes, the likelihood can be formulated as follows:

𝑃(𝑿 |𝚯) =
∏
𝑖 ,𝑥

𝑃(𝑋𝑖𝑥 |𝚯)

=
∏
𝑖 ,𝑥∈𝐶𝐶

Cat(𝑋𝑖𝑥 ;𝜋𝑖𝑥(𝚯))

×
∏
𝑖 ,𝑥∈𝐶𝑃

Pois(𝑋𝑖𝑥 ;𝜋𝑖𝑥(𝚯))

×
∏
𝑖 ,𝑥∈𝐶𝐺

N (𝑋𝑖𝑥 ;𝜋𝑖𝑥(𝚯), 𝜎2) , (5.4)

where 𝐶𝐶 , 𝐶𝑃 , and 𝐶𝐺 are the sets of categorical, Poisson, and Gaussian

attributes, respectively.

Following previous work (Yang et al., 2013; Fajardo-Fontiveros et al., 2022;

Contisciani et al., 2020), we assume that the attributes are also generated

from the node community memberships, thereby creating dependencies

between node metadata and network interactions. In particular, we

approximate the expected value of an attribute 𝑥 for node 𝑖 as:

𝜋𝑖𝑥(𝚯) ≈ 1

2

𝐾∑
𝑘=1

(𝑈𝑖𝑘 +𝑉𝑖𝑘)𝐻𝑘𝑥 , (5.5)

where 𝑯 is a 𝐾 ×𝑃-dimensional community-covariate matrix, explaining

how an attribute 𝑥 is distributed among the 𝐾 communities. For instance,

if we consider income as node metadata and expect communities to

group nodes with similar income values, then the column vector 𝑯 ·𝒙

describes how income varies across groups. It is important to observe

that when the attribute 𝑥 is categorical, the expression in Equation (5.5)

becomes more complex because it must consider the total number of

attribute categories 𝑍. We provide additional details in the Supporting

Information.

Notice that like𝜆ℓ
𝑖𝑗

,𝜋𝑖𝑥 also needs to satisfy specific constraints depending

on the distribution type. We clarify this in the next subsection.

Parameter space and transformations

A key technical aspect of PIHAM is the use of Gaussian distributions to

model priors and posteriors of the latent variables 𝚯 = (𝑼 ,𝑽 ,𝑾 ,𝑯).
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Table 5.1: Functions 𝑔(·) used in our

implementation to transform the latent

variables as defined in Equation 5.6 and

5.7.

Distribution Parameter space Transformation function

Bernoulli [0, 1] Logistic

Poisson (0,∞) Exponential

Gaussian ℝ Identity

Categorical 𝑝𝑧 ≥ 0∀𝑧,∑𝑧 𝑝𝑧 = 1 Softmax

This choice simplifies the inference by an additional step that ensures

the expected values 𝜆ℓ
𝑖𝑗

and 𝜋𝑖𝑥 belong to the correct parameter space

for the various distribution types. To achieve this, we apply specific

transformation functions to the latent variables, and model the expected

values as follows:

𝜆ℓ𝑖𝑗(𝚯) = 𝑓 (𝑼 𝒊) 𝑔(𝑾 ℓ) 𝑓 (j) (5.6)

𝜋𝑖𝑥(𝚯) = 1

2

(
𝑓 (𝑼 𝒊) + 𝑓 (i)

)
𝑔(𝑯 ·𝒙) . (5.7)

The functions 𝑓 (·) and 𝑔(·) can take various forms, as long as they adhere

to the required constraints. In our implementation, we select 𝑓 (·) to be

the softmax function, which is applied to every row of the community

membership matrices. This allows interpretability of the communities,

as they result in quantities that are positive and normalized to one,

as discussed in the section Parameter interpretation. Meanwhile, the

choice of 𝑔(·) varies depending on the distribution type, as illustrated in

Table 5.1.

One might argue that it would be simpler to employ a single link function

for 𝜆ℓ
𝑖𝑗

and 𝜋𝑖𝑥 , rather than applying individually transformations to the

latent variables, as done in standard statistical approaches (McCullagh,

2019). However, this may not ensure interpretability of the communities,

as we do with the softmax 𝑓 (·). In addition, empirically we discovered

that the approach outlined in Equation 5.6 and 5.7 gives more stable

results, and it does not result in over- or under-flow numerical errors.

Alternatively, another approach considers treating the transformed pa-

rameters as random variables and applies the probability transformation

rule to compute their posterior distributions (Kucukelbir et al., 2017).

While this method is theoretically well-founded, it comes with constraints

regarding the choice of the transformation functions, which directly af-

fects the feasibility of the inference process. Conversely, PIHAM offers

the flexibility to use any set of transformation functions that respects

the parameter space of the distribution types given by the network and

covariates.

In Figure 5.1, we illustrate the input data and the graphical model

representation of our approach.

Posterior inference

PIHAM aims at estimating the posterior distributions of the latent vari-

ables, as outlined in Equation 5.1. More precisely, this equation can be
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reformulated as:

𝑃(𝑼 ,𝑽 ,𝑾 ,𝑯 | 𝑨,𝑿 ) = 𝑃(𝑨 |𝑼 ,𝑽 ,𝑾 )
× 𝑃(𝑿 |𝑼 ,𝑽 ,𝑯)
× 𝑃(𝑼 )𝑃(𝑽 )𝑃(𝑾 )𝑃(𝑯) . (5.8)

In general, this posterior distribution lacks a closed-form analytical

solution and requires the use of approximations.

Common methods for inference in attributed networks typically rely on

Expectation-Maximization (EM) (Dempster et al., 1977) or Variational

Inference (VI) (Blei et al., 2017b) techniques. However, these approaches

have limitations, as they require model-specific analytic computations

for each new term added to the likelihood. For instance, an EM-based

approach involves taking derivatives with respect to a given latent

variable and setting them to zero. In a specific class of models where the

likelihood and prior distributions are compatible, solving the resulting

equation for the variable of interest can yield closed-form updates.

Nonetheless, for generic models, there is no guarantee of a closed-form

solution. Even when this does exist, slight variations in the input data

may require entirely new derivations and updates. Consequently, most

of these models are designed to handle only a single type of edge weight

and a single type of attribute.

In contrast, our model takes a different approach and flexibly adapts to

any combination of input data, regardless of their data types. We begin by

assuming that the latent variables are conditionally independent given

the data, allowing us to model each posterior distribution separately:

𝑃(𝑼 ,𝑽 ,𝑾 ,𝑯 | 𝑨,𝑿 ) = 𝑃(𝑼 | 𝑨,𝑿 )𝑃(𝑽 | 𝑨,𝑿 )
× 𝑃(𝑾 | 𝑨,𝑿 )𝑃(𝑯 | 𝑨,𝑿 ) . (5.9)

Subsequently, we employ a Laplace Approximation (LA) to approximate

each posterior with a Gaussian distribution, resulting in:

𝑃(𝜽 | 𝑨,𝑿 ) ≈ N (𝜽; �̂�𝜽 , �̂�
𝜽) , ∀𝜽 ∈ 𝚯 . (5.10)

LA involves a second-order Taylor expansion around the Maximum A

Posteriori estimate (MAP) of the right-hand side of Equation 5.8. We

compute this estimate using Automatic Differentiation (AD), a gradient-

based method that, in our implementation, employs the Adam optimizer

to iteratively evaluate derivatives of the log-posterior. The MAP estimate

found with AD also constitutes the mean �̂�𝜽
of 𝑃(𝜽 | 𝑨,𝑿 ). To go beyond

point estimates and quantify uncertainty, one can further estimate the

covariance matrix �̂�
𝜽

, which is given by the inverted Hessian around the

MAP:

�̂�
𝜽 ≈

[
− 𝜕2𝑃(𝜽 | 𝑨,𝑿 )

𝜕𝜽
(�̂�𝜽)

]−1

. (5.11)

Other inference methods can be employed to approximate Gaussian

distributions, such as VI. However, in such situations, utilizing AD directly

might not be feasible due to the involvement of uncertain expectations in

the optimization cost function. On the other hand, LA naturally combines

with AD, providing a flexible and efficient inference procedure.
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Parameter interpretation

We approximate the posterior distributions of the latent variables using

Gaussian distributions, as outlined in Equation 5.10. Consequently, all our

estimated parameters belong to the real space. Although this approach

is advantageous for developing an efficient and automated inference

method, practitioners may desire different variable domains to enhance in-

terpretability. In some instances, achieving this transformation is straight-

forward, involving the application of the probability transformation rule

to obtain a distribution for the transformed variable within the desired

constrained support. For example, if we are interested in expressing

�̄� := exp(�̂� ) ∈ ℝ𝑁×𝐾
>0

, we can simply employ the Lognormal(�̄� ; �̂�𝑼 , �̂�
𝑼 )

distribution. Similarly, when seeking �̄� := logistic(�̂� ) ∈ (0, 1)𝑁×𝐾
, we

can just compute the Logitnormal(�̄� ; �̂�𝑼 , �̂�
𝑼 ).

However, certain functions lack closed-form transformations. For instance,

obtaining a probabilistic interpretation of the mixed-memberships of

nodes requires applying the softmax function to each row of the matrices

𝑼 and 𝑽 , which is not a bĳective function. To address this challenge,

our framework employs the Laplace Matching (LM) (Hobbhahn and

Hennig, 2021) to approximate the distributions of such transformations.

This technique yields a bidirectional, closed-form mapping between the

parameters of the Gaussian distribution and those of the approximated

transformed distribution. In this scenario, we can derive:

�̄� 𝒊 := softmax(�̂� 𝒊) , �̄�𝑖𝑘 ∈ [0, 1] and

𝐾∑
𝑘=1

�̄�𝑖𝑘 = 1

with𝑃(�̄� 𝒊) = Dir(�̄� 𝒊 ; �̂�
𝑼
𝒊 ) , (5.12)

where �̂�𝑼
𝒊 is a 𝐾-dimensional vector obtained with LM, whose entries

are described as:

�̂�𝑈
𝑖𝑘
=

1

Σ̂𝑈
𝑖𝑘𝑘

(
1 − 2

𝐾
+

exp(�̂�𝑈
𝑖𝑘
)

𝐾2

𝐾∑
𝑙=1

exp(�̂�𝑈
𝑖𝑙
)
)
. (5.13)

This approach is theoretically grounded and enables us to provide closed-

form posterior distributions for the latent variables across a diverse range

of domains. Consequently, it consistently allows for the estimation of

uncertainties and other relevant statistical measures. Nonetheless, PIHAM

can also be utilized for the sole purpose of determining point estimates

of the latent variables, which are essentially given by the MAP estimates.

In such scenarios, it remains feasible to map these point estimates to

different supports by applying any desired function, without worrying

about the transformation process. Although this approach lacks full

posterior distributions, it significantly simplifies the inference process by

avoiding the computation of the Hessian. The choice between these two

approaches should be guided by the specific application under study.

5.3 Results

We demonstrate our method on both synthetic and real-world datasets,

presenting a comprehensive analysis through quantitative and qual-
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itative findings. Further explanations about the data generation and

pre-processing procedures can be found in Appendix C, which also

includes additional results. The settings used to run our experi-

ments and the choice of the hyperparameters are also described in

Appendix C. The code implementation of PIHAM is accessible at:

https://github.com/mcontisc/PIHAM.

Simulation study

Comparison with existing methods in a homogeneous scenario. We

first investigate the behavior of our model in a simpler and common sce-

nario, characterized by attributed multilayer networks with nonnegative

discrete weights and one categorical node attribute. This represents the

most general case addressed by existing methods, which are specifically

designed for homogeneous settings, where there is only one attribute

and one data type. For comparison, we use MTCOV (Contisciani et al.,

2020), a probabilistic model that assumes overlapping communities as

the main mechanism governing both interactions and node attributes. In

contrast to PIHAM MTCOV is tailor-made to handle categorical attributes

and nonnegative discrete weights. Additionally, it employs an EM algo-

rithm, with closed-form derivations for parameters inference strongly

relying on the data type, making MTCOV a bespoke solution compared

to the more general framework proposed by PIHAM. The results of this

comparison are depicted in Figure C.1 in Appendix C, accompanied by

additional details about the data generation and experiment settings.

In principle, we expect MTCOV to exhibit better performance in this

specific scenario due to its tailored development for such data and also

its generative process aligning closely with the mechanism underlying

the synthetic data. Nonetheless, despite the generality of our approach,

we observe that PIHAM achieves comparable performance to MTCOV in

link and attribute prediction, as well as community detection, especially

in scenarios involving denser networks. These results collectively show

that PIHAM is a valid approach even in less heterogeneous scenarios, as

it can compete effectively with bespoke existing methods.

Validation on heterogeneous data. Having demonstrated that PIHAM

performs comparably well to existing methods for attributed multilayer

networks, we now demonstrate its behavior on more complex data

containing heterogeneous information. To the best of our knowledge,

this is the first probabilistic generative model designed to handle and

perform inference on such data, and as a result, a comparative analysis

is currently unavailable. Additionally, due to the absence of alternative

benchmarks for data generation, we validate the performance of our

method on synthetic data generated using the model introduced in this

work.

We analyze attributed multilayer networks with 𝐿 = 3 heterogeneous lay-

ers: one with binary interactions, one with nonnegative discrete weights,

and one with real values. In addition, each node is associated with three

covariates: one categorical with 𝑍 = 4 categories, one representing non-

negative discrete values, and one involving real values. To generate these

networks, we initially draw the latent variables 𝚯 = (𝑼 ,𝑽 ,𝑾 ,𝑯) from

Gaussian distributions with specified hyperparameters. Subsequently,

https://github.com/mcontisc/PIHAM
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we generate 𝑨 and 𝑿 according to the data types, following Equation 5.2

and 5.4. Our analysis spans networks with varying number of nodes

𝑁 ∈ {100, 200, . . . , 1000} and diverse number of overlapping communi-

ties 𝐾 ∈ {3, 4, 5}. Additional details on the generation process can be

found in Appendix C.

A B C

D E F

Figure 5.2: Prediction performance on synthetic data. We analyze synthetic attributed multilayer networks with 𝐿 = 3 heterogeneous

layers (one with binary interactions (A), one with nonnegative discrete weights (B), and one with real values(C)), three node covariates

(one categorical with 𝑍 = 4 categories (D), one representing nonnegative discrete values (E), and one involving real values (F)), varying

number of nodes 𝑁 , and diverse number of overlapping communities 𝐾. We employ a 5-fold cross-validation procedure and plot

averages and confidence intervals over 20 independent samples. The prediction performances are measured with different metrics

according to the data type: Area Under the receiver-operator Curve (AUC) for binary interactions (A), the Maximum Absolute Error

(MAE) for nonnegative discrete values (B, E), the Root Mean Squared Error (RMSE) for real values (C, F), and accuracy for categorical

attributes (D). The baselines are given by the predictions obtained from either the average or the maximum frequency in the training set.

For the categorical attribute, we also include the uniform random probability over 𝑍, and for the AUC, the baseline corresponds to the

random choice 0.5. Overall, PIHAM outperforms the baselines significantly for each type of information.

We assess the effectiveness of PIHAM by testing its prediction performance.

To this end, we adopt a 5-fold cross-validation procedure, where we

estimate the model’s parameters on the training set and subsequently

evaluate its prediction performance on the test set (see Appendix C for

details). The presence of heterogeneous information complicates the

measurement of goodness of fit, as distinct data types impose different

constraints and domains. To address this complexity, we employ different

metrics tailored to assess the prediction performance of each type of

information. Specifically, we use the Area Under the receiver-operator

Curve (AUC) for binary interactions, the Maximum Absolute Error

(MAE) for nonnegative discrete values, the Root Mean Squared Error

(RMSE) for real values, and the accuracy for categorical attributes. Further

exploration to determine a unified metric could be a subject of future

research.

The results are illustrated in Figure 5.2, where the performance of PIHAM

is compared against baselines given by the predictions obtained from
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either the average or the maximum frequency in the training set. For the

categorical attribute, we also include the uniform random probability over

𝑍, and for the AUC, the baseline corresponds to the random choice 0.5.

Overall, PIHAM outperforms the baselines significantly for each type

of information, with performance slightly decreasing as 𝐾 increases.

This is somewhat expected, considering the increased complexity of the

scenarios. On the other hand, the performance remains consistent across

varying values of 𝑁 , indicating the robustness of our method and its

suitability for larger networks.

Interpretation of posterior estimates. We have showcased the predic-

tion performance of PIHAM across diverse synthetic datasets, and we

now delve into the qualitative insights that can be extracted from the

inferred parameters. In particular, we focus on the membership matrix𝑼 .

For this purpose, we examine the results obtained through the analysis of

the synthetic data used in the section Comparison with existing methods

in a homogeneous scenario, where ground truth mixed-memberships are

represented as normalized vectors summing to 1. This scenario is partic-

ularly relevant for illustrating an example where the desired parameter

space, defined by the simplex, differs from the inferred one existing in

real-space.

Figure 5.3: Interpretation of posterior distributions in comparison with ground truth memberships. We analyze a synthetic attributed

multilayer network with ground truth mixed-memberships represented as normalized vectors summing to 1. In this case, 𝐾 = 3.

(Top row) Ground truth membership vectors for three representative nodes: Node A displays extreme mixed-membership, Node B

shows a slightly lower mixed-membership, and Node C exhibits hard-membership. (Middle row) Inferred posterior distributions

�̂�𝑖𝑘 ∼ N (�̂�𝑖𝑘 ; �̂�𝑈𝑖𝑘 , (�̂�
𝑈
𝑖𝑘
)2), where different colors represent distinct communities, and the distribution in gray consists of the 𝐿2-barycenter

distribution. Overlap is the average of the area of overlap between every pair of distributions, and 𝜎2
is the variance of the barycenter

distribution. (Bottom row) Transformed posterior distributions into the simplex space using the LM technique and employing Dirichlet

distributions. The inferred node memberships reflect the ground truth behavior, as evidenced by the trends of Overlap and 𝜎2
, which

align with the decreasing degree of true mixed-membership. Additionally, the Dirichlet transformation provides a more straightforward

interpretation, further supporting this conclusion.
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To ease visualizations, we investigate a randomly selected network

and focus on three representative nodes with distinct ground truth

memberships: Node A has extreme mixed-membership, Node B slightly

less mixed-membership, and Node C exhibits hard-membership. The

results are depicted in Figure 5.3, with the top row displaying the ground

truth membership vectors for these representative nodes. In the middle

row, we plot the inferred posterior distributions �̂�𝑖𝑘 ∼ N (�̂�𝑖𝑘 ; �̂�𝑈𝑖𝑘 , (�̂�
𝑈
𝑖𝑘
)2),

where different colors represent distinct communities (in this case, 𝐾 = 3).

Through a comparative analysis of the three distributions for each node,

we can gain insights into the nodes’ behaviors: Node A exhibits greater

overlap among the three distributions, Node B shows a slighter shift

toward 𝐾1, while Node C distinctly aligns more with community 𝐾3.

This preliminary investigation leads to the conclusion that the inferred

communities reflect the ground truth behaviors. However, interpreting

such patterns can be challenging, if not unfeasible, especially when

dealing with large datasets. To address this issue, we quantitatively

compute the area of overlap between every pair of distributions for

each node and then calculate the average. For this purpose, we use

the implementation proposed in (Wand et al., 2011) and we name this

measure as Overlap. This metric ranges from 0 (indicating no overlap) to

1 (representing perfect matching between the distributions). Notably, the

overlap decreases as we move from Node A to Node C, in line with the

decreasing degree of mixed-membership.

Computing the Overlap for many communities can be computationally

expensive due to the need to calculate all pairwise combinations. As an

alternative solution, we suggest utilizing the 𝐿2-barycenter distribution,

which essentially represents a weighted average of the node-community

distributions (Benamou et al., 2015; Coz et al., 2023). We show the

barycenter distributions in gray in the second row of Figure 5.3. This

approach allows focusing on a single distribution per node, instead of

𝐾 different ones. To quantify this distribution, we calculate its variance

(𝜎2
), where higher values indicate nodes with harder memberships, as

the barycenter is more spread due to the individual distributions being

more distant from each other. Conversely, lower variance suggests more

overlap among the distributions, indicating a more mixed-membership

scenario. We observe that 𝜎2
increases as we decrease the degree of

mixed-membership, a trend consistent with that of the Overlap. Further

details on the barycenter distribution and the metrics are provided in

Appendix C.

To facilitate interpretability, a practitioner may desire to work within the

simplex space. This also reflects the ground truth parameter space, as

opposed to the normal posterior distributions. As discussed in the section

Parameter interpretation, PIHAM employs the LM technique. This has

the capability to transform in a principled way every membership vector

�̂� 𝒊 into the simplex space using Dirichlet distributions. The outcomes

of this transformation are depicted in the bottom row of Figure 5.3.

By investigating these plots, it becomes even more apparent how the

inferred memberships closely resemble the ground truth: the Dirichlet

distributions gradually concentrate more towards a specific corner (𝐾1

for Node B and 𝐾3 for Node C), instead of spreading across the entire

area (as observed for Node A).

With this example, we presented a range of solutions for interpreting the
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posterior distributions associated with the inferred node memberships.

These options are not exhaustive, and other approaches may also be con-

sidered. For instance, a practitioner might focus solely on analyzing the

point estimates for the sake of facilitating comparisons with the ground

truth. In such cases, as discussed in the section Parameter interpretation,

two procedures can be employed: i) applying a transformation to the

point estimates, such as softmax, to align them with the ground truth

space, or ii) using a sufficient statistic of the posterior distribution, where

the mean of the Dirichlet distribution is a suitable option. The choice

between these various approaches should be guided by the specific

application under study, and the provided example serves as just one

illustration.

Analysis of a social support network of a rural Indian village

We now turn our attention to the analysis of a real-world dataset de-

scribing a social support network within a village in Tamil Nadu, In-

dia, referred to as “Alakāpuram” (Power, 2015; Power, 2017). The data

were collected in 2013 through surveys, in which adult residents were

asked to nominate individuals who provided various types of sup-

port, such as running errands, offering advice, and lending cash or

household items. Additionally, several attributes were gathered, encom-

passing information like gender, age, and caste, among others. The

pre-processing of the dataset is described in Appendix C. The resulting

heterogeneous attributed multilayer network comprises 𝑁 = 419 nodes,

𝐿 = 7 layers, and 𝑃 = 3 node attributes. The initial six layers depict

directed binary social support interactions among individuals, with

average degree ranging from 1.8 to 4.2. The seventh, instead, contains

information that is proportional to the geographical distance between

individuals’ households. The adjacency tensor is then represented as

𝑨 = {𝑨ℓ ∈ {0, 1}𝑁×𝑁 ∀ℓ ∈ [1, 6],𝑨7 ∈ ℝ𝑁×𝑁 }. As node covariates, we

consider the caste attribute with 𝑍𝑐𝑎𝑠𝑡𝑒 = 14 categories, the religion

attribute with 𝑍𝑟𝑒𝑙𝑖𝑔𝑖𝑜𝑛 = 3 categories, and the attribute representing the

years of education, that is 𝑿 ·3 ∈ ℕ𝑁
0

. Ethnographic work and earlier anal-

yses (Power, 2017; Power and Ready, 2018) suggest that these attributes

play an important role in how villagers relate to one another, with certain

relationships being more strongly structured by these identities than

others.

Remark 5.4 (Summary of Experi-
ment) We want to understand the

communities in a specific rural In-

dian village. We combine information

about the surveyed relationships be-

tween the village members and their

attributes, such as religion or caste

membership. PIHAMis able to find

highly plausible communities that

can be seen in Figure 5.4.

Inference and prediction performance. We describe the likelihood of

the real-world heterogeneous attributed multilayer network according to

Equation 5.2 and 5.4, customized to suit the data types under examination.

In particular, we employ Bernoulli distributions for the binary layers

[𝑨ℓ]ℓ∈[1,6] and Gaussian distributions for the distance layer 𝑨7
. Moreover,

we characterize the attributes caste 𝑿 ·1 and religion 𝑿 ·2 using Categorical

distributions, and model the covariate𝑿 ·3 with a Poisson distribution. The

choice of the model hyperparameters and the algorithmic settings used

in our experiments are described in the Supplementary Information.

Similarly to many real-world datasets, we lack the information about the

true parameters underlying the network, including the node member-

ships. Hence, to determine the number of communities 𝐾, we employ

a 5-fold cross-validation procedure for 𝐾 ∈ [1, 10] and select the value
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that exhibits the optimal performance. Detailed results are displayed in

Table C.2 in Appendix C. We set 𝐾 = 6 as it achieves the best performance

across the majority of prediction metrics. In fact, selecting a single metric

to summarize and evaluate results in a heterogeneous setting is nontrivial,

as discussed in the section Validation on heterogeneous data.

The results in Table C.2 additionally validate PIHAM’s performance in

inference tasks like edge and covariate prediction. Overall, our method

demonstrates robust outcomes with the chosen fixed value of 𝐾 and

consistently outperforms the baselines, which are omitted for brevity.

Qualitative interpretation of the inferred parameters. We now shift

our attention to analyze the results qualitatively, specifically focusing on

the inferred communities. For easier interpretation, we apply a softmax

transformation to the MAP estimates �̂�𝑼
𝒊 , allowing us to treat node

memberships as probabilities. Opting for the softmax over the mean

of the posterior Dirichlet distributions is primarily for visualization

purposes, as it results in slightly less mixed-memberships, thereby

improving clarity. The middle and bottom rows of Figure 5.4 depict the

inferred out-going communities �̂� 𝒊 , where darker values in the grayscale

indicate higher values in the membership vector. In addition, the top row

of Figure 5.4 displays the node attributes included in our analysis. Note

also that the nodes’ position reflects the geographical distance between

individuals’ households, and the depicted interactions refer to the first

layer (talk about important matters). A full representation of the six

binary layers is shown in Figure C.2 in Appendix C.

Upon initial examination, we observe a correspondence between various

detected communities and the covariate information. For instance, the first

and second communities predominantly consist of nodes belonging to the

Yatavar and Paraiyar castes, respectively. Similarly, 𝐾3 comprises nodes

from the Kulalar and Maravar castes. This observation is supported by the

inferred𝐾×𝑍𝑐𝑎𝑠𝑡𝑒 -dimensional matrix �̂� ·1 (see Figure C.3 in Appendix C),

which explains the contributions of each caste category to the formation

of the 𝑘-th community. Furthermore, the affinity tensor �̂� (see Figure C.5

in Appendix C) suggests that these communities have an assortative

structure, where nodes tend to interact more with individuals belonging

to the same community as with those from different communities. This

pattern reflects a typical behavior in social networks (M. E. Newman,

2002). Additionally, note that these communities contain nodes that are

geographically close to each other and, in some cases, very distant from

the majority.

In contrast to the first three, communities 𝐾4, 𝐾5, and 𝐾6 are more

nuanced. In fact, they are predominantly comprised of nodes from the

Pal
.
l
.
ar caste, which, however, is also the most represented caste in the

dataset. Despite that, we observe some differences by examining other

parameters. For instance, 𝐾4 exhibits a strong assortative community

structure, contrasting with the less structured nature of 𝐾5 and 𝐾6. This

suggests that interactions play a more relevant role than attributes in

determining the memberships of 𝐾4. On the other hand, the attribute

𝑿 ·3 seems to play a bigger role in determining 𝐾6, which includes nodes

with more years of education. This correlation is depicted in Figure C.4
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Figure 5.4: Inference of overlapping communities in a social support network. We analyze a real-world heterogeneous attributed

multilayer network, which was collected in 2013 through surveys in the Indian village. This network comprises six binary layers

representing directed social support interactions among individuals, alongside an additional layer reflecting information proportional to

the distance between individuals’ households. (Top row) As node covariates, we consider caste 𝑿 ·1, religion 𝑿 ·2, and years of education

𝑿 ·3. For privacy reasons, nodes belonging to castes with fewer than five individuals are aggregated into an “Other” category. Moreover,

the displayed interactions refer only to the first layer (talk about important matters) to enhance clarity in visualization. (Middle-Bottom

rows) We display the MAP estimates of the out-going communities inferred by PIHAM. For easier interpretation, we apply a softmax

transformation to the MAP estimates of the membership vectors, and darker values in the grayscale indicate higher values in the

membership vector �̂� 𝒊 . The position of the nodes reflects the geographical distance between individuals’ households. In summary, the

inferred communities do not exclusively align with a single type of information. Rather, PIHAM incorporates all input information to

infer partitions that effectively integrate them in a meaningful way.

in Appendix C, where the posterior distribution N (�̂�63; �̂�𝐻
63
, (�̂�𝐻

63
)2) of

education years in 𝐾6 significantly differs and is distant from the others.

By looking at the affinity matrices of the seven layers in Figure C.5, we see

how layers have predominantly an assortative structure, but show also

variations for certain layers. For instance, 𝐿2 (help finding a job) has few

non-zero diagonal values, suggesting that this type of support is one for

which people must sometimes seek out others in different communities.

In particular, 𝐿7, corresponding to the geographical distance between

nodes, has several off-diagonal entries, particularly for communities 𝐾4,

𝐾5, and 𝐾6, suggesting a weakened effect for physical proximity for those

communities.



70 Chapter 5 Probabilistic Inference in Directed and Undirected Heterogeneous and Attributed Multilayer

Taken together, these findings suggest that the inferred communities

do not solely correlate with one type of information, which may be the

most dominant. Instead, PIHAM utilizes all the input information to infer

partitions that effectively integrate all of them in a meaningful manner. In

addition, the inferred affinity matrices illustrate how different layers can

exhibit different community structures, a diversity that can be captured

by our model.

5.4 Conclusion

In this work, we have introduced PIHAM, a probabilistic generative model

designed to perform inference in heterogeneous and attributed multilayer

networks. A significant feature of our approach is its flexibility to accom-

modate any combination of the input data, made possible through the use

of Laplace approximations and automatic differentiation methods, which

avoid the need for explicit derivations. Furthermore, PIHAM employs a

Bayesian framework, enabling the estimation of posterior distributions,

rather than only providing point estimates for the parameters.

When compared to other methods tailored for scenarios with only one

type of attribute and interaction, PIHAM demonstrates comparable perfor-

mance in prediction and community detection tasks, despite its broader

formulation. Moreover, our approach significantly outperforms baseline

metrics in more complex settings characterized by various attribute and

interaction types, where existing methods for comparison are lacking.

Furthermore, PIHAM employs the Laplace matching technique, offering

a theoretically grounded approach to map posterior distributions to

various desired domains, facilitating interpretation.

While PIHAM constitutes a principled and flexible method to analyze het-

erogeneous and attributed multilayer networks, several questions remain

unanswered. For example, determining the most appropriate metric for

summarizing prediction performance in heterogeneous scenarios, where

information spans different spaces, is not straightforward. This aspect

also influences the selection of the optimal model during cross-validation

procedures. While we have provided explanations for our choices, we

acknowledge that this remains an open question. Similarly, when dealing

with many communities, summarizing posterior distributions becomes

challenging due to computational constraints. We addressed this issue

by employing 𝐿2-barycenter distributions and proposing their variance

to guide interpretation. Nevertheless, we believe there is still consider-

able room for improvement and exploration in this area. Our method

could be further extended to accommodate distinct community-covariate

contributions by integrating two separate 𝑯 matrices for both in-coming

and out-going communities, respectively. This modification will offer

clearer insights into how covariates influence the partitions, especially

when discrepancies arise between in-coming and out-going communi-

ties. Additionally, it would be interesting to expand this framework to

incorporate higher-order interactions, an emerging area that has shown

relevance in describing real-world data Badalyan et al., 2023.

In summary, PIHAM offers a flexible and effective approach for modeling

heterogeneous and attributed multilayer networks, which arguably better
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captures the complexity of real-world data, enhancing our capacity to

understand and analyze the organization of real-world systems.

5.5 Practical Advice & Honest Thoughts

PIHAM is an improvement over existing frameworks for network analysis

because it is much more general and easy to use. For example, many pre-

vious frameworks only work for specific data types and every additional

variable would imply re-deriving all update rules explicitly. Since our

framework merely requires an explicit (log-)posterior and uses Automatic

Differentiation (AD), no new derivations are required.

This framework has applications beyond network analysis and com-

munity detection, and can be used in various Bayesian Inference tasks.

Software packages like PyTorch and JAX already provide optimized

building blocks for such a framework, simplifying the process of pos-

terior fitting for practitioners. We also discovered that standard neural

network heuristics, such as learning rate schedules and hyperparameter

tuning tricks, are applicable to our framework.

The framework has limitations based on the differentiability of the prob-

abilistic model. If the model is not fully differentiable, the framework

cannot be applied. Despite this constraint, the framework still covers a

wide range of potential models since sums, products, and many trans-

formations are differentiable. However, it is not applicable to general

Bayesian networks, such as DAGs, because they can include conditional

probabilities that are not differentiable in general. In some cases, condi-

tionals might be replaced with differentiable transformations, such as

the "reparameterization trick" (Kingma et al., 2013). Nevertheless, this is

not currently possible for arbitrary conditional probabilities.

While the framework shares many benefits with neural network training,

it also inherits most of the problems. For example, there can be numerical

instabilities during training, hyperparameter selection can be costly and

unprincipled, and models can get stuck in local optima during training.

On balance, I would use this framework over any alternative that I’m

aware of because it is more flexible and easier to set up. However, for

high-dimensional problems (i.e. large parameter count), I would only

compute the mode and not estimate the Hessian due to prohibitive

costs.
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Bayesian Machine Learning offers significant advantages, including the

ability to quantify uncertainty, seamlessly incorporate prior knowledge,

easily specify generative processes, and achieve better generalization

performance on out-of-distribution data. However, to fully harness these

benefits, Bayesian tools must be accessible to practitioners and com-

petitive with non-Bayesian alternatives both in terms of usability and

computational efficiency. Despite substantial progress in the development

of Bayesian techniques, many existing approaches remain computation-

ally demanding, particularly when dealing with large-scale datasets or

complex Bayesian models.

In this thesis, our objective was to develop fast and scalable Bayesian

Machine Learning techniques. As highlighted in the introduction, these

methods have the potential to:

1. Unlock new applications, particularly in large-scale settings where

computational efficiency is crucial.

2. Serve as default baselines against which high-cost, high-fidelity

methods can be compared and evaluated.

3. Provide informative priors for high-cost, high-fidelity methods,

potentially reducing overall computational costs by guiding the

exploration of the parameter space.

The following summary briefly outlines each paper and its impact,

keeping these motivations at the forefront.

6.1 Summary & Impact

Laplace Matching

Gaussian distributions play a central role in probabilistic machine learn-

ing due to their ubiquity, well-established theoretical foundations, and

desirable properties for Bayesian inference. Consequently, many tools and

frameworks in the field are built around Gaussians or assume Gaussian

distributions as the default choice. However, not all data types are well

approximated by Gaussians. For instance, some distributions, such as the

Beta distribution, are defined on the probability simplex, while others,

like the Gamma distribution, are restricted to positive real numbers.

These non-Gaussian distributions are often less well understood and may

lack the extensive toolbox and favorable traits associated with Gaussians. Remark 6.1 (“Gaussian Inference is
Linear Algrebra”) Or how Philipp

would say, “Gaussian Inference is lin-

ear algebra at its core” (PML, Lecture

06, slide 28).

In this chapter, we presented Laplace Matching, a simple technique that

extends the advantages of Gaussian inference to every datatype with

an exponential family conjugate prior. The key idea behind Laplace

Matching is to transform the random variable of the exponential family

into a different basis where it can be better approximated by a Gaussian

distribution. By performing a Laplace approximation in this transformed
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basis, we establish a bi-directional mapping between the parameters of

the exponential family and the Gaussian distribution.

Laplace Matching is easy to implement and fast. It can be applied to

any Gaussian latent model on non-Gaussian data with an exponential

family conjugate prior, encompassing a wide range of commonly used

probabilistic models. This versatility positions Laplace Matching as a

powerful tool in the arsenal of probabilistic modeling techniques.

By leveraging Laplace Matching, we enabled novel applications. One

notable example is the modeling of currency covariances using a latent

Gaussian model, showcasing the potential of Laplace Matching to tackle

high-dimensional complex problems. Furthermore, we conducted exten-

sive comparisons, using Laplace Matching as a baseline against various

high-fidelity high-cost methods. Notably, Laplace Matching achieves

performance levels comparable to these more computationally intensive

approaches while maintaining a significant advantage in terms of speed,

often outperforming them by several orders of magnitude. This effi-

ciency aligns well with our goal of developing fast and effective inference

techniques.

Laplace Bridge for Bayesian Neural Networks

The Laplace Bridge for Bayesian Neural Networks is a noteworthy appli-

cation of Laplace Matching. In classification neural networks, the final

layer can be interpreted as a latent Gaussian model with probability

outputs. The conventional approach involves sampling from this Gaus-

sian distribution and then individually transforming each sample using

the softmax function. However, the Laplace Bridge offers an alternative

method. Instead of transforming individual samples, the Laplace Bridge

enables the direct transformation of the entire Gaussian distribution into

a Dirichlet distribution over the outputs. This approach provides a more

principled and efficient way of obtaining a probabilistic representation

of the network’s predictions.

We demonstrated that the performance of our proposed method is com-

parable to other commonly used techniques while offering a significant

advantage in computational efficiency. This increased speed allows for

seamless scaling of the transformation to high-dimensional datasets,

such as Imagenet with its 1000 classes. Moreover, the properties of the

Dirichlet distribution enable novel approaches and techniques. For in-

stance, by leveraging the fact that marginals of Dirichlet distributions are

also Dirichlet distributions, we developed an uncertainty-aware top-k

method. This method utilizes the uncertainty estimates provided by

the neural network to individually determine the number of classes the

network seriously considers for each image. By incorporating uncertainty

information into the decision-making process, our approach offers a

more nuanced and reliable classification framework that goes beyond

simply choosing the same constant top-k classes for every image.

Flexible inference in heterogeneous and attributed multilayer networks

We extended the application of Laplace Matching from linear mod-

els to a broader framework for fast Bayesian inference in probabilistic
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networks. This new framework, PIHAM (Probabilistic Inference in Het-

erogeneous and Attributed Multilayer Networks), accommodates sums,

multiplications, and differentiable transformations.

PIHAM is demonstrated through network inference, specifically designed

for both directed and undirected networks with heterogeneous attributes

across multiple layers. It effectively combines diverse data types about

individuals in a social network, such as personal attributes (e.g. religion

or net worth) and inter-individual relationships, which may be binary,

count, or real-valued.

The framework employs appropriate probability distributions for differ-

ent data types (e.g., Poisson for count data and Bernoulli for binary data)

and defines a joint latent model where all parameters are transformed

Gaussians. Automatic Differentiation is then used to obtain a Laplace

approximation for all Gaussian latent variables. Finally, Laplace Match-

ing transforms these Gaussian latent variables back to their intended

domains for analysis.

We applied PIHAM to a real-world dataset describing relationships

and attributes in a small Indian village. The method successfully inte-

grated diverse information types and identified plausible community

structures.

The applicability of this framework extends beyond network inference

to any probabilistic model involving sums, products, and differentiable

transformations, broadening its potential use cases significantly.

6.2 Future Work

This thesis represents a small portion of a potentially vast and ambitious

research endeavor. In the following, we explore two research directions

that naturally extend from the work presented here, serving as logical

next steps in advancing the field of fast Bayesian inference.

Fast Bayesian approximate inference for arbitrary probabilistic
graphical models

In this thesis, we initially focused on developing a fast approximate

Bayesian inference scheme for latent Gaussian models and subsequently

extended it to a subset of probabilistic graphical models that involve

multiplication and addition operations. However, it is important to

acknowledge that our current frameworks have limitations in their

applicability to arbitrary probabilistic graphical models. Specifically,

they lack the capability to handle conditionals, which is a significant

constraint.

Several general Bayesian inference frameworks, such as Variational In-

ference and Markov Chain Monte Carlo methods, provide the flexibility

to specify arbitrary probabilistic graphical models. These frameworks

offer a powerful toolset for modeling complex relationships and depen-

dencies among variables in a probabilistic setting. In addition to these

inference frameworks, various probabilistic programming languages

have emerged to facilitate the specification and practical implementation
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of probabilistic graphical models. These languages allow practitioners to

define their desired model in a concise and intuitive manner, abstracting

away the intricacies of the underlying inference algorithms. By providing

a high-level interface, probabilistic programming languages enable users

to focus on the model design while seamlessly leveraging the inference

capabilities of the chosen framework.

An ambitious goal would be to develop a fast approximate inference

framework that leverages transformation of variables, Laplace approx-

imations, automatic differentiation, and other statistical techniques to

handle arbitrary probabilistic graphical models. This framework could be

seamlessly integrated into existing probabilistic programming languages

in multiple ways, offering significant benefits to users.

Firstly, the framework could serve as a standalone feature, empowering

users to scale their methods to much larger dataset and model sizes

compared to what is currently feasible with existing approaches.

Secondly, the framework could support a two-stage approach, where

high-fidelity-high-cost methods utilize the posteriors obtained from the

fast techniques as priors. By leveraging the outputs of the fast inference

framework as informative priors, the overall computational costs of the

high-fidelity methods could be significantly reduced. The success of this

two-stage approach hinges on the quality of the approximations provided

by the fast inference framework. If the approximations are sufficiently

accurate, they can serve as effective priors for the high-fidelity methods,

guiding them towards the desired solution more efficiently. By providing

a good starting point, the fast approximations can potentially reduce

the number of iterations and computational resources required by the

high-fidelity methods to converge to a satisfactory result.

A key challenge in developing such a framework lies in finding effi-

cient approximations for updates through conditionals. Traditionally,

expensive sampling methods have been employed to address conditional

distributions. However, in certain cases, innovative approaches like the

reparametrization trick (Kingma et al., 2013) can be used for faster auto-

matic differentiation for conditional distributions. The reparametrization

trick has been successfully applied to continuous distributions (Maddison

et al., 2017), discrete distributions (Tokui et al., 2016), and even acquisition

functions (J. T. Wilson et al., 2017). An initial step towards developing

a framework for fast Bayesian approximate inference would involve

integrating these various reparametrization techniques with other rapid

inference methods.

Scale fast Bayesian inference to large Neural Networks

Neural networks have achieved remarkable progress in recent years, en-

abling a wide range of new applications across various domains. Despite

their impressive performance, understanding the internal mechanisms

and decision-making processes of neural networks remains a significant

challenge. Moreover, properly quantifying the uncertainty associated

with the parameters of neural networks is another important aspect that

requires attention.
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A natural extension of this thesis would be to explore scalable techniques

that combine the strengths of neural networks and probabilistic graphical

models. The aim would be to develop systems that leverage neural

networks for perception, translating stimuli into more abstract variables,

and then employ probabilistic graphical models to manipulate these

abstract variables. Ideally, this approach would enable a more robust

understanding and enhanced steerability of the overall system.

There are already multiple approaches that combine probabilistic infer-

ence and neural networks in various ways.

For example, Johnson et al. (2016) use a probabilistic graphical model

as a latent backbone and a variational autoencoder as a recognition

network that translates between the raw data and the latent variables.

The structure is jointly trained with a single objective. While the theory

is appealing, the training is numerically challenging, more error-prone,

and slower than typical training for both single components would be.

As a second example, consider Normalizing Flows (Kobyzev et al., 2019),

which describe a transformation of a simple probability distribution (e.g.,

a Gaussian) into a different distribution by a sequence of invertible and

differentiable mappings. These mappings are often learned using neural

networks and can thereby learn a generative distribution of complex

datatypes such as images.

Thirdly, GFlowNets (Bengio et al., 2021) learn a flow function, forward &

backward transition policies and a termination probability. This allows

them to dynamically generate new flow graphs by taking the current

state as an input and sampling an action based on it. E. J. Hu et al. (2023)

drastically improves the chain-of-thought performance of an LLM by

interpreting reasoning as a probabilistic inference problem and then

fine-tuning the LLM using a GFlowNet diversity-seeking reinforcement

learning objective. While the resulting LLM does not explicitly use a

graphical model to do the reasoning, it is implicitly learned through the

objective function and thus the resulting policy is more interpretable.

While normalizing Flows and GFlowNets have shown state-of-the-art

results for their scale, they are still more costly to train than standard

neural networks. A natural extension of this thesis would be to look for

tricks and approximations for both of these approaches that prioritize

speed above everything else but allow to scale them up even further to

the largest state-of-the-art models.
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A.1 Example Transformation

It is well-known that a chi-square distribution with 𝑘 degrees of freedom

describes the sum of the squares of 𝑘 independent, standard normal

random variables. To introduce a certain ‘trick’ we show the forward and

backward transformation between chi-square and normal distribution

when 𝑘 = 1. The trick deals with the problem that the square-root is not

a bĳective transformation and has to be split into multiple ranges.

Let 𝑋 be normal with 𝜇 = 0, 𝜎2 = 1. Let 𝑌 = 𝑋2
and therefore 𝑔(𝑥) = 𝑥2

,

which is neither monotonic nor injective. Take 𝐼1 = (−∞, 0) and 𝐼2 =

[0,+∞). Then 𝑔 is monotonic and injective on 𝐼1 and 𝐼2 and 𝐼1 ∪ 𝐼2 = ℝ.

𝑔(𝐼1) = (0,∞) and 𝑔(𝐼2) = [0,∞). Then 𝑔−1

1
: [0,∞) → ℝ by 𝑔−1

1
(𝑦) =

−√𝑦 and 𝑔−1

2
: [0,∞) → ℝ by 𝑔−1

2
(𝑦) = √

𝑦. Let furthermore 1𝑟(𝑦) be

one if 𝑦 is the range 𝑟 and 0 otherwise. The derivative is given by�����𝜕𝑔−1

𝑖
(𝑦)

𝜕𝑦

����� = ���� 1

2

√
𝑦

���� = 1

2

√
𝑦

Applying a change of variable (Equation 2.4) we transform a standard

normal distribution to a chi-square distribution.

𝑓𝑌(𝑦) = 𝑓𝑋(𝑔−1

1
(𝑦))

�����𝜕𝑔−1

1
(𝑦)

𝜕𝑦

����� 1𝑟(𝑦) + 𝑓𝑋(𝑔−1

2
(𝑦))

�����𝜕𝑔−1

2
(𝑦)

𝜕𝑦

����� 1𝑟(𝑦) (A.1a)

=
1√
2𝜋

exp(−
𝑦

2

) 1

2

√
𝑦
+ 1√

2𝜋
exp(−

𝑦

2

) 1

2

√
𝑦

(𝑦 > 0) (A.1b)

=
1√
2𝜋

1√
𝑦

exp(− 𝑦
2

) (A.1c)

=
1

2

1

2

1

Γ( 1

2
)
𝑦−

1

2 exp(−1

2

) (A.1d)

= 𝜒2(1) (A.1e)

The ‘trick’ was to split up the variable transformation in two parts

to adjust for the fact that the square-root is not bĳective on ℝ. We

can reverse the same procedure to transform a chi-square to a normal

distribution. We keep the variable names from before. Let 𝑋 =
√
𝑌 and

therefore ℎ(𝑥) =
√
𝑥. Then ℎ−1

1
: ℝ → (−∞, 0) by ℎ−1

1
(𝑥) = −𝑥2

and

ℎ−1

2
: ℝ → [0,∞) by ℎ−1

2
(𝑥) = 𝑥2

. Then�����𝜕ℎ−1

𝑖
(𝑦)

𝜕𝑦

����� = |2𝑦 | (A.2)
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and

𝑓𝑋(𝑥) = 𝑓𝑦(ℎ−1

1
(𝑥))

�����𝜕ℎ−1

1
(𝑦)

𝜕𝑦

����� 1𝑟(𝑦) + 𝑓𝑦(ℎ−1

2
(𝑥))

�����𝜕ℎ−1

2
(𝑦)

𝜕𝑦

����� 1𝑟(𝑦)

=
1√
2𝜋

1

2

√
𝑥2

exp(−𝑥
2

2

)|2𝑥 |1(−∞,0)(𝑥) +
1√
2𝜋

1

2

√
𝑥2

exp(− 𝑥
2

2

)|2𝑥 |1[0,∞)(𝑥)

(A.3a)

=
1√
2𝜋

exp(−𝑥
2

2

) (A.3b)

= N (𝑥;𝜇 = 0, 𝜎2 = 1) (A.3c)

which is defined on the entirety of ℝ.

A generalization to matrices

A positive definite matrix 𝐴 has 𝑛 distinct eigenvalues and 2
𝑛

possible

square roots. 𝐴 has a decomposition 𝐴 = 𝑈𝐷𝑈−1
where 𝑈s columns

are the eigenvectors of 𝐴 and 𝐷 is a diagonal matrix containing the

eigenvalues 𝜆𝑖 of 𝐴. Any square root of 𝐴 is given by 𝐴
1

2 = 𝑈𝐷
1

2𝑈−1
.

Since there are two possible choices for the square root of each eigenvalue

+
√
𝜆𝑖 and −

√
𝜆𝑖 there are 2

𝑛
possible choices for the matrix 𝐷

1

2 .

If the matrix 𝐴 is symmetric and positive definite, its square root 𝐴
1

2 is

also symmetric because of the decomposition 𝐴 = 𝑈𝐷𝑈−1
. The square

root of 𝐴 that uses only the positive square roots of the eigenvalues is

called the principle square root of 𝐴.

The Gamma distribution is the 1-dimensional special case of the Wishart

distribution and therefore has 2
1 = 2 possible options for 𝜆

1

2 , namely

−𝜆 1

2 and +𝜆 1

2 . Higher dimensional functions such as Wishart and inverse

Wishart have 2
𝑛

different possibilities which have to be accounted for

within the transformation.

A.2 Derivations of the Transformations

A.2.1 Exponential Distribution

Standard Exponential Distribution

The pdf of the exponential distribution is

𝑝(𝑥 |𝜆) = 𝜆 exp(−𝜆𝑥) (A.4a)

= exp [−𝜆𝑥 + log𝜆] (A.4b)

with exponential family values ℎ(𝑥) = 1, 𝜙(𝑥) = 𝑥, 𝑤 = −𝜆 and 𝑍(𝜆) =
− log𝜆.
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Laplace Approximation of the Exponential Distribution

log-pdf: (log𝜆 − 𝜆𝑥)
1st derivative: − 𝜆

2nd derivative: 0

The Laplace Approximation in the standard base is not defined since the

second derivative is not positive.

Log-transformed Exponential Distribution

We choose 𝑋 = log(𝑌) with 𝑔(𝑥) = log(𝑥) and 𝑥(𝑦) = 𝑔−1(𝑦) = exp(𝑦).
Also,

��� 𝜕𝑥(𝑦)𝜕𝑦

��� = exp(𝑦). It follows that the pdf in log-basis is

E𝑌log
(𝑦;𝜆) = 𝜆 exp(−𝜆𝑥(𝑦)) · exp(𝑦) (A.5a)

= 𝜆 exp(−𝜆 exp(𝑦) + 𝑦) (A.5b)

= exp [−𝜆 exp(𝑦) + 𝑦 + log𝜆] (A.5c)

with exponential family values ℎ(𝑦) = 1, 𝜙(𝑥) = (𝑦, exp(𝑦)), 𝑤 = (1,−𝜆)
and 𝑍(𝜆) = log𝜆.

Laplace Approximation of the log-transformed Exponential Distribution

log-pdf: − 𝜆 exp(𝑦) + 𝑦 + log𝜆

1st derivative: − 𝜆 exp(𝑦) + 1

mode: 𝑦 = log(1/𝜆)
2nd derivative: − 𝜆 exp(𝑦)

insert mode: − 𝜆 exp(1/𝜆) = −1

invert & times -1: 𝜎2 = 1

Therefore, the Laplace approximation in the transformed basis is given

by N (𝑦, log(1/𝜆), 1).

The Bridge for the log-transformed Exponential Distribution

We have already found 𝜇 and 𝜎. The inverse transformation is easily

found through 𝜇 = log(1/𝜆) ⇔ 𝜆 = 1/exp(𝜇). In summary:

𝜇 = log(1/𝜆) (A.6a)

𝜎2 = 1 (A.6b)

𝜆 = 1/exp(𝜇) (A.6c)

A visual interpretation can be found in Figure A.1.
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Figure A.1: log-Bridge for the Exponen-

tial distribution

0 2 4

g(x)

p(
g
(x

))
d
g
(x

)

Laplace in standard basis

E

−5.0 −2.5 0.0 2.5

x

p(
x

)d
x

Laplace in log basis

E
N

0 2 4

g(x)

p(
g
(x

))
d
g
(x

)

Back to standard basis

E
N

Sqrt-transformed Exponential Distribution

We transform the Exponential distribution with the sqrt-transformation,

i.e. 𝑌 =
√
𝑋, 𝑔(𝑥) =

√
𝑥, 𝑥1(𝑦) = 𝑔−1

1
(𝑦) = −𝑦2 , 𝑥2(𝑦) = 𝑔−1

2
(𝑦) = 𝑦2

and��� 𝜕𝑥𝑖 (𝑦)𝜕𝑦

��� = ��� 𝜕𝑔−1

𝑖
(𝑦)

𝜕𝑦

��� = |2𝑦 |.

E𝑌sqrt
(𝑦;𝜆) = 𝜆 exp(−𝜆𝑦2) · 2𝑦 (A.7a)

= 2 · exp

[
log(𝑦) − 𝜆𝑦2 + log𝜆

]
(A.7b)

with exponential family values ℎ(𝑦) = 2, 𝜙(𝑦) = (log(𝑦), 𝑦2)), 𝑤 =

(1,−𝜆) and 𝑍(𝜆) = log𝜆.

Laplace Approximation of the sqrt-transformed Exponential
Distribution

log-pdf: log(𝑦) − 𝜆𝑦2 + log𝜆

1st derivative:

1

𝑦
− 2𝜆𝑦

mode: 𝑦 =

√
1

2𝜆

2nd derivative: − 1

𝑦2

− 2𝜆

insert mode: − 1

1

2𝜆

− 2𝜆 = −4𝜆

invert & times -1: 𝜎2 =
1

4𝜆

Therefore the resulting Gaussian is N
(
𝑦;𝜇 =

√
1

2𝜆 , 𝜎
2 = 1

4𝜆

)
The Bridge for the sqrt-transformed Exponential Distribution

To get the inverse of the Bridge in the sqrt-base we can invert the mode

𝜇 =

√
1

2𝜆 ⇔ 1

2𝜇2
. In summary we have

𝜇 =

√
1

2𝜆
(A.8a)

𝜎2 =
1

4𝜆
(A.8b)

𝜆 =
1

2𝜇2

(A.8c)
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A visual interpretation can be found in Figure A.2.
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Figure A.2: sqrt-bridge for the Exponen-

tial distribution. Transformed samples

indicate that the closed-form transforma-

tion is correct.

A.2.2 Gamma Distribution

Standard Gamma Distribution

The pdf of the Gamma distribution in the standard base is

G𝑋(𝑥, 𝛼,𝜆) =
𝜆𝛼

Γ(𝛼) · 𝑥
(𝛼−1) · 𝑒(−𝜆𝑥) (A.9)

where Γ(𝛼) is the Gamma function. This can be written as

G𝑋(𝑥, 𝛼,𝜆) = exp [(𝛼 − 1) log(𝑥) − 𝜆𝑥 + 𝛼 log(𝜆) − log(Γ(𝛼))] (A.10a)

=
1

𝑥
exp [𝛼 log(𝑥) − 𝜆𝑥 + 𝛼 log(𝜆) − log(Γ(𝛼))] (A.10b)

with exponential family values ℎ(𝑥) = 1

𝑥 , 𝜙(𝑥) = (log 𝑥, 𝑥), 𝑤 = (𝛼,−𝜆)
and 𝑍(𝛼,𝜆) = log(Γ(𝛼)) − 𝛼 log(𝜆).

Laplace Approximation of the Gamma Distribution

log-pdf: log

(
𝜆𝛼

Γ(𝛼) · 𝑥
(𝛼−1) · 𝑒(−𝜆𝑥)

)
= 𝛼 · log(𝜆) − log(Γ(𝛼)) + (𝛼 − 1) log(𝑥) − 𝜆𝑥

1st derivative:

(𝛼 − 1)
𝑥

− 𝜆

mode:

(𝛼 − 1)
𝑥

− 𝜆 = 0 ⇔ 𝑥 =
𝛼 − 1

𝜆

2nd derivative: − (𝛼 − 1)
𝑥2

insert mode: − (𝛼 − 1)
( 𝛼−1

𝜆 )2
= − 𝜆2

𝛼 − 1

invert and times -1: 𝜎2 =
𝛼 − 1

𝜆2

The Laplace approximation of the Gamma distribution is therefore

N
(
𝑥;

𝛼−1

𝜆 , 𝛼−1

𝜆2

)
.
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Log-Transform of the Gamma Distribution

We transform the Gamma Distribution with the Log-Transformation,

i.e. 𝑌 = log(𝑋), 𝑔(𝑥) = log(𝑥), 𝑥(𝑦) = 𝑔−1(𝑥) = exp(𝑥). Also,

��� 𝜕𝑥(𝑦)𝜕𝑦

��� =
exp(𝑦). The transformed pdf is

G𝑌log
(𝑦, 𝛼,𝜆) = 𝜆𝛼

Γ(𝛼) · 𝑥(𝑦)
(𝛼−1) · 𝑒−𝜆𝑥(𝑦) · exp(𝑦) (A.11a)

=
𝜆𝛼

Γ(𝛼) · exp(𝑦)𝛼 · 𝑒−𝜆 exp(𝑦)
(A.11b)

= exp [𝛼𝑦 − 𝜆 exp(𝑦) − Γ(𝛼) + 𝛼 log(𝜆)] (A.11c)

with exponential family parameters ℎ(𝑦) = 1, 𝜙(𝑦) = (𝑦, exp(𝑦)), 𝜂 =

(𝛼,−𝜆) and 𝑍(𝛼,𝜆) = log(Γ(𝛼)) − 𝛼 log(𝜆).

Laplace Approximation of the log-transformed Gamma Distribution

log-pdf: = 𝛼 log(𝜆) − log(Γ(𝛼)) + 𝛼𝑦 − 𝜆 exp(𝑦)
1st derivative: 𝛼 − 𝜆 exp(𝑦)

mode: 𝛼 − 𝜆 exp(𝑦) = 0 ⇔ 𝑦 = log

(𝛼
𝜆

)
2nd derivative: − 𝜆 exp(𝑦)

insert mode: − 𝜆 exp(log

(𝛼
𝜆

)
) = −𝛼

invert and times -1: 𝜎2 =
1

𝛼

The resulting Gaussian is N (𝑦; log

( 𝛼
𝜆

)
, 1

𝛼 ).

The bridge for the log-transformation

We already know how to get 𝜇 and 𝜎 from 𝜆 and 𝛼. To invert we calculate

𝜇 = log(𝛼/𝜆) ⇔ 𝜆 = 𝛼/exp(𝜇) and insert 𝛼 = 1/𝜎2
. In summary we

have

𝜇 = log

(𝛼
𝜆

)
(A.12a)

𝜎2 =
1

𝛼
(A.12b)

𝜆 =
1

exp(𝜇)𝜎2

(A.12c)

𝛼 =
1

𝜎2

(A.12d)

A visual interpretation can be found in Figure A.3.

Sqrt-Transform of the Gamma Distribution

We transform the Gamma Distribution with the sqrt-transformation, i.e.

𝑌 =
√
𝑋, 𝑔(𝑥) =

√
𝑥, 𝑥1(𝑦) = 𝑔−1

1
(𝑦) = −𝑦2 , 𝑥2(𝑦) = 𝑔−1

2
(𝑦) = 𝑦2

and
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Figure A.3: log-bridge for Gamma distri-

bution

��� 𝜕𝑥𝑖 (𝑦)𝜕𝑦

��� = ��� 𝜕𝑔−1

𝑖
(𝑦)

𝜕𝑦

��� = |2𝑦 |. We use the same ‘trick’ as in Appendix A.1 to

split up the transformation in two parts.

G𝑌(𝑦) =
1

2

· G𝑋(𝑥1(𝑦))
����𝜕𝑥1(𝑦)

𝜕𝑦

���� 1𝑟(𝑦) +
1

2

· G𝑋(𝑥2(𝑦))
����𝜕𝑥2(𝑦)

𝜕𝑦

���� 1𝑟(𝑦)

(A.13a)

=
1

2𝑦2

exp[𝛼 log(𝑦2) − 𝜆𝑦2 − 𝐴(𝛼,𝜆)]|2𝑦 |1(−∞,0)(𝑦) +
1

2𝑦2

exp[𝛼 log(𝑦2) − 𝜆𝑦2 − 𝐴(𝛼,𝜆)]|2𝑦 |1[0,∞)(𝑦)

(A.13b)

=
1√
𝑦

exp[2𝛼 log(𝑦) − 𝜆𝑦2 − 𝐴(𝛼,𝜆)]1(−∞,+∞)(𝑦) (A.13c)

=
1√
𝑦

exp[2𝛼 log(𝑦) − 𝜆𝑦2 − 𝐴(𝛼,𝜆)] (A.13d)

which is defined on the entirety of ℝ and is an exponential family with

ℎ(𝑦) = 1

𝑦 , 𝜙(𝑦) = (log(𝑦), 𝑦2), 𝑤 = (2𝛼,−𝜆) and 𝑍(𝛼,𝜆) = log(Γ(𝛼)) −
𝛼 log(𝜆).

Laplace Approximation of the sqrt-transformed Gamma Distribution

log-pdf: (2𝛼 − 1) log(𝑦) − 𝜆𝑦2 + 𝛼 log(𝜆) − log(Γ(𝛼))

1st derivative:

2𝛼 − 1

𝑦
− 2𝜆𝑦

mode:

2𝛼 − 1

𝑦
− 2𝜆𝑦 = 0 ⇔ 𝑦 =

√
𝛼 − 0.5

𝜆

2nd derivative: − 2𝛼 − 1

𝑥2

− 2𝜆

insert mode: − 2𝛼 − 1

𝛼−0.5
𝜆

− 2𝜆 = −4𝜆

invert and times -1: 𝜎2 =
1

4𝜆

The resulting Gaussian is N
(
𝑦;

√
𝛼−0.5
𝜆 , 1

4𝜆

)
.
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The bridge for the sqrt-transformation

We already know how to get 𝜇 and 𝜎 from 𝜆 and 𝛼. To invert we calculate

𝜇 =

√
𝛼−0.5
𝜆 ⇔ 𝛼 =

𝜇2

𝜆 − 0.5 and insert 𝜆 = 4

𝜎2
. In summary we have

𝜇 =

√
𝛼 − 0.5

𝜆
(A.14a)

𝜎2 =
1

4𝜆
(A.14b)

𝜆 =
4

𝜎2

(A.14c)

𝛼 =
4𝜇2

𝜎2

+ 0.5 (A.14d)

A visual interpretation can be found in Figure A.4.

Figure A.4: sqrt-bridge for the Gamma

distribution. The transformed samples

indicate that the closed-form transforma-

tion is correct.
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A.2.3 Inverse Gamma Distribution

Standard Inverse Gamma Distribution

The pdf of the inverse Gamma is

IG(𝑥, 𝛼,𝜆) = 𝜆𝛼

Γ(𝛼)𝑥
−𝛼−1

exp(−𝜆
𝑥
) (A.15a)

= exp

1

𝑥
[−𝛼 log(𝑥) − 𝜆/𝑥 + 𝛼 log(𝜆) − logΓ(𝛼)] (A.15b)

with exponential family values ℎ(𝑥) = 1

𝑥 , 𝜙(𝑥) = (log(𝑥), 𝑥), 𝑤 =

(−𝛼,−𝜆) and 𝑍(𝛼,𝜆) = logΓ(𝛼) − 𝛼 log𝜆.
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Laplace Approximation of the standard inverse gamma distribution

log-pdf: (−𝛼 − 1) log(𝑦) − 𝜆/𝑥 + 𝛼 log(𝜆) − logΓ(𝛼)

1st derivative:

−𝛼 − 1

𝑦
+ 𝜆

𝑦2

mode:

−𝛼 − 1

𝑦
+ 𝜆

𝑦2

= 0 ⇔ 𝑦 =
𝜆

𝑎 + 1

2nd derivative:

𝛼 + 1

𝑦2

− 2

𝜆

𝑦3

insert mode:

𝛼 + 1

𝜆
𝑎+1

2

− 2

𝜆
𝜆
𝑎+1

3

= −(𝛼 + 1)3
𝜆2

invert and times -1: 𝜎2 =
𝜆2

(𝛼 + 1)3

Therefore the resulting Gaussian is 𝑞(𝑦) = N (𝑦;𝜇 = 𝜆
𝑎+1

, 𝜎2 = 𝜆2

(𝛼+1)3 ).

Log-Transform of the inverse Gamma distribution

We transform the Inverse Gamma distribution with the log-transformation,

i.e. 𝑌 = log(𝑋). Therefore 𝑔(𝑥) = log(𝑥), and thereby 𝑥(𝑦) = 𝑔−1(𝑥) =
exp(𝑦). It follows that the new pdf is

IG𝑌log
(𝑦, 𝛼,𝜆) = 𝜆𝛼

Γ(𝛼) exp(𝑦)−𝛼−1

exp(−𝜆/exp(𝑦)) · exp(𝑦) (A.16a)

=
𝜆𝛼

Γ(𝛼) exp(𝑦)−𝛼 exp(−𝜆/exp(𝑦)) (A.16b)

= exp

[
−𝛼𝑥 − 𝜆

exp(𝑥) − logΓ(𝛼) + 𝛼 log(𝜆)
]

(A.16c)

with exponential family values ℎ(𝑦) = 1, 𝜙(𝑦) = (𝑦, exp(𝑦)), 𝑤 = (−𝛼,𝜆)
and 𝑍(𝛼,𝜆) = logΓ(𝛼) − 𝛼 log𝜆.

Laplace Approximation of the log-transformed Inverse Gamma
Distribution

log-pdf: − 𝛼𝑦 − 𝜆

exp(𝑦) + 𝑍(𝛼,𝜆)

1st derivative: − 𝛼 + 𝜆

exp(𝑦)

mode: − 𝛼 + 𝜆

exp(𝑦) = 0 ⇔ 𝑦 = log(𝜆/𝛼)

2nd derivative: − 𝜆

exp(𝑦)

insert mode: − 𝜆

exp(log(𝜆/𝛼)) = −𝛼

invert and times -1: 𝜎2 =
1

𝛼

Therefore the resulting Gaussian is N (𝑦; log(𝜆𝛼 ), 1

𝛼 ).
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The Bridge for the log-transformed Inverse Gamma Distribution

Inverting the equations from above we get in summary

𝜇 = log

(
𝜆
𝛼

)
(A.17a)

𝜎2 =
1

𝛼
(A.17b)

𝛼 =
1

𝜎2

(A.17c)

𝜆 =
exp(𝜇)
𝜎2

(A.17d)

For a visual interpretation consider Figure A.5.

Figure A.5: inverse gamma log-bridge
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Sqrt-Transform of the inverse Gamma distribution

We transform the Inverse Gamma Distribution with the sqrt-transformation,

i.e. 𝑌 =
√
𝑋, 𝑔(𝑥) =

√
𝑥, 𝑥1(𝑦) = 𝑔−1

1
(𝑦) = −𝑦2 , 𝑥2(𝑦) = 𝑔−1

2
(𝑦) = 𝑦2

and��� 𝜕𝑥𝑖 (𝑦)𝜕𝑦

��� = ��� 𝜕𝑔−1

𝑖
(𝑦)

𝜕𝑦

��� = |2𝑦 |. We use the same ‘trick’ as in Appendix A.1 to

split up the transformation in two parts.

G−1

𝑌sqrt

(𝑦) = 1

2

· G−1

𝑋 (𝑥1(𝑦))
����𝜕𝑥1(𝑦)

𝜕𝑦

���� 1𝑟(𝑦) +
1

2

· G−1

𝑋 (𝑥2(𝑦))
����𝜕𝑥2(𝑦)

𝜕𝑦

���� 1𝑟(𝑦) (A.18a)

=
1

2

𝜆𝛼

Γ(𝛼) 𝑦
−2𝛼−1

exp(−𝜆/𝑦2))|2𝑦 |1(−∞,0)(𝑦) +
1

2

𝜆𝛼

Γ(𝛼) 𝑦
−2𝛼−1

exp(−𝜆/𝑦2))|2𝑦 |1[0,∞)(𝑦)

(A.18b)

=
𝜆𝛼

Γ(𝛼) 𝑦
−2𝛼−1

exp(−𝜆/𝑦2))1(−∞,+∞)(𝑦) (A.18c)

=
1√
𝑦

exp

[
(−2𝛼 − 1) log(𝑦) − 𝜆

𝑦2

− logΓ(𝛼) + 𝛼 log(𝜆)
]

(A.18d)

with exponential family values ℎ(𝑦) = 1√
𝑦
, 𝜙(𝑦) = (log(𝑦), 𝑦2), 𝑤 =

(−2𝛼,−𝜆) and 𝑍(𝛼,𝜆) = logΓ(𝛼) − 𝛼 log𝜆.
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Laplace Approximation of the sqrt-transformed Inverse Gamma
Distribution

log-pdf: (−2𝛼 − 1) log(𝑦) − 𝜆

𝑦2

+ 𝑍(𝑎,𝜆)

1st derivative: − 2𝛼 + 1

𝑦
+ 2

𝜆

𝑦3

mode: 𝑦 =

√
𝛼 + 0.5

𝜆

2nd derivative:

2𝛼 + 1

𝑦2

− 6

𝜆

𝑦4

insert mode: − 4

(𝛼 + 0.5)2
𝜆

invert and times -1: 𝜎2 =
𝜆

4(𝛼 + 0.5)2

yielding 𝑞(𝑦) = N (𝑦;𝜇 =

√
𝛼+0.5
𝜆 , 𝜎2 = 𝜆

4(𝛼+0.5)2 ).

The Bridge for the sqrt-transformed Inverse Gamma Distribution

We get 𝛼 and 𝜆 by inverting the equations for 𝜇 and 𝜎. In summary we

get

𝜇 =

√
𝜆
𝛼

(A.19a)

𝜎2 =
𝜆

4𝛼2

(A.19b)

𝛼 =
𝜇2

4𝜎2

− 0.5 (A.19c)

𝜆 =
𝜇4

4𝜎2

(A.19d)

For a visual interpretation consider Figure A.6.
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Figure A.6: inverse gamma sqrt-bridge.

Transformed samples indicate that the

closed-form transformation is correct.
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A.2.4 Chi-square Distribution

Standard Chi-square distribution

The pdf of the Chi-square distribution in the standard basis is

𝜒2

𝑋(𝑥, 𝑘) =
1

2
𝑘/2Γ(𝑘/2)

𝑥𝑘/2−1

exp(−𝑥/2) (A.20a)

=
1

𝑥
exp

[
(𝑘/2) log(𝑥) − 𝑥/2 − log(2𝑘/2Γ(𝑘/2))

]
(A.20b)

with exponential family values ℎ(𝑥) = 1

𝑥 , 𝜙(𝑥) = (log(𝑥), 𝑥), 𝑤 = 𝑘/2

and 𝑍(𝑘) = log(2𝑘/2Γ(𝑘/2)).

Laplace approximation of the standard Chi-square distribution

log-pdf: (𝑘/2 − 1) log(𝑥) − 𝑥/2 − log(2𝑘/2Γ(𝑘/2))

1st derivative:

𝑘/2 − 1

𝑥
− 1

2

mode:

𝑘/2 − 1

𝑥
− 1

2

= 0 ⇔ 𝑥 = 𝑘 − 2

2nd derivative: − 𝑘/2 − 1

𝑥2

insert mode: − 𝑘/2 − 1

(𝑘 − 2)2 = − (𝑘 − 2)
2(𝑘 − 2)2

invert and times -1: 𝜎2 = 2(𝑘 − 2)

The resulting Gaussian is therefore N (𝑥; 𝑘 − 2, 2(𝑘 − 2)) for 𝑘 > 2.

Log-Transformed Chi-square distribution

we transform the distribution with 𝑔(𝑥) = log(𝑥), i.e. 𝑥(𝑦) = 𝑔−1(𝑥) =
exp(𝑦). The new pdf becomes

𝜒2

𝑌log

(𝑦, 𝑘) = 1

2
𝑘/2Γ(𝑘/2)

exp(𝑦)𝑘/2−1

exp(− exp(𝑦)/2) · exp(𝑦) (A.21a)

=
1

2
𝑘/2Γ(𝑘/2)

exp(𝑦)𝑘/2

exp(− exp(𝑦)/2) (A.21b)

= exp

[
𝑘

2

𝑦 − exp(𝑦)
2

− log(2𝑘/2Γ(𝑘/2))
]

(A.21c)

with ℎ(𝑦) = 1, 𝜙(𝑦) = (𝑦, exp(𝑦)), 𝜂 = (𝑘/2) and𝑍(𝑘) = log(2𝑘/2Γ(𝑘/2)).
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Laplace approximation of the log-transformed Chi-square distribution

log-pdf:

𝑘

2

𝑦 − exp(𝑦)
2

− log(2𝑘/2Γ(𝑘/2))

1st derivative:

𝑘

2

− exp(𝑦)
2

mode: 𝑘/2 − exp(𝑦)
2

= 0 ⇔ 𝑦 = log(𝑘)

2nd derivative: − exp(𝑦)
2

insert mode: − exp(𝑦)
2

= −𝑘/2

invert and times -1: 𝜎2 = 2/𝑘

which yields the Laplace Approximation 𝑞(𝑦) = N (𝑦;𝜇 = log(𝑘), 𝜎2 =

2/𝑘).

The Bridge for log-transform

In summary we get

𝜇 = log(𝑘) (A.22a)

𝜎2 = 2/𝑘 (A.22b)

𝑘 = exp(𝜇) (A.22c)

or 𝑘 = 2/𝜎2

(A.22d)

For a visual interpretation consider Figure A.7.
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Figure A.7: Log-bridge for the Chi-

square distribution.

Sqrt-Transformed Chi-square distribution

We transform the chi-square distribution with the sqrt-transformation,

i.e. 𝑌 =
√
𝑋, 𝑔(𝑥) =

√
𝑥, 𝑥1(𝑦) = 𝑔−1

1
(𝑦) = −𝑦2 , 𝑥2(𝑦) = 𝑔−1

2
(𝑦) = 𝑦2

and��� 𝜕𝑥𝑖 (𝑦)𝜕𝑦

��� = ��� 𝜕𝑔−1

𝑖
(𝑦)

𝜕𝑦

��� = |2𝑦 |. We use the same ‘trick’ as in Appendix A.1 to

split up the transformation in two parts.
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𝜒2

𝑌sqrt

(𝑦) = 1

2

· 𝜒2

𝑋(𝑥1(𝑦))
����𝜕𝑥1(𝑦)

𝜕𝑦

���� 1𝑟(𝑦) +
1

2

· 𝜒2

𝑋(𝑥2(𝑦))
����𝜕𝑥2(𝑦)

𝜕𝑦

���� 1𝑟(𝑦) (A.23a)

=
1

2

1

2
𝑘/2Γ(𝑘/2)

𝑦𝑘−1

exp(− 𝑦
2

2

)|2𝑦 |1(−∞,0)(𝑦) +
1

2

1

2
𝑘/2Γ(𝑘/2)

𝑦𝑘−1

exp(− 𝑦
2

2

)|2𝑦 |1[0,∞)(𝑦)

(A.23b)

=
1

2
𝑘/2Γ(𝑘/2)

𝑦𝑘−1

exp(− 𝑦
2

2

)1(−∞,+∞)(𝑦) (A.23c)

= exp

[
(𝑘 − 1) log(𝑦) − 𝑦2

2

− log(2𝑘/2Γ(𝑘/2))
]

(A.23d)

with exponential family values ℎ(𝑦) = 1, 𝜙(𝑦) = (log(𝑦), 𝑦2), 𝑤 =

(𝑘, 1/2) and 𝑍(𝑘) = log(2𝑘/2Γ(𝑘/2)).

Laplace approximation of the sqrt-transformed Chi-square distribution

log-pdf: ((𝑘 − 1) log(𝑥) − 𝑥2

2

− log(2𝑘/2Γ(𝑘/2))

1st derivative:

𝑘

𝑥
− 𝑥

mode:

𝑘 − 1

𝑥
− 𝑥 = 0 ⇔ 𝑥 =

√
𝑘 − 1

2nd derivative: − 𝑘 − 1

𝑥2

− 1

insert mode: − 𝑘 − 1

𝑘 − 1

− 1 = −2

invert and times -1: 𝜎2 = 1/2

yielding 𝑞(𝑦) = N (𝑦;𝜇 =
√
𝑘, 𝜎2 = 1/2).

The Bridge for sqrt-transform

In summary we have

𝜇 =
√
𝑘 − 1 (A.24a)

𝜎2 = 1/2 (A.24b)

𝑘 = 𝜇2 + 1 (A.24c)

For a visual interpretation consider Figure A.8.

Figure A.8: Sqrt-bridge for the Chi-

square distribution. Transformed sam-

ples indicated that the closed-form trans-

formation is correct.
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A.2.5 Beta Distribution

Standard Beta Distribution

The pdf of the Beta distribution in the standard basis is

B(𝑥, 𝛼, 𝛽) = 𝑥(𝛼−1) · (1 − 𝑥)(𝛽−1)

𝐵(𝛼, 𝛽) (A.25a)

= exp [(𝛼 − 1) log(𝑥) + (𝛽 − 1) log(1 − 𝑥) − log(𝐵(𝛼, 𝛽)))]
(A.25b)

=
1

𝑥(1 − 𝑥) exp [𝛼 log(𝑥) + 𝛽 log(1 − 𝑥) − log(𝐵(𝛼, 𝛽)))]

(A.25c)

with exponential family values ℎ(𝑥) = 1

𝑥(1−𝑥) , 𝜙(𝑥) = (log(𝑥), log(1 −
𝑥), 𝑤 = (𝛼, 𝛽) and 𝑍(𝛼, 𝛽) = log(𝐵(𝛼, 𝛽))) where 𝐵(𝛼, 𝛽) = Γ(𝛼)Γ(𝛽)

Γ(𝛼+𝛽) and

Γ(𝑥) is the Gamma function.

Laplace approximation of the standard Beta distribution

log-pdf: log

(
𝑥(𝛼−1) · (1 − 𝑥)(𝛽−1)

𝐵(𝛼, 𝛽)

)
= (𝛼 − 1) log(𝑥) + (𝛽 − 1) log(1 − 𝑥) − log(𝐵(𝛼, 𝛽)))

1st derivative:

(𝛼 − 1)
𝑥

−
(𝛽 − 1)
1 − 𝑥

mode:

(𝛼 − 1)
𝑥

− (𝛽 − 1)
1 − 𝑥 = 0 ⇔ 𝑥 =

𝛼 − 1

𝛼 + 𝛽 − 2

2nd derivative:

𝛼 − 1

𝑥2

+ 𝛽 − 1

(1 − 𝑥)2

insert mode:

𝛼 − 1

𝛼−1

𝛼+𝛽−2

2

+ 𝛽 − 1

(1 − 𝛼−1

𝛼+𝛽−2
)2

=
(𝛼 + 𝛽 − 2)3
(𝛼 − 1)(𝛽 − 1)

invert:

(𝛼 − 1)(𝛽 − 1)
(𝛼 + 𝛽 − 2)3

The Beta distribution in standard basis is therefore approximated by

𝑁(𝜇 = 𝛼−1

𝛼+𝛽−2
, 𝜎2 =

(𝛼−1)(𝛽−1)
(𝛼+𝛽−2)3 ).

Logit-Transform of the Beta distribution

We transform the Beta distribution using 𝑔(𝑥) = log( 𝑥
1−𝑥 ). Therefore

𝑥(𝑦) = 𝑔−1(𝑦) = 𝜎(𝑦) = 1

1+exp(−𝑦) . This yields the following pdf

B𝑌
logit

(𝑦, 𝛼, 𝛽) = 1

𝜎(𝑦)(1 − 𝜎(𝑦)) exp [𝛼 log(𝜎(𝑦))) + 𝛽 log(1 − 𝜎(𝑦)) − log(𝐵(𝛼, 𝛽)))] · (𝜎(𝑦)(1 − 𝜎(𝑦))

(A.26a)

= exp [𝛼 log(𝜎(𝑦)) + 𝛽 log(1 − 𝜎(𝑦)) − log(𝐵(𝛼, 𝛽)))]
(A.26b)
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with exponential family values ℎ(𝑦) = 1, 𝜙(𝑦) = (log(𝜎(𝑦)), log(1 −
𝜎(𝑦)), 𝑤 = (𝛼, 𝛽) and 𝑍(𝛼, 𝛽) = log(𝐵(𝛼, 𝛽)).

Laplace approximation of the logit transformed Beta distribution

log-pdf: log

(
𝜎(𝑦)𝛼 · (1 − 𝜎(𝑦)𝛽)

𝐵(𝛼, 𝛽)

)
= 𝛼 log(𝜎(𝑦)) + 𝛽 log(1 − 𝜎(𝑥)) − log(𝐵(𝛼, 𝛽))

1st derivative: 𝛼(1 − 𝜎(𝑦)) − 𝛽𝜎(𝑦)

mode: 𝛼(1 − 𝜎(𝑦)) − 𝛽𝜎(𝑦) = 0 ⇔ 𝑦 = log(𝛼
𝛽
)

2nd derivative: (𝛼 + 𝛽)𝜎(𝑦)(1 − 𝜎(𝑦))

insert mode: (𝛼 + 𝛽)𝜎(− log(
𝛽

𝛼
))(1 − 𝜎(− log(

𝛽

𝛼
))) =

𝛼𝛽

𝛼 + 𝛽

invert:

𝛼 + 𝛽

𝛼𝛽

The Laplace approximation of the Beta in the logit base is therefore given

by N (𝑦;𝜇 = log( 𝛼𝛽 ), 𝜎2 =
𝛼+𝛽
𝛼𝛽 ).

The Bridge for the logit transformation

In summary we have

𝜇 = log

(
𝛼
𝛽

)
(A.27a)

𝜎2 =
𝛼 + 𝛽

𝛼𝛽
(A.27b)

𝛼 =
exp(𝜇) + 1

𝜎2

(A.27c)

𝛽 =
exp(−𝜇) + 1

𝜎2

(A.27d)

For a visual interpretation consider Figure A.9.

Figure A.9: beta logit bridge
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A.2.6 Dirichlet Distribution

Standard Dirichlet distribution

The pdf for the Dirichlet distribution in the standard basis (i.e. probability

space) is
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Dir(𝝅|𝜶) =
Γ

(∑𝐾
𝑘=1

𝛼𝑘
)∏𝐾

𝑘=1
Γ(𝛼𝑘)

𝐾∏
𝑘=1

𝜋𝛼𝑘−1

𝑘
(A.28a)

=
1

𝐵(𝛼)
𝐾∏
𝑘=1

𝜋𝛼𝑘−1

𝑘
(A.28b)

= exp

[∑
𝑘

(𝛼𝑘 − 1) log(𝜋𝑘) − log(𝐵(𝛼))
]

(A.28c)

=
1∏
𝑘 𝜋𝑘

exp

[∑
𝑘

𝛼𝑘 log(𝜋𝑘) − log(𝐵(𝛼))
]

(A.28d)

(A.28e)

with sufficient statistics 𝜙(𝑥𝑖) = log(𝑥𝑖), natural parameters𝑤𝑖 = 𝛼𝑖 , base

measure ℎ(𝑥) = ∏
𝑘 𝑥𝑘 , and partition function 𝑍(𝑤) = log(𝐵(𝛼)).

Laplace approximation of the standard Dirichlet distribution

log-pdf: 𝑓 =
∑
𝑘

(𝛼𝑘 − 1) log(𝑥𝑘) − log(𝐵(𝛼))

1st derivative:

𝜕 𝑓

𝜕𝑥𝑖
=

𝛼𝑖 − 1

𝑥𝑖

mode: 𝑥𝑖 =
(𝛼𝑖 − 1)∑
𝑘 𝛼𝑘 − 𝐾

2nd derivative:

𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
= −𝛿𝑖 𝑗

(𝛼𝑖 − 1)
𝑥2

𝑖

insert mode: − 𝛿𝑖 𝑗
(∑𝑘 𝛼𝑘 − 𝐾)2

(𝛼𝑖 − 1)

invert and times -1: Σ𝑖 𝑗 = 𝛿𝑖 𝑗
𝛼𝑖 − 1

(∑𝑘 𝛼𝑘 − 𝐾)2

Which yields a diagonal Covariance matrix for the Laplace approxima-

tion.

Softmax-Transform of the Dirichlet distribution

We aim to transform the basis of this distribution from base y via the

softmax transform to be in the new base 𝜋:

𝜋𝑘(y) :=
exp(𝑦𝑘)∑𝐾
𝑙=1

exp(𝑦𝑙)
, (A.29)

David J. MacKay used this transformation in (D. J. MacKay, 1998) already.

We provide another, potentially simpler, derivation for the Laplace

approximation of the Dirichlet in the softmax basis.

The softmax transform has no analytic inverse 𝜋−1

𝑘
(𝑦). However, the

inverse-softmax is not necessary for our computation since we assume

𝜋(𝑦) to be the inverse transformation already (i.e. 𝑔−1(𝑦) = 𝜋(𝑦)). Our

transformation is from a variable in ℝ𝑑
(which has 𝑑 degrees of freedom)

to a variable that is inℙ𝑑 (which has 𝑑−1 degrees of freedom). To account
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for the difference in size of the two spaces we create a helper variable for

the transformation as described in the following.

We want to transform 𝐷 variables 𝑦𝑖 from ℝ𝑑
to 𝜏𝑖 = exp(𝑦𝑖). For 𝜏𝑖 to

be equal to 𝜋𝑖 we need to ensure that it sums to 1, 𝑢 =
∑
𝑖 𝜏𝑖 = 1. With

the helper-variable 𝑢 our variable transform 𝑔(𝜋, 𝑢) becomes

𝑝𝑦,𝑢(𝜋(𝑦), 𝑢) = 𝑝𝜋,𝑢(𝜋(𝑦), 𝑢)| det 𝑔(𝜋(𝑦), 𝑢)| (A.30)

with

| det 𝑔(𝜋(𝑦), 𝑢)| =

����������det

©«

𝜕𝜏1

𝜕𝑦1

· · · 𝜕𝜏𝑘
𝜕𝑦1

𝜕𝑢
𝜕𝑦1

...
. . .

...
...

𝜕𝜏1

𝜕𝑦𝑘
· · · 𝜕𝜏𝑘

𝜕𝑦𝑘
𝜕𝑢
𝜕𝑦𝑘

𝜕𝜏1

𝜕𝑢 · · · 𝜕𝜏𝑘
𝜕𝑢

𝜕𝑢
𝜕𝑢

ª®®®®®¬

���������� (A.31a)

=

���������det

©«
𝜏1 = exp(𝑦1) · · · 0 𝜏1

...
. . .

...
...

0 · · · 𝜏𝑘 𝜏𝑘
0 · · · 0 1

ª®®®®¬
��������� (A.31b)

=

𝐾∏
𝑖

𝜏𝑖 (A.31c)

To get 𝑝𝑦(𝜋(𝑦)) we have to integrate out 𝑢.

𝑝𝑦(𝜋(𝑦)) =
∫ ∞

−∞
𝑝𝜋,𝑢(𝜋(𝑦), 𝑢)| det 𝑔(𝜋, 𝑢)|𝑑𝑢 (A.32a)

=

∫ ∞

−∞
𝑝𝜋(𝜋(𝑦))

𝐾∏
𝑖

𝜏𝑖𝑑𝑢 (A.32b)

= 𝑝𝜋(𝜋(𝑦))
∫ ∞

0

𝐾∏
𝑖

𝜏𝑖𝛿(𝑢 − 1)𝑑𝑢 (A.32c)

= 𝑝𝜋(𝜋(𝑦))
∫ ∞

0

𝐾∏
𝑖

𝜏𝑖
𝑢

𝑢
𝛿(𝑢 − 1)𝑑𝑢 (A.32d)

= 𝑝𝜋(𝜋(𝑦))
∫ ∞

0

𝐾∏
𝑖

𝜋𝑖𝑢︸  ︷︷  ︸
𝑓 (𝑢)

𝛿(𝑢 − 1)𝑑𝑢 (A.32e)

= 𝑝𝜋(𝜋(𝑦)) ·
𝐾∏
𝑖

𝜋𝑖(𝑦) (A.32f)

=
1∏

𝑘 𝜋𝑘(𝑦)
exp

[∑
𝑘

𝛼𝑘 log(𝜋𝑘(𝑦)) − log(𝐵(𝛼))
]

𝐾∏
𝑘

𝜋𝑘(𝑦)

(A.32g)

= exp

[∑
𝑘

𝛼𝑘 log(𝜋(𝑦𝑘)) − log(𝐵(𝛼))
]

(A.32h)

where we used the fact that 𝑢 > 0 since it is a sum of exponentials and

𝜏𝑖 (𝑦)
𝑢 = 𝜋𝑖(𝑦). We multiplied with 𝛿(𝑢 − 1) since this transformation is

only valid if

∑
𝑖 𝜏𝑖 = 𝑢 = 1 because otherwise it is not a probability space.
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Additionally, we use ∫ ∞

−∞
𝑓 (𝑥)𝛿(𝑥 − 𝑡)𝑑𝑥 = 𝑓 (𝑡) (A.33)

which is known as the shifting property or sampling property of the Dirac

delta function 𝛿. Using all of the above we get the pdf of the Dirichlet

distribution in the new basis y:

Diry(𝝅(y)|𝜶) :=
Γ

(∑𝐾
𝑘=1

𝛼𝑘
)∏𝐾

𝑘=1
Γ(𝛼𝑘)

𝐾∏
𝑘=1

𝜋𝑘(y)𝛼𝑘 (A.34a)

= exp

[∑
𝑘

𝛼𝑘 log(𝜋(𝑦𝑘)) − log(𝐵(𝛼))
]

(A.34b)

with sufficient statistics 𝜙(𝑦𝑖) = log(𝜋𝑖(𝑦)), natural parameters 𝑤𝑖 = 𝛼𝑖 ,
base measure ℎ(𝑦) = 1 and normalizing constant 𝑍 = log(𝐵(𝛼)).

Laplace approximation of the softmax-transformed Dirichlet
distribution

The inversion of the Laplace approximation in the softmax basis has

been provided in (Hennig, 2010). The following is merely a summary.

The mean and mode of the inverse-softmax Dirichlet are identical, i.e.

𝝅(y) = 𝛼∑
𝑖 𝛼𝑖

. For a visual confirmation of this fact, consider the figure

of the Beta distribution in Subsection A.2.5. Additionally, the elements

of y must sum to zero. These two constraints combined yield only one

possible solution for 𝝁.

𝜇𝑘 = log 𝛼𝑘 −
1

𝐾

𝐾∑
𝑙=1

log 𝛼𝑙 (A.35)

Calculating the covariance matrix 𝚺 is more complicated but detailed in

the following. The logarithm of the Dirichlet is, up to additive constants

log 𝑝𝑦(𝑦 |𝛼) =
∑
𝑘

𝛼𝑘𝜋𝑘 (A.36)

Using 𝜋𝑘 as the softmax of y as shown in Equation A.29 we can find the

elements of the Hessian L

𝐿𝑘𝑙 = �̂�(𝛿𝑘𝑙𝜋𝑘 − 𝜋𝑘𝜋𝑙) (A.37)

where �̂� :=
∑
𝑘 𝛼𝑘 and �̂� =

𝛼𝑘
�̂� for the value of 𝝅 at the mode. Analytically

inverting L is done via a lengthy derivation using the fact that we can

write L = 𝑨 + 𝑿𝑩𝑿⊤
and inverting it with the Schur-complement. This

process results in the inverse of the Hessian

𝐿−1

𝑘𝑙
= 𝛿𝑘𝑙

1

𝛼𝑘
− 1

𝐾

[
1

𝛼𝑘
+ 1

𝛼𝑙
− 1

𝐾

(
𝐾∑
𝑢

1

𝛼𝑢

)]
(A.38)

We are mostly interested in the diagonal elements, since we desire a

sparse encoding for computational reasons and we otherwise needed

to map a 𝐾 × 𝐾 covariance matrix to a 𝐾 × 1 Dirichlet parameter vector

which would be a very overdetermined mapping. Note that 𝐾 is a scalar
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not a matrix. The diagonal elements of 𝚺 = L−1
can be calculated as

Σ𝑘𝑘 =
1

𝛼𝑘

(
1 − 2

𝐾

)
+ 1

𝐾2

𝑘∑
𝑙

1

𝛼𝑙
. (A.39)

To invert this mapping we transform Equation B.17 to

𝛼𝑘 = 𝑒𝜇𝑘
𝐾∏
𝑙

𝛼1/𝐾
𝑙

(A.40)

by applying the logarithm and re-ordering some parts. Inserting this into

Equation B.21 and re-arranging yields

𝐾∏
𝑙

𝛼1/𝐾
𝑙

=
1

𝚺𝑘𝑘

[
𝑒−𝜇

(
1 − 2

𝐾

)
+ 1

𝐾2

𝐾∑
𝑢

𝑒−𝜇𝑢

]
(A.41)

which can be re-inserted into Equation B.22 to give

𝛼𝑘 =
1

Σ𝑘 𝑘

(
1 − 2

𝐾
+ 𝑒−𝜇𝑘

𝐾2

𝐾∑
𝑙

𝑒−𝜇𝑘

)
(A.42)

which is the final mapping. With Equations B.17 and B.21 we are able to

map from Dirichlet to Gaussian and with Equation A.42 we are able to

map the inverse direction.

The Bridge for the inverse-softmax transform

In summary we get the following forward and backward transformations

between y ∈ ℝ𝑑
and 𝜋 ∈ ℙ𝑑.

𝜇𝑘 = log 𝛼𝑘 −
1

𝐾

𝐾∑
𝑙=1

log 𝛼𝑙 , (A.43a)

Σ𝑘ℓ = 𝛿𝑘ℓ
1

𝛼𝑘
− 1

𝐾

[
1

𝛼𝑘
+ 1

𝛼ℓ
− 1

𝐾

𝐾∑
𝑢=1

1

𝛼𝑢

]
. (A.43b)

The corresponding derivations require care because the Gaussian pa-

rameter space is evidently larger than that of the Dirichlet and not fully

identified by the transformation. The pseudo-inverse of this map—as

summarized above—was provided by Hennig, Stern, et al. (2012). It maps

the Gaussian parameters to those of the Dirichlet as

𝛼𝑘 =
1

Σ𝑘𝑘

(
1 − 2

𝐾
+ 𝑒𝜇𝑘

𝐾2

𝐾∑
𝑙=1

𝑒−𝜇𝑙

)
(A.44)

Figure A.10: inverse-softmax Dirichlet

bridge. We show the Beta distribution

as it is the 1-dimensional Version of the

Dirichlet.
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A.2.7 Wishart Distribution

Background: Kronecker-product

Kronecker-product:𝐴⊗𝐵 ∈ ℝ(𝑚1𝑚2)×(𝑛1𝑛2)
is defined by (𝐴⊗𝐵)(𝑖−1)𝑚2+𝑗 ,(𝑘−1)𝑛2+𝑙 =

𝑎𝑖𝑘𝑏 𝑗𝑙 = (𝐴 ⊗ 𝐵)(𝑖 𝑗)(𝑘𝑙).

Box-product:𝐴⊠𝐵 ∈ ℝ(𝑚1𝑚2)×(𝑛1𝑛2)
is defined by (𝐴⊠𝐵)(𝑖−1)𝑚2+𝑗 ,(𝑘−1)𝑛1+𝑙 =

𝑎𝑖𝑙𝑏 𝑗𝑘 = (𝐴 ⊠ 𝐵)(𝑖 𝑗)(𝑘𝑙).

Symmetric Kronecker Product: 𝐴⊗⊖𝐵 = 𝐴 ⊗ 𝐵+𝐴⊠ 𝐵+ 𝐵 ⊗ 𝐴+ 𝐵⊠𝐴

Standard Wishart distribution

the pdf of the Wishart is

W(𝑋; 𝑛, 𝑝, 𝑉) = 1

2
𝑛𝑝/2 |V|𝑛/2

Γ𝑝
(
𝑛
2

) |X|(𝑛−𝑝−1)/2𝑒−(1/2) tr(V−1X)
(A.45a)

= exp

[
(𝑛 − 𝑝 − 1)/2 log(|𝑋 |) − (1/2) tr(V−1X) − log

(
2
𝑛𝑝/2 |V|𝑛/2

Γ𝑝

(𝑛
2

))]
(A.45b)

=
1

𝑋
1

2

exp

[
(𝑛 − 𝑝)/2 log(|𝑋 |) − (1/2) tr(V−1X) − log

(
2
𝑛𝑝/2 |V|𝑛/2

Γ𝑝

(𝑛
2

))]
(A.45c)

with exponential family values ℎ(𝑋) = 1/𝑋 1

2 , 𝜙(𝑋) = (log(𝑋), 𝑋), 𝑤 =

((𝑛 − 𝑝)/2, 𝑉−1) and 𝑍(𝑛, 𝑝, 𝑉) = log

(
2
𝑛𝑝/2 |V|𝑛/2

Γ𝑝
(
𝑛
2

) )
.

Laplace Approximation of the standard Wishart distribution

Using
𝜕det(𝑋)

𝜕𝑋 = det(𝑋)(𝑋−1)⊤ and
𝜕
𝜕𝑋𝑇𝑟(𝐴𝑋) = 𝐴⊤

we can calculate the

mode by setting the first derivative of the log-pdf to zero

𝜕 logW(𝑋; 𝑛, 𝑝, 𝑉)
𝜕𝑋

=
(𝑛 − 𝑝 − 1)det(𝑋)(𝑋−⊤)

2 det(𝑋) − 𝑉−⊤

2

⇒ 0 =
(𝑛 − 𝑝 − 1)𝑋−1

2

− 𝑉−1

2

⇔ (𝑛 − 𝑝 − 1)𝑋−1

2

=
𝑉−1

2

⇔ 𝑋 = (𝑛 − 𝑝 − 1)𝑉

Using the fact that the matrix is symmetric and
𝜕𝑋−1

𝜕𝑋 = −𝑋−1 ⊗ 𝑋−1
we

get

𝜕2
log 𝑓 (𝑋; 𝑛, 𝑝, 𝑉)

𝜕2𝑋
= −

(𝑛 − 𝑝 − 1)
2

𝑋−1 ⊗ 𝑋−1

Using (𝛼𝐴)−1 = 𝛼−1𝐴−1
, the linearity of the Kronecker product to pull

out scalars and 𝑋−1 ⊗ 𝑋−1 = (𝑋 ⊗ 𝑋)−1
to insert the mode and invert we
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get:

−
(𝑛 − 𝑝 − 1)

2

𝑋−1 ⊗ 𝑋−1 = −
(𝑛 − 𝑝 − 1)

2

1

(𝑛 − 𝑝 − 1)𝑉
−1 ⊗ 1

(𝑛 − 𝑝 − 1)𝑉
−1

= − 1

2(𝑛 − 𝑝 − 1) (𝑉 ⊗ 𝑉)−1

⇒ Σ = 2(𝑛 − 𝑝 − 1)(𝑉 ⊗ 𝑉)

In summary, the Laplace approximation of a Wishart distribution in

the standard basis is N (𝑋; (𝑛 − 𝑝 − 1)𝑉, 2(𝑛 − 𝑝 − 1)(𝑉 ⊗ 𝑉)), where

the representation of the symmetric positive definite matrices has been

changed from ℝ𝑛×𝑛
to ℝ𝑛2

.

Laplace Approximation of the sqrtm-transformed Wishart distribution

For the derivations we will introduce a symmetry constraint since the

matrix-sqrt of a symmetric matrix is also symmetric. The constraint is

1

2𝛽 | |𝑌 −𝑌⊤ | |2
𝐹

with 𝛽 → ∞ such that the constraint becomes a dirac delta

in the limit.

Using
𝜕det(𝑌)

𝜕𝑌 = det(𝑌)(𝑌−1)⊤ and
𝜕
𝜕𝑌 tr(𝐴𝑌⊤𝑌) = 𝑌𝐴⊤ + 𝑌𝐴 we can

calculate the mode by setting the first derivative of the log-pdf to zero

𝜕 logWsqrtm(𝑌; 𝑛, 𝑝, 𝑉)
𝜕𝑌

=

𝜕

𝜕𝑌

[
(𝑛 − 𝑝) log(|Y|) − (1/2) tr(V−1Y⊤Y) − 𝐶 − 1

2𝛽
| |𝑌 − 𝑌⊤ | |2𝐹

]
(A.46a)

=
(𝑛 − 𝑝)det(𝑌)(𝑌−⊤)

det(𝑌) − (𝑌𝑉−⊤ + 𝑌𝑉−1)
2

− 1

𝛽
(𝑌 − 𝑌⊤)

(A.46b)

=
(𝑛 − 𝑝)det(𝑌)(𝑌−⊤)

det(𝑌) − 𝑌𝑉−1 − 1

𝛽
(𝑌 − 𝑌⊤) (A.46c)

⇒ 0 = (𝑛 − 𝑝)𝑌−⊤ − 𝑌𝑉−1

(A.46d)

⇒ (𝑛 − 𝑝)𝑌−1 = 𝑌𝑉−1

(A.46e)

⇒ 𝑌 = sqrtm ((𝑛 − 𝑝)𝑉) (A.46f)

Computing the second derivative by using
𝜕
𝜕𝑌𝑌

−1 = −𝑌−⊤⊗𝑌−1
,
𝜕(𝑌𝐴)𝑘𝑙
𝜕𝑌𝑖 𝑗

=

𝛿𝑘𝑖𝐴 𝑗𝑙 ⇔ 𝜕𝐴𝑌
𝜕𝑌 = 𝐼 ⊗ 𝐴. To get the covariance matrix we multiply with
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−1 and invert the matrix.

𝜕2
logWsqrtm(𝑌; 𝑛, 𝑝, 𝑉)

𝜕2𝑌
=

𝜕

𝜕𝑌

[
(𝑛 − 𝑝)𝑌−⊤ − 𝑌𝑉−1 − 1

𝛽
(𝑌 − 𝑌⊤)

]
(A.47a)

= −(𝑛 − 𝑝)(𝑌−⊤ ⊗ 𝑌−1) − 𝐼 ⊗ 𝑉−1 − 1

𝛽
(𝐼 ⊗ 𝐼 − 𝐼 ⊠ 𝐼)

(A.47b)

mode⇒ −(𝑛 − 𝑝)
[√

1

(𝑛 − 𝑝)𝑉
− 1

2 ⊗
√

1

(𝑛 − 𝑝)𝑉
− 1

2

]
− 𝐼 ⊗ 𝑉−1 − 1

𝛽
(𝐼 ⊗ 𝐼 − 𝐼 ⊠ 𝐼)

(A.47c)

= −
(
𝑉− 1

2 ⊗ 𝑉− 1

2 + 𝐼𝑝 ⊗ 𝑉−1 + 1

𝛽
(𝐼 ⊗ 𝐼 − 𝐼 ⊠ 𝐼)

)
(A.47d)

⇔
𝜕2

logWsqrtm(𝑌; 𝑛, 𝑝, 𝑉)
𝜕𝑌𝑖𝑘𝜕𝑌𝑗𝑙

= −
(
𝑉

− 1

2

𝑖𝑘
𝑉

− 1

2

𝑗𝑙
+ 𝛿𝑖𝑘𝑉

−1

𝑗𝑙
+ 1

𝛽
(𝛿𝑖𝑘𝛿 𝑗𝑙 − 𝛿𝑖𝑙𝛿 𝑗𝑘)

)
(A.47e)

In general, any matrix can be split into a symmetric and a skew-symmetric

matrix,𝐴 = 1

2
(𝐴+𝐴⊤)+ 1

2
(𝐴−𝐴⊤). For both parts we can define projection

operators Γ and Δ with

Γ𝐴 =
1

2

(𝐴 + 𝐴⊤), Γ(𝑖 𝑗),(𝑘𝑙) =
1

2

(𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑘 𝑗) (A.48a)

Δ𝐴 =
1

2

(𝐴 − 𝐴⊤),Δ(𝑖 𝑗),(𝑘𝑙) =
1

2

(𝛿𝑖𝑘𝛿 𝑗𝑙 − 𝛿𝑖𝑙𝛿𝑘 𝑗) (A.48b)

(A.48c)

For these projection operators it holds that ΓΓ = Γ, ΔΔ = Δ, ΔΓ = ΓΔ = 0,

and Δ + Γ = Γ + Δ = I. Furthermore, it holds that

𝐴 ⊗ 𝐵 = (Γ + Δ)(𝐴 ⊗ 𝐵)(Γ + Δ)⊤ (A.49a)

= Γ(𝐴 ⊗ 𝐵)Γ⊤ + Γ(𝐴 ⊗ 𝐵)Δ⊤ + Δ(𝐴 ⊗ 𝐵)Γ⊤ + Δ(𝐴 ⊗ 𝐵)Δ⊤

(A.49b)

In the context of the Wishart this means

Γ

(
𝑉− 1

2 ⊗ 𝑉− 1

2 + 𝐼𝑝 ⊗ 𝑉−1 + 1

𝛽
Δ

)
Γ⊤ + Γ

(
𝑉− 1

2 ⊗ 𝑉− 1

2 + 𝐼𝑝 ⊗ 𝑉−1 + 1

𝛽
Δ

)
Δ⊤

(A.50)

+ Δ

(
𝑉− 1

2 ⊗ 𝑉− 1

2 + 𝐼𝑝 ⊗ 𝑉−1 + 1

𝛽
Δ

)
Γ⊤ + Δ

(
𝑉− 1

2 ⊗ 𝑉− 1

2 + 𝐼𝑝 ⊗ 𝑉−1 + 1

𝛽
Δ

)
Δ⊤

(A.51)

=

(
𝑉− 1

2 ⊗⊖𝑉− 1

2 + 𝐼𝑝⊗⊖𝑉−1

)
+ 0 + 0 + 0 (A.52)

because all the terms involving Δ yield 0 probability mass on symmetric

matrices due to the symmetry constraint.

In practice, e.g. for the computation of the KL-divergence, the symmetric

Kronecker product is suboptimal for computation because it is only

invertible in ℝ𝑑
𝑆

but not in ℝ𝑑
. Thus we chose to compute the covariance
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matrix with

Σ =

(
𝑉− 1

2 ⊗ 𝑉− 1

2 + 𝐼𝑝 ⊗ 𝑉−1

)−1

(A.53)

and adapt the pdf of the normal distribution to the space of symmetric

matrices

N (𝑋, 𝜇,Σ) =
1

2
𝑑(𝑑 + 1)
𝑑2

(2𝜋)− 2

𝑑 det(𝑈⊤Σ𝑈)− 1

2 exp−1/2(𝑋 − 𝜇)⊤Σ−1(𝑋 − 𝜇)
(A.54)

where

1

2
𝑑(𝑑+1)
𝑑2

is the ratio of degrees of freedom between a symmetric and

asymmetric matrix,𝑈 are all eigenvectors of the symmetry projection Γ

and 𝑑 is the number of dimensions.

We can simplify the Hessian further to make it computationally easier to

invert it.

... = −Γ
(
𝑉− 1

2 ⊗ 𝑉− 1

2 + 𝐼𝑝 ⊗ 𝑉−1

)
Γ⊤ (A.55a)

= −
(
𝑉− 1

2 ⊗⊖𝑉− 1

2 + 𝐼𝑝⊗⊖𝑉−1

)
(A.55b)

·−1

=

(
𝐼𝑝2 +𝑉 1

2 ⊗⊖𝑉− 1

2

) (
𝑉− 1

2 ⊗⊖𝑉− 1

2

)
(A.55c)

⇒ Σ =

(
𝑉

1

2 ⊗⊖𝑉 1

2

) (
𝐼𝑝2 +𝑉 1

2 ⊗⊖𝑉− 1

2

)−1

(A.55d)

which could be inverted more easily using equation 5 of Stegle et al.,

2011. However, if you aren’t interested in the covariance matrix itself,

but e.g. only want to compute the Gaussian, it makes sense to compute

everything with the inverse covariance matrix to save the computational

effort of an inversion.

The Bridge for sqrtm-tranform

We use 𝜇 = ((𝑛 − 𝑝)𝑉) 1

2 ⇔ 𝜇2 = (𝑛 − 𝑝)𝑉 ⇔ 𝑉 =
𝜇2

(𝑛−𝑝) . Remember that

𝜇 is reshaped to be the same size as𝑉 even though we usually think of it

in vector-form.

𝜇 = ((𝑛 − 𝑝)𝑉) 1

2 (A.56a)

Σ =

(
𝑉

1

2 ⊗⊖𝑉 1

2

) (
𝐼𝑝2 +𝑉 1

2 ⊗⊖𝑉− 1

2

)−1

(A.56b)

𝑉 = ∗∗ (A.56c)

𝑛 = ∗∗ (A.56d)

The resulting Σ cannot be easily solved for 𝑉 and thus there are three

ways to choose a matching from 𝜇,Σ to 𝑛,𝑉 . a) We can assume thatΣ has

to have the same structure as shown above, i.e. a product of Kronecker

products. Then we can compute𝑉 and insert it in the equation for 𝜇 to get

𝑛. b) We can treat 𝑉 or 𝑛 as a free parameter and compute our solution

solely from the equation of 𝜇. c) We could just use the logm-transform

which is has good inversions for both 𝑛 and 𝑉 .
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Figure A.11: sqrtm-bridge for the

Wishart distribution.

Logm-Transformed Wishart distribution

We transform the distribution with 𝑔(𝑋) = logm(𝑋), i.e. 𝑋(𝑌) =

𝑔−1(𝑋) = expm(𝑌), where expm(𝑌) is the matrix exponential and

logm(𝑌) is the matrix logarithm of 𝑌. The new pdf becomes

Wlogm(𝑌; 𝑛, 𝑝, 𝑉) = 1

2
𝑛𝑝/2 |V|𝑛/2

Γ𝑝
(
𝑛
2

) |expm Y|(𝑛−𝑝−1)/2𝑒−(1/2) tr(V−1
expm Y) · | expm𝑌 |

(A.57a)

=
1

2
𝑛𝑝/2 |V|𝑛/2

Γ𝑝
(
𝑛
2

) |expm Y|(𝑛−𝑝+1)/2𝑒−(1/2) tr(V−1
expm Y)

(A.57b)

= exp

[
𝐶 + (𝑛 − 𝑝 + 1)

2

log(|expm Y|) − 1

2

tr(V−1

expm Y)
]

(A.57c)

with exponential family values ℎ(𝑌) = 𝑌
1

2 , 𝜙(𝑌) = (𝑌, expm𝑌), 𝑤 =

(𝑛 − 𝑝), 𝑉−1
and 𝑍(𝑛, 𝑝, 𝑉) = log

(
2
𝑛𝑝/2 |V|𝑛/2

Γ𝑝
(
𝑛
2

) )
.

Laplace Approximation of the logm-transformed Wishart distribution

The matrix logarithm of a symmetric matrix yields a symmetric matrix

again. Thus the symmetry-constraint of the matrix-sqrt transformation

also applies here. For brevity we have decided not to include it in the

derivation and point it out at selected parts of the text.

To compute the first derivative we use the following

𝜕 log(det(expm(𝑌)))
𝜕𝑌

=
𝜕 log(det(expm(𝑌)))

𝜕det(expm(𝑌)) · 𝜕det(expm(𝑌))
𝜕 expm(𝑌) · 𝜕 expm(𝑌)

𝜕𝑌
(A.58a)

=
1

det(expm(𝑌)) · det(expm(𝑌)) expm(𝑌)−⊤ · expm(𝑌)

(A.58b)

= 𝐼𝑝 (A.58c)

where 𝐼𝑝 is the identity matrix of size 𝑝 and we use the fact that the matrix

logarithm of a symmetric matrix is symmetric, implying expm(𝑌)−⊤ =
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expm(𝑌)−1
. With this we get the first derivative

𝜕 log𝑊𝑙𝑜𝑔

𝜕𝑌
=

𝜕

𝜕𝑌

[
𝐶 +

(𝑛 − 𝑝 + 1)
2

log(|expm Y|) − 1

2

tr(V−1

expm Y)
]

(A.59a)

=
(𝑛 − 𝑝 + 1)

2

𝐼𝑝 −
1

2

𝑉−1

expm Y (A.59b)

By setting this to zero we get a mode of

0 =
(𝑛 − 𝑝 + 1)

2

𝐼𝑝 −
1

2

𝑉−1

expm Y (A.60a)

⇔ (𝑛 − 𝑝 + 1)𝐼𝑝 = 𝑉−1

expm Y (A.60b)

⇔ 𝑌 = logm((𝑛 − 𝑝 + 1)𝑉) (A.60c)

For the second derivative we use the fact that

𝜕(𝐵 expm(𝑌))𝑘𝑙
𝜕𝑌𝑖 𝑗

= 𝛿 𝑗𝑙(𝐵 exmp(𝑌))𝑘𝑖 (A.61a)

⇔ 𝜕𝐵 expm(𝑌)
𝜕𝑌

=
(
𝐵 expm(𝑌) ⊗ 𝐼𝑝

)
(A.61b)

yielding

𝜕2
logWlogm

𝜕2𝑌
=

𝜕 logWlogm

𝜕𝑌

[ (𝑛 − 𝑝 + 1)
2

𝐼𝑝 −
1

2

𝑉−1

expm Y
]

(A.62a)

= −1

2

(𝑉−1

expm Y ⊗ 𝐼𝑝) (A.62b)

mode⇒ −1

2

((𝑛 − 𝑝 + 1)𝑉−1𝑉 ⊗ 𝐼𝑝) (A.62c)

= −(𝑛 − 𝑝 + 1)
2

(𝐼𝑝 ⊗ 𝐼𝑝) (A.62d)

⇔ Σ =
2

𝑛 − 𝑝 + 1

𝐼𝑝2 (A.62e)

where 𝐼𝑝2 is an Identity matrix of size 𝑝2
. With the symmetry constraint,

we would get (𝐼𝑝⊗⊖𝐼𝑝) instead of (𝐼𝑝 ⊗ 𝐼𝑝).

The Bridge for logm-tranform

𝜇 and Σ are already given by the Laplace approximation. Inverting the

mode yields an estimate for 𝑉 .

𝜇 = logm((𝑛 − 𝑝 + 1)𝑉) ⇔ expm(𝜇) = (𝑛 − 𝑝 + 1)𝑉 ⇔ 𝑉 =
expm(𝜇)
(𝑛 − 𝑝 + 1)

(A.63)
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where 𝜇 and 𝑉 are reshaped to a matrix of size 𝑝 × 𝑝. The parameter 𝑛

can be derived from the equation of Σ by

Σ =
2

𝑛 − 𝑝 + 1

𝐼𝑝2 (A.64)

⇔ tr(Σ) = 2𝑝

𝑛 − 𝑝 + 1

𝑝2

(A.65)

⇔ 𝑛 =
2𝑝2

tr(Σ) + 𝑝 − 1 (A.66)

In summary this yields

𝜇 = logm((𝑛 − 𝑝 + 1)𝑉) (A.67a)

Σ =
2

𝑛 − 𝑝 + 1

(𝐼𝑝 ⊗ 𝐼𝑝)−1

(A.67b)

𝑉 =
expm(𝜇)
(𝑛 − 𝑝 + 1) (A.67c)

𝑛 =
2𝑝2

tr(Σ) + 𝑝 − 1 (A.67d)

Similar to the sqrtm-transformation, we can adapt the normal distri-

bution to the space of symmetric matrices only and compute with the

unconstrained version (see previous subsection).
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Figure A.12: logm-bridge for the Wishart

distribution

A.2.8 Inverse Wishart Distribution

Standard Inverse Wishart distribution

The pdf of the inverse Wishart is

IWx(x; Ψ, 𝜈) = |Ψ|𝜈/2

2
𝜈𝑝/2Γ𝑝( 𝜈

2
)
|x|−(𝜈+𝑝+1)/2 𝑒−

1

2
tr(Ψx−1)

(A.68a)

= exp

[
−(𝜈 + 𝑝 + 1)/2 log(|𝑥 |) − 1

2

tr(Ψ𝑥−1) + log( |Ψ|𝜈/2

2
𝜈𝑝/2Γ𝑝( 𝜈

2
)
)
]

(A.68b)

with exponential family values ℎ(𝑋) = 1/𝑋 1

2 , 𝜙(𝑋) = (log(𝑋), 𝑋−1), 𝑤 =

(−(𝜈 + 𝑝)/2,Ψ) and 𝑍(𝑛, 𝑝, 𝑉) = − log( |Ψ|𝜈/2

2
𝜈𝑝/2Γ𝑝 ( 𝜈

2
) ).
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Laplace Approximation of the standard inverse Wishart distribution

Using
𝜕det(𝑋)

𝜕𝑋 = det(𝑋)(𝑋−1)⊤ and
𝜕
𝜕𝑋 tr(𝐴𝑋)−1 = (𝑋−1𝐴𝑋−1)⊤ we can

calculate the mode by setting the first derivative of the log-pdf to zero:

𝜕 log IWX(X; Ψ, 𝜈)
𝜕𝑋

=
−(𝜈 + 𝑝 + 1)det(𝑋)𝑋−⊤

2 det(𝑋) + (𝑋−1Ψ𝑋−1)⊤
2

(A.69a)

=
−(𝜈 + 𝑝 + 1)𝑋−⊤

2

+ (𝑋−1Ψ𝑋−1)⊤
2

(A.69b)

⇒ 0 =
−(𝜈 + 𝑝 + 1)𝑋−⊤

2

+ (𝑋−1Ψ𝑋−1)⊤
2

(A.69c)

⇔ (𝜈 + 𝑝 + 1)𝑋−1 = 𝑋−1Ψ𝑋−1

(A.69d)

⇔ (𝜈 + 𝑝 + 1) = 𝑋−1Ψ (A.69e)

⇔ 𝑋 =
1

𝜈 + 𝑝 + 1

Ψ (A.69f)

Using

𝜕(𝑋𝐵𝑋)𝑘𝑙
𝜕𝑋𝑖 𝑗

= 𝛿𝑘𝑖(𝐵𝑋)𝑙 𝑗 + 𝛿𝑙 𝑗(𝑋𝐵)𝑘𝑖 (A.70a)

𝜕𝑋−1

𝜕𝑋
= −(𝑋−1 ⊗ 𝑋−1) (A.70b)

𝜕(𝑋−1𝐵𝑋−1)
𝜕𝑋

=
𝜕(𝑋−1𝐵𝑋−1)

𝜕𝑋−1

𝜕𝑋−1

𝜕𝑋
= −[𝛿𝑘𝑖(𝐵𝑋−1)𝑙 𝑗 + 𝛿𝑙 𝑗(𝑋−1𝐵)𝑘𝑖](𝑋−1 ⊗ 𝑋−1)

(A.70c)

(𝐴𝐵)−1 = 𝐵−1𝐴−1

(A.70d)
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we can get the covariance matrix by inverting the Hessian and multiplying

with -1.

𝜕2
log 𝑓X(X; Ψ, 𝜈)

𝜕2𝑋
=

(𝜈 + 𝑝 + 1)
2

(𝑋−1 ⊗ 𝑋−1)⊤ −
[𝛿𝑘𝑖(Ψ𝑋−1)𝑙 𝑗 + 𝛿𝑙 𝑗(𝑋−1Ψ)𝑘𝑖]

2

(𝑋−1 ⊗ 𝑋−1)⊤

(A.71a)

=

{
(𝜈 + 𝑝 + 1)

2

𝐼𝑛2 −
[𝛿𝑘𝑖(Ψ𝑋−1)𝑙 𝑗 + 𝛿𝑙 𝑗(𝑋−1Ψ)𝑘𝑖]

2

}
(𝑋−1 ⊗ 𝑋−1)⊤

(A.71b)

mode

=

{
(𝜈 + 𝑝 + 1)

2

𝐼𝑛2 −
[𝛿𝑘𝑖((𝜈 + 𝑝 + 1)ΨΨ−1)𝑙 𝑗 + 𝛿𝑙 𝑗((𝜈 + 𝑝 + 1)Ψ−1Ψ)𝑘𝑖]

2

}
(𝜈 + 𝑝 + 1)2(Ψ ⊗Ψ)−⊤

(A.71c)

=


(𝜈 + 𝑝 + 1)

2

𝐼𝑛2 −
[𝛿𝑘𝑖((𝜈 + 𝑝 + 1)𝐼𝑛)𝑙 𝑗 + 𝛿𝑙 𝑗((𝜈 + 𝑝 + 1)𝐼𝑛)𝑘𝑖]

2︸                                                  ︷︷                                                  ︸
=(𝜈+𝑝+1)𝐼𝑛2


(𝜈 + 𝑝 + 1)2(Ψ ⊗Ψ)−⊤

(A.71d)

= − 1

2

(𝜈 + 𝑝 + 1)𝐼𝑛2︸             ︷︷             ︸
𝐴

(𝜈 + 𝑝 + 1)2(Ψ ⊗Ψ)−⊤︸                       ︷︷                       ︸
𝐵

(A.71e)

invert⇒ − 1

(𝜈 + 𝑝 + 1)2 (Ψ ⊗Ψ)⊤ 2

(𝜈 + 𝑝 + 1) 𝐼𝑛2 (A.71f)

·−1⇒ Σ =
2

(𝜈 + 𝑝 + 1)3 (Ψ ⊗Ψ)⊤ (A.71g)

where 𝐼𝑛 and 𝐼2𝑛 are the identity matrix of size 𝑛 and 𝑛2
respec-

tively. We can also ignore the transpose since we are dealing with

symmetric positive definite matrices when it comes to the inverse

Wishart distribution. This yields a multivariate Gaussian of the form

N
(
𝑋;𝜇 = 1

𝜈+𝑝+1
Ψ,Σ = 2

(𝜈+𝑝+1)3 (Ψ ⊗Ψ)
)
.

Logm-Transformed inverse Wishart distribution

Similar to the Wishart derivation, we compute all derivations with a

symmetry-constraint. For brevity we omit the constraint but point it out

where it makes a difference.

We transform the distribution with 𝑔(𝑋) = logm(𝑋), i.e. 𝑋(𝑌) =

𝑔−1(𝑋) = expm(𝑌), where expm(𝑌) is the matrix exponential. The new
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pdf becomes

IW logm(Y; Ψ, 𝜈) = |Ψ|𝜈/2

2
𝜈𝑝/2Γ𝑝( 𝜈

2
)
|expm Y|−(𝜈+𝑝+1)/2 𝑒−

1

2
tr(Ψ(expm Y)−1) · | expm(Y)|

(A.72a)

=
|Ψ|𝜈/2

2
𝜈𝑝/2Γ𝑝( 𝜈

2
)
|expm Y|−(𝜈+𝑝−1)/2 𝑒−

1

2
tr(Ψ(expm Y)−1)

(A.72b)

= exp

[
𝐶 − (𝜈 + 𝑝 − 1)/2 log |expm Y| − −1

2

tr(Ψ expm(−Y))
]

(A.72c)

with exponential family values ℎ(𝑌) = 𝑌 1

2 , 𝜙(𝑌) = (log(det(expm(𝑌))), expm(𝑌)), 𝑤 =

((𝜈 + 𝑝)/2,Ψ) and 𝑍(𝑛, 𝑝, 𝑉) = − log

(
|Ψ|𝜈/2

2
𝜈𝑝/2Γ𝑝 ( 𝜈

2
)

)

Laplace Approximation of the logm-transformed inverse Wishart
distribution

For the first derivative we use the same concepts as for the Wishart in

Subsection A.2.7.

𝜕 log IW 𝑙𝑜𝑔𝑚

𝜕𝑌
=

𝜕

𝜕𝑌
− (𝜈 + 𝑝 − 1)/2 log |expm Y| − −1

2

tr(Ψ expm(−Y))
(A.73a)

= −(𝜈 + 𝑝 − 1)
2

𝐼𝑝 +
1

2

Ψ expm(−Y) (A.73b)

which yields the mode by setting it to zero and solving for 𝑌.

0 = −(𝜈 + 𝑝 − 1)
2

𝐼𝑝 +
1

2

Ψ expm(−Y) (A.74a)

⇔ (𝜈 + 𝑝 − 1)𝐼𝑝 = Ψ(expm(Y))−1

(A.74b)

⇔ 𝑌 = logm

(
Ψ

𝜈 + 𝑝 − 1

)
(A.74c)

For the second derivative we also use the same concepts as for the Wishart

and get

𝜕2
log IW 𝑙𝑜𝑔𝑚

𝜕2𝑌
=

𝜕

𝜕𝑌

[
−(𝜈 + 𝑝 − 1)

2

+ 1

2

Ψ expm(−Y)
]

(A.75a)

= −1

2

[
Ψ expm(Y)−1 ⊗ 𝐼𝑝

]
(A.75b)

mode⇒ −1

2

[
Ψ

Ψ−1

(𝜈 + 𝑝 − 1) ⊗ 𝐼𝑝
]

(A.75c)

= − 1

2(𝜈 + 𝑝 − 1) 𝐼𝑝×𝑝 (A.75d)

⇒ Σ = 2(𝜈 + 𝑝 − 1)𝐼𝑝×𝑝 (A.75e)

With the symmetry-constraint 𝐼𝑝×𝑝 becomes (𝐼⊗⊖𝐼)−1
. This yields a multi-

variate Normal distributionN
(
𝑌;𝜇 = logm

(
Ψ

𝑛+𝑝−1

)
,Σ = 2(𝜈 + 𝑝 − 1)𝐼𝑝×𝑝

)
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which is constraint to symmetric matrices and its normalization is thus

adapted as described in Equation A.54.

The Bridge for the logm-transformed inverse Wishart distribution

We get 𝜇 and Ψ from the Laplace approximation and determine 𝑉 by

inverting 𝜇

𝜇 = logm

(
Ψ

𝑛 + 𝑝 − 1

)
⇔ expm(𝜇) = Ψ

𝑛 + 𝑝 − 1

⇔ Ψ = expm(𝜇)(𝑛 + 𝑝 − 1)

(A.76a)

Additionally we can get 𝜈 from the equation for Σ by

Σ = 2(𝜈 + 𝑝 − 1)𝐼𝑝×𝑝 (A.77)

⇔ tr(Σ) = 2(𝜈 + 𝑝 − 1)𝑝2

(A.78)

⇔ 𝜈 =
tr(Σ)
2𝑝2

− 𝑝 + 1 (A.79)

In summary we have

𝜇 = logm

(
Ψ

𝑛 + 𝑝 − 1

)
(A.80a)

Σ = 2(𝜈 + 𝑝 − 1)𝐼𝑝×𝑝 (A.80b)

Ψ = (𝜈 + 𝑝 − 1) expm(𝜇) (A.80c)

𝜈 =
tr(Σ)
2𝑝2

− 𝑝 + 1 (A.80d)

where Ψ and 𝜇 are reshaped to a 𝑝 × 𝑝 matrix. For this derivation we

assume to use only symmetric matrices. If this constraint is lifted, we

have to replace 𝐼𝑝×𝑝 with 𝐼𝑝⊗⊖𝐼𝑝 .
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Figure A.13: logm-bridge for the inverse

Wishart distribution.

Sqrtm-Transformed inverse Wishart distribution

Similar to the derivation of the sqrtm-transformation for the Wishart (see

Subsection A.2.7, the inverse Wishart also has a symmetry constraint.

For brevity, we omit it for the derivation and point out where it makes a

difference.

We transform the distribution with 𝑔(𝑋) = sqrtm(𝑋) = 𝑋
1

2 , i.e. 𝑋(𝑌) =
𝑔−1(𝑋) = 𝑌2

, where sqrtm(𝑌) is the square root of the matrix. We
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choose the principle square root of the positive definite matrix 𝑋, i.e.

𝑋 = 𝑌⊤𝑌 = 𝑌𝑌. The new pdf becomes

IWsqrtm(Y; Ψ, 𝜈) = |Ψ|𝜈/2

2
𝜈𝑝/2Γ𝑝( 𝜈

2
)
��Y2��−(𝜈+𝑝+1)/2

𝑒−
1

2
tr(ΨY⊤Y−1) |2𝑌 | (A.81a)

=
|Ψ|𝜈/2

2
𝜈𝑝/2Γ𝑝( 𝜈

2
)
|Y|−(𝜈+𝑝+1) 𝑒−

1

2
tr(ΨY⊤Y−1)

2
𝑝 |𝑌 | (A.81b)

=
|Ψ|𝜈/2

2
𝜈𝑝/2Γ𝑝( 𝜈

2
)
|Y|−(𝜈+𝑝) 𝑒− 1

2
tr(ΨY−2)

2
𝑝

(A.81c)

= exp

[
−(𝜈 + 𝑝) log(|𝑌 |) − 1

2

tr(Ψ(𝑌⊤𝑌)−1) + log(𝐶)
]

(A.81d)

with ℎ(𝑌) = 1, 𝜙(𝑌) = (log(|𝑌 |), 𝑌−2), 𝑤 = (−(𝜈 + 𝑝),Ψ) and 𝑍(𝑤) =
log

(
|Ψ|𝜈/2

2
𝜈𝑝/2Γ𝑝 ( 𝜈

2
)

)
.

Laplace Approximation of the sqrtm-transformed inverse Wishart
distribution

Using

𝜕det(𝑌)
𝜕𝑌

= det(𝑌)(𝑌−1)⊤ 𝜕 tr(Ψ(𝑌⊤𝑌)−1)
𝜕𝑌

= 2Ψ𝑌−3

(A.82a)

we can calculate the mode by setting the derivative of the log-pdf to zero:

𝜕 log IWsqrtm(𝑌,Ψ, 𝜈)
𝜕𝑌

=
−(𝜈 + 𝑝)det(𝑌)𝑌−⊤

det(𝑌) + 2Ψ𝑌−3

(A.83a)

= −(𝜈 + 𝑝)𝑌−⊤ + 2Ψ𝑌−3

(A.83b)

⇒ 0 = −(𝜈 + 𝑝)𝑌−⊤ + 2Ψ𝑌−3

(A.83c)

⇔ (𝜈 + 𝑝)𝑌−⊤ = 2Ψ𝑌−3

(A.83d)

⇔ 𝑌 = sqrtm

(
1

(𝜈 + 𝑝)Ψ
)

(A.83e)

Using

𝜕𝑋−1

𝜕𝑋
= −𝑋−1 ⊗ 𝑋−1

(A.84a)

𝜕𝑌𝑋−3

𝜕𝑋
=

𝜕Ψ𝑋−3

𝜕𝑋−3

𝜕𝑋−3

𝜕𝑋−1

𝜕𝑋−1

𝜕𝑋
(A.84b)

= − (Ψ ⊗ 𝐼)
(
𝐼 ⊗ 𝑋−2 + 𝑋−1 ⊗ 𝑋−1 + 𝑋−2 ⊗ 𝐼

) (
𝑋−1 ⊗ 𝑋−1

)
(A.84c)
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We can calculate the Hessian and by multiplying with −1 and inverting

it we get the covariance matrix.

𝜕2
log IWsqrtm(𝑌,Ψ, 𝜈)

𝜕2𝑌
=

𝜕

𝜕𝑌
− (𝜈 + 𝑝)𝑌−⊤ +Ψ𝑌3

(A.85a)

= (𝜈 + 𝑝)(𝑌−1 ⊗ 𝑌−1) − (Ψ ⊗ 𝐼)
(
𝐼 ⊗ 𝑌−2 + 𝑌−1 ⊗ 𝑌−1 + 𝑌−2 ⊗ 𝐼

) (
𝑌−1 ⊗ 𝑌−1

)
(A.85b)

mode

= (𝜈 + 𝑝)(
√
(𝜈 + 𝑝)Ψ− 1

2 ⊗
√
(𝜈 + 𝑝)Ψ− 1

2 ) (A.85c)

− (Ψ ⊗ 𝐼)
(
𝐼 ⊗ (𝜈 + 𝑝)Ψ−1 +

√
(𝜈 + 𝑝)Ψ− 1

2 ⊗
√
(𝜈 + 𝑝)Ψ− 1

2 + (𝜈 + 𝑝)Ψ−1 ⊗ 𝐼
)

(A.85d)

·
(√

(𝜈 + 𝑝)Ψ− 1

2 ⊗
√
(𝜈 + 𝑝)Ψ− 1

2

)
(A.85e)

= (𝜈 + 𝑝)2
(
Ψ− 1

2 ⊗Ψ− 1

2

)
− (𝜈 + 𝑝)2

(
Ψ ⊗Ψ−1 +Ψ

1

2 ⊗Ψ− 1

2 + 𝐼𝑝2

) (
Ψ− 1

2 ⊗Ψ− 1

2

)
(A.85f)

= −(𝜈 + 𝑝)2
(
Ψ ⊗Ψ−1 +Ψ

1

2 ⊗Ψ− 1

2

) (
Ψ− 1

2 ⊗Ψ− 1

2

)
(A.85g)

= −(𝜈 + 𝑝)2
(
Ψ

1

2 ⊗Ψ− 1

2 + 𝐼𝑝2

) (
𝐼𝑝 ⊗Ψ−1

)
(A.85h)

⇔ Σ =
1

(𝜈 + 𝑝)2
(
𝐼𝑝 ⊗Ψ

) (
Ψ

1

2 ⊗Ψ
1

2 + 𝐼𝑝
)−1

(A.85i)

which could be inverted more easily using equation 5 of Stegle et al.

(2011). For further notes on efficient computation see Equation A.54 and

surrounding text. With the symmetry constraints, all ⊗ become ⊗⊖.

The Bridge for the sqrtm-transformed inverse Wishart distribution

The resulting Σ cannot be easily solved for Ψ and thus there are three

ways to choose a matching from 𝜇,Σ to 𝜈,Ψ. a) We can assume thatΣ has

to have the same structure as shown above, i.e. a product of Kronecker

products. Then we can compute Ψ and insert it in the equation for 𝜇 to

get 𝜈. b) We can treatΨ or 𝜈 as a free parameter and compute our solution

solely from the equation of 𝜇. c) We could just use the logm-transform

which is has good inversions for both 𝜈 and Ψ.

In summary we have

𝜇 = sqrtm

(
1

(𝜈 + 𝑝)Ψ
)

(A.86)

Σ =
1

(𝜈 + 𝑝)2
(
𝐼𝑝⊗⊖Ψ

) (
Ψ

1

2 ⊗⊖Ψ 1

2 + 𝐼𝑝
)−1

(A.87)

Ψ = ∗∗ (A.88)

𝑛 = ∗∗ (A.89)

where ∗∗ is described above.
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Figure A.14: sqrtm-bridge for the inverse

Wishart distribution.
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A.3 Experimental details

A.3.1 Distances

Parameters for KL and MMD

As already discussed in the main text, the 10 (pairs of) parameters used

to compute the KL-divergence and MMD are chosen such that they start

from a small value which doesn’t yield a valid Laplace approximation

in the standard base and end with a larger value that is approximately

Gaussian in the standard base since this is a feature many exponential

families share. In Table A.1 you can find the exact parameters used for

the figures in Table 3.8.

Table A.1: Parameters for the computa-

tion of KL-divergence and MMD.
Distribution Parameter 1 Parameter 2

Exponential 𝜆 = [1, 2, ..., 10] -

Gamma 𝛼 = [0.5, 1.5, ..., 9.5] 𝜆 = [0.5, 1, ..., 5.5]
Inv. Gamma 𝛼 = [1, ..., 10] 𝜆 = [0.5, 1, ..., 5.5]
Chi-squared 𝑘 = [1, ...10] -

Beta 𝛼 = [0.7, 1.2, ..., 5.2] 𝛽 = [0.8, 1.05, ..., 3.05]
Dirichlet 𝛼 = [0.8, 0.8, 0.8] ∗ [1.5, 1, 0.75] ∗ 𝑖 for 𝑖 in 1,...,10

Wishart Discussed below

Inv. Wishart Discussed below

Dirichlet KL computation

Computing the KL-divergence for the Dirichlet is tricky because the

Gaussian and the Dirichlet are defined on different domains. Computing

the KL-divergence between the Gaussian and the Dirichlet in the inverse-

softmax basis is also complicated because there is no inverse-softmax

transformation that could transform samples as the softmax is not a

bĳective function. To solve this problem we transform the Gaussian into

the probability domain. Since the simplex has one degree of freedom less

than ℝ𝐾
we have to update 𝜇 and Σ with a rank-1 constraint as already

discussed in Hennig, 2010.

�̄� = 𝜇 − Σ11⊤𝜇
1⊤Σ1

(A.90)

Σ̄ = Σ − Σ11⊤Σ
1⊤Σ1

(A.91)
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Figure A.15: Comparing original Dirich-

let (left) with the fake softmax Gaussian

descibed in the text (right).

Then we project the variable 𝑥 into a 𝐾 − 1 dimensional subspace with

𝑈 = 𝐴𝑥 where 𝐴𝑖 𝑗 for 𝑖 = 1, ..., 𝐾 − 1 yielding

𝑝(𝑢) = N (𝑢 |𝐴�̄�, 𝐴Σ̄𝐴⊤)| det

𝜕𝑢

𝜕𝑦
| (A.92)

with 𝑥(𝑢) = [𝑢,−∑
𝑖 𝑢𝑖]⊤. Since we chose 𝑦 = 𝜎(𝑥) = exp(𝑥)∑

𝑗 exp(𝑥 𝑗 ) we get

| det
𝜕𝑢
𝜕𝑦 | =

1

𝑦𝑖
𝛿𝑖 𝑗 − 1

𝐾
1

𝑦𝑖
for 𝑖 = 1, ..., 𝐾 − 1. By using

|𝑍 +𝑈𝑊𝑉 | = |𝑍 | |𝑊 | |𝑊−1 +𝑉⊤𝑍−1𝑈 | (A.93)

we get

| det

𝜕𝑢

𝜕𝑦
| = (

𝐾−1∏
𝑗

1

𝑦 𝑗
) 1

𝐾
(𝐾 − 1

𝑦
diag(𝑦)︸     ︷︷     ︸
𝐾−1

) (A.94)

=
1

𝐾

𝐾−1∏
𝑖

1

𝑦𝑖
(A.95)

We then draw samples 𝑦 from a Dirichlet distribution transform them

with a fake inverse-softmax 𝑥 = log(𝑦) − 1

𝐾

∑
𝑖 log(𝑦𝑖) and apply the

transformed Gaussian to get

∑
𝑗 log(D(𝑦 𝑗)/N (𝑥 𝑗) to estimate the KL-

divergence. The implementation can be found in the accompanying code.

We find that the Dirichlet and our constructed Gaussian look very similar

(see Figure A.15).

(inverse-)Wishart KL-divergence

The Wishart distribution has two parameters 𝑛 and𝑉 . The parameters of

the inverse Wishart are 𝜈 and Ψ. The parameters for the distances always

have the form of 𝑛0 + 𝑛0 · 𝑐 · 𝑖 and 𝑉0 +𝑉0 · 𝑑 · 𝑖 for 𝑖 = 0, 1, ..., 9 where

𝑐 and 𝑑 are constants. Then there are three interesting combinations of

parameters to investigate: fixed 𝜈 with increasing Ψ, increasing 𝜈 with

fixed Ψ, and both increasing. In the main paper we present only the

first combination, here we present all of them. For the following we

choose 𝑛0 = 2.5, 𝑐 = 0.5, 𝑉0 = [[0.75, 0.5], [0.5, 1]], 𝑑 = 0.25. Results for

the inverse Wishart for all three scenarios can be found in Table A.2.

Setup and trends are similar for the Wishart distribution.
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Table A.2: Comparison of Distances for

Wishart distributions.

Version KL-Divergence ↓ MMD ↓

static 𝜈, inc. Ψ

0 2 4 6 8

0

10

0 2 4 6 8

0.00

0.25

inc 𝜈, static Ψ

0 2 4 6 8

0

10

0 2 4 6 8

0.00

0.25

inc. 𝜈, inc. Ψ

0 2 4 6 8

0

10

0 2 4 6 8

0.00

0.25

Figure A.16: Tübingen elections from

2002 to 2017 for three different neighbor-

hoods of Tübingen.

A.3.2 German Elections

In the main text we compute the marginal distributions and the approxi-

mation qualities on a smaller dataset which uses much less datapoints,

i.e. votes. In Figure A.16 we present a similar visualization for the small

local elections as we showed in the main text for the German elections.
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B.1 Correction for zero-sum constraint

We know that the product rule of Gaussians yields

𝑝(𝑥 |𝐴𝑥 = 𝑦) = 𝑝(𝑥, 𝑦)
𝑝(𝑦) (B.1)

= N (𝑥;𝜇 + Σ𝐴⊤(𝐴Σ𝐴⊤)−1(𝑦 − 𝐴𝜇), (B.2)

Σ − Σ𝐴⊤(𝐴Σ𝐴⊤)−1𝐴Σ)

In our particular setup we have

𝑝(𝑥) = N (𝑥;𝜇,Σ) (B.3)

with constraint

𝑝(𝐼 |𝑥) = 𝛿(1𝑥⊤ − 0) = lim

𝜖→∞
N (0; 1

⊤𝑥,
1

𝜖
) (B.4)

Therefore we get

𝑝(𝑥 |𝐼) = N (𝑥;𝜇 + Σ1(1⊤Σ1 − 1

𝜖
)−1(0 − 1

⊤𝜇), (B.5)

Σ − Σ1(1⊤Σ1 − 1

𝜖
)−1

1
⊤Σ)

= N
(
𝑥;𝜇 − Σ11⊤𝜇

1⊤Σ1
,Σ − Σ11⊤Σ

1⊤Σ1

)
(B.6)

Variance correction

As described in the main text, the original Laplace Bridge scales worse

with Σ than sampling and applying the softmax. In Figure B.1 you can

see a contourplot that shows the scaling of mean and variance with and

without correction. As suggested, the Variance has nearly no influence

on the result before the correction but our correction fixes that.

Here is a short and informal explanation of how we found these limita-

tions. During the experimentation with the LB, we found that it doesn’t

approximate the sample distribution well when Σ gets large. We then

understood why (as detailed in the limitations section) and proposed a fix

1 2 3 4 5 6 7 8 9 10

Sigma

10

9

8

7

6

5

4

3

2

1

m
u

Before correction

1 2 3 4 5 6 7 8 9 10

After correction

Figure B.1: Contourplot showing the scal-

ing behavior of 𝜇 andΣ. In the left figure,

we see that Sigma has nearly no influence

on the scaling. Our correction in the right

figure fixes that. Contour levels show the

first entry of 𝛼 on a log scale.
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for these scenarios without damaging its behavior in all other scenarios.

We experimented with multiple fixes and the result you see in the paper

is the one that fulfilled most of our criteria. Therefore, the correction

doesn’t come from a principled theoretical derivation but is motivated

by the theoretical findings.

B.2 Derivation of the Laplace Bridge

Assume we have a Dirichlet in the standard basis with parameter vector

𝜶 and probability density function:

Dir(𝝅|𝜶) :=
Γ

(∑𝐾
𝑘=1

𝛼𝑘
)∏𝐾

𝑘=1
Γ(𝛼𝑘)

𝐾∏
𝑘=1

𝜋𝛼𝑘−1

𝑘
, (B.7)

We aim to transform the basis of this distribution via the softmax trans-

form to be in the new base 𝜋:

𝜋𝑘(z) :=
exp(𝑧𝑘)∑𝐾
𝑙=1

exp(𝑧𝑙)
, (B.8)

Usually, to transform the basis we would need the inverse transformation

𝐻−1(z) as described in the main paper. However, the softmax does not

have an analytic inverse. Therefore David JC MacKay uses the following

trick. Assume we know that the distribution in the transformed basis

is:

Dirz(𝝅(z)|𝜶) :=
Γ

(∑𝐾
𝑘=1

𝛼𝑘
)∏𝐾

𝑘=1
Γ(𝛼𝑘)

𝐾∏
𝑘=1

𝜋𝑘(z)𝛼𝑘 , (B.9)

then we can show that the original distribution is the result of the basis

transform by the softmax.

The Dirichlet in the softmax basis: We show that the density over 𝝅
shown in Equation B.9 transforms into the Dirichlet over z. First, we

consider the special case where 𝝅 is confined to an 𝐼 − 1 dimensional

subspace satisfying

∑
𝑖 𝝅𝑖 = 𝑐. In this subspace we can represent 𝜑 by an

𝐼 − 1 dimensional vector 𝜑 such that

𝜋𝑖 = 𝜑𝑖 𝑖 , ..., 𝐼 − 1 (B.10)

𝜋𝐼 = 𝑐 −
𝐼−1∑
𝑖

𝜑𝑖 (B.11)

and similarly we can represent z by an 𝐼 − 1 dimensional vector a:

𝑧𝑖 = a𝑖 𝑖 , ..., 𝐼 − 1 (B.12)

𝑧𝐼 = 1 −
𝐼−1∑
𝑖

a𝑖 (B.13)
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then we can find the density over a (which is proportional to the required

density over z) from the density over 𝜑 (which is proportional to the

given density over 𝝅) by finding the determinant of the (𝐼 − 1) × (𝐼 − 1)
Jacobian 𝑱 given by

𝐽𝑖𝑘 =
𝜕𝜑𝑖
𝜕a𝑙

=

𝐼∑
𝑗

𝜕𝝅𝑖
𝜕z𝑗

𝜕z𝑗
𝜕a𝑘

= 𝛿𝑖𝑘𝝅𝑖 − 𝝅𝑖𝝅𝑘 + 𝝅𝑖𝝅𝐼 = 𝝅𝑖(𝛿𝑖𝑘 − (𝝅𝑘 − 𝝅𝐼)) (B.14)

We define two additional 𝐼 − 1 dimensional helper vectors z+
𝑘

:= z𝑘 − z𝐼
and 𝑛𝑘 := 1, and use det(𝐼−𝑥𝑦𝑇) = 1−𝑥 · 𝑦 from linear algebra. It follows

that

det 𝐽 =
𝐼−1∏
𝑖=1

𝝅𝑖 × det[𝐼 − 𝑛𝝅+𝑇 ]

=

𝐼−1∏
𝑖=1

𝝅𝑖 × (1 − 𝑛 · 𝝅+) (B.15)

=

𝐼−1∏
𝑖=1

𝝅𝑖 ×
(
1 −

∑
𝑘

𝝅+
𝑘

)
= 𝐼

𝐼∏
𝑖=1

𝝅𝑖

Therefore, using Equation B.9 we find that

𝑃(𝝅) = 𝑃(z)
| det 𝑱 | ∝

𝐼∏
𝑖=1

𝝅𝛼𝑖−1

𝑖
(B.16)

This result is true for any constant 𝑐 since it can be put into the normalizing

constant. Thereby we make sure that the integral of the distribution is 1

and we have a valid probability distribution.

B.3 Inversion of the Laplace Bridge

Through the figures of the 1D Dirichlet approximation in the main paper

we have already established that the mode of the Dirichlet lies at the mean

of the Gaussian distribution and therefore 𝝅(y) = 𝛼∑
𝑖 𝛼𝑖

. Additionally, the

elements of y must sum to zero. These two constraints combined yield

only one possible solution for 𝝁.

𝜇𝑘 = log 𝛼𝑘 −
1

𝐾

𝐾∑
𝑙=1

log 𝛼𝑙 (B.17)

Calculating the covariance matrix 𝚺 is more complicated but layed out in

the following. The logarithm of the Dirichlet is, up to additive constants

log 𝑝z(z|𝛼) =
∑
𝑘

𝛼𝑘𝜋𝑘 (B.18)

Using 𝜋𝑘 as the softmax of y as shown in Equation B.8 we can find the

elements of the Hessian L
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𝐿𝑘𝑙 = �̂�(𝛿𝑘𝑙𝜋𝑘 − 𝜋𝑘𝜋𝑙) (B.19)

where �̂� :=
∑
𝑘 𝛼𝑘 and �̂� =

𝛼𝑘
�̂� for the value of 𝝅 at the mode. Analytically

inverting L is done via a lengthy derivation using the fact that we can

write L = 𝑨 + 𝑿𝑩𝑿⊤
and inverting it with the Schur-complement. You

can find the derivation in (Hennig, 2010). This process results in the

inverse of the Hessian

𝐿−1

𝑘𝑙
= 𝛿𝑘𝑙

1

𝛼𝑘
− 1

𝐾

[
1

𝛼𝑘
+ 1

𝛼𝑙
− 1

𝐾

(
𝐾∑
𝑢

1

𝛼𝑢

)]
(B.20)

We are mostly interested in the diagonal elements, since we desire a

sparse encoding for computational reasons and we otherwise needed

to map a 𝐾 × 𝐾 covariance matrix to a 𝐾 × 1 Dirichlet parameter vector

which would be a very overdetermined mapping. Note that 𝐾 is a scalar

not a matrix. The diagonal elements of 𝚺 = L−1
can be calculated as

Σ𝑘𝑘 =
1

𝛼𝑘

(
1 − 2

𝐾

)
+ 1

𝐾2

𝑘∑
𝑙

1

𝛼𝑙
. (B.21)

To invert this mapping we transform Equation B.17 to

𝛼𝑘 = 𝑒𝜇𝑘
𝐾∏
𝑙

𝛼1/𝐾
𝑙

(B.22)

by applying the logarithm and re-ordering some parts. Inserting this into

Equation B.21 and re-arranging yields

𝐾∏
𝑙

𝛼1/𝐾
𝑙

=
1

𝚺𝑘𝑘

[
𝑒−𝜇

(
1 − 2

𝐾

)
+ 1

𝐾2

𝐾∑
𝑢

𝑒−𝜇𝑢

]
(B.23)

which can be re-inserted into Equation B.22 to give

𝛼𝑘 =
1

Σ𝑘𝑘

(
1 − 2

𝐾
+ 𝑒𝜇𝑘

𝐾2

𝐾∑
𝑙

𝑒−𝜇𝑘

)
(B.24)

which is the final mapping. With Equations B.17 and B.21 we are able to

map from Dirichlet to Gaussian and with Equation B.24 we are able to

map the inverse direction.

B.4 Experimental Details

The exact experimental setups, i.e. network architectures, learning rates,

random seeds, etc. can be found in the accompanying GitHub repository

*
. This section is used to justify some of the decisions we made during the

process in more detail, highlight some miscellaneous interesting things

and showcase the additional experiments promised in the main paper.

* https://github.com/mariushobbhahn/LB_for_BNNs_official

https://github.com/mariushobbhahn/LB_for_BNNs_official
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Table B.1: Comparing the extended probit approximation with the normalized version of the LB norm in the KFAC setting. The probit

approximation seems to break down in the MNIST scenarios.

KFAC Probit KFAC LB norm
Train Test MMC ↓ AUROC ↑ ECE ↓ NLL ↓ MMC ↓ AUROC ↑ ECE ↓ NLL ↓
MNIST MNIST 0.105 0.000 2.258 0.883 0.975 0.000 0.043 0.018

MNIST FMNIST 0.102 0.955 2.302 0.032 0.444 0.990 2.871 0.364

MNIST notMNIST 0.103 0.922 2.300 0.043 0.409 0.986 2.854 0.294

MNIST KMNIST 0.102 0.962 2.304 0.012 0.414 0.991 3.162 0.328

CIFAR10 CIFAR10 0.548 0.000 0.661 0.404 0.941 0.000 0.195 0.017

CIFAR10 CIFAR100 0.358 0.896 2.652 0.253 0.662 0.866 3.871 0.558

CIFAR10 SVHN 0.307 0.956 2.567 0.195 0.441 0.965 2.837 0.327

Mathematical description of the setup

In principle, the Gaussian over the weights required by the Laplace Bridge

for BNNs can be constructed by any Gaussian approximate Bayesian

method such as variational Bayes (Graves, 2011; Blundell et al., 2015) and

Laplace approximations for NNs (D. J. C. MacKay, 1992; Ritter et al.,

2018). We will focus on the Laplace approximation, which uses the same

principle as the Laplace Bridge. However, in the Laplace approximation

for neural networks, the posterior distribution over the weights of a

network is the one that is approximated as a Gaussian, instead of a

Dirichlet distribution over the outputs as in the Laplace Bridge.

Given a dataset D := {(x𝑖 , 𝑡𝑖)}𝐷𝑖=1
and a prior 𝑝(𝜽), let

𝑝(𝜽 |D) ∝ 𝑝(𝜽)𝑝(D|𝜽) = 𝑝(𝜽)
∏

(x,𝑡)∈D

𝑝(𝑦 = 𝑡 |𝜽, x) , (B.25)

be the posterior over the parameter 𝜽 of an 𝐿-layer network 𝑓𝜽 . Then we

can get an approximation of the posterior 𝑝(𝜽 |D) by fitting a Gaussian

N (𝜽 |𝝁𝜽 ,𝚺𝜽) where

𝝁𝜽 = 𝜽MAP ,

𝚺𝜽 = (−∇2 |𝜽MAP
log 𝑝(𝜽 |D))−1 =: 𝑯−1

𝜽 .

That is, we fit a Gaussian centered at the mode 𝜽MAP of 𝑝(𝜽 |D) with the

covariance determined by the curvature at that point. We assume that

the prior 𝑝(𝜽) is a zero-mean isotropic Gaussian N (𝜽 |0, 𝜎2𝑰) and the

likelihood function is the Categorical density

𝑝(D|𝜽) =
∏

(x,𝑡)∈D

Cat(𝑦 = 𝑡 |softmax( 𝑓𝜽(x))) .

For various applications in Deep Learning, an approximation with full

Hessian is often computationally too expensive. Indeed, for each input

x ∈ ℝ𝑁
, one has to do 𝐾 backward passes to compute the Jacobian 𝑱(x).

Moreover, it requires an O(𝑃𝐾) storage which is also expensive since 𝑃

is often in the order of millions. A cheaper alternative is to fix all but the

last layer of 𝑓𝜽 and only apply the Laplace approximation on 𝑾 𝐿, the last

layer’s weight matrix. This scheme has been used successfully by Snoek

et al. (2015), A. G. Wilson, Z. Hu, et al. (2016), and Brosse et al. (2020),

etc. and has been shown theoretically that it can mitigate overconfidence

problems in ReLU networks (Kristiadi et al., 2020). In this case, given the
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approximate last-layer posterior

𝑝(𝑾 𝐿 |D) ≈ N (vec(𝑾 𝐿)|vec(𝑾 𝐿
MAP

),𝑯−1

𝑾 𝐿 ) , (B.26)

one can efficiently compute the distribution over the logits. That is, let

𝝓 : ℝ𝑁 → ℝ𝑄
be the first 𝐿 − 1 layers of 𝑓𝜽 , seen as a feature map. Then,

for each x ∈ ℝ𝑁
, the induced distribution over the logit 𝑾 𝐿𝝓(x) =: z is

given by

𝑝(z|x) = N (z|𝑾 𝐿
MAP

𝝓(x), (𝝓(x)⊤ ⊗ 𝑰)𝑯−1

𝑾 𝐿 (𝝓(x) ⊗ 𝑰)) , (B.27)

where ⊗ denotes the Kronecker product.

An even more efficient last-layer approximation can be obtained using a

Kronecker-factored matrix normal distribution (Ritter et al., 2018; Louizos

et al., 2016; Sun et al., 2017). That is, we assume the posterior distribution

to be

𝑝(𝑾 𝐿 |D) ≈ MN (𝑾 𝐿 |𝑾 𝐿
MAP

,𝑼 ,𝑽 ) , (B.28)

where 𝑼 ∈ ℝ𝐾×𝐾
and 𝑽 ∈ ℝ𝑄×𝑄

are the Kronecker factorization of the

inverse Hessian matrix 𝑯−1

𝑾 𝐿 (Martens et al., 2015) and MN denotes the

Matrix Normal distribution. In this case, for any x ∈ ℝ𝑁
, one can easily

show that the distribution over logits is given by

𝑝(z|x) = N (z|𝑾 𝐿
MAP

𝝓(x), (𝝓(x)⊤𝑽𝝓(x))𝑼 ) , (B.29)

which is easy to implement and computationally cheap. Finally, and even

more efficient, is a last-layer approximation scheme with a diagonal Gaus-

sian approximate posterior, i.e. the so-called mean-field approximation.

In this case, we assume the posterior distribution to be

𝑝(𝑾 𝐿 |D) ≈ N (vec(𝑾 𝐿)|vec(𝑾 𝐿
MAP

), diag 𝝈2) , (B.30)

where 𝝈2
is obtained via the diagonal of the Hessian of the log-posterior

w.r.t. vec(𝑾 𝐿) at vec(𝑾 𝐿
MAP

).

OOD Detection

The test scenarios are: A two-layer convolutional network trained on the

MNIST dataset (LeCun, 1998). The OOD datasets for this case are FMNIST

(Xiao et al., 2017), notMNIST (Bulatov, 2011), and KMNIST (Clanuwat

et al., 2018). For larger datasets, i.e. CIFAR-10 (Krizhevsky, Nair, et al.,

2014), SVHN (Netzer et al., 2011), and CIFAR-100 (Krizhevsky, Nair, et al.,

2014), we use a ResNet-18 network (He et al., 2016). In all scenarios, the

networks are well-trained with 99% test accuracy on MNIST, 95.4% on

CIFAR-10, 76.6% on CIFAR-100, and 100% on SVHN. For the sampling

baseline, we use 100 posterior samples.

All network have been trained with conventional setups, i.e. we use

ADAM with learning rate 1e−3 and weight decay 5e−4 for the MNIST ex-

periments and SGD with a cosine annealing scheduler starting at learning

rate 0.1 and momentum 0.9 for the CIFAR and SVHN experiments.
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Probit vs LB

The KFAC setting of the probit comparison can be found in Table B.1.

Especially in the MNIST scenario the probit approximation seems to

break down since even in-dist detection is at chance level. The LB, on the

other hand, yields reasonable results.
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C.1 Modelling categorical node metadata

Equation 5.5 in the main text describes the general formulation of the

expected value of an attribute 𝑥 for node 𝑖. However, when the attribute

𝑥 is categorical, the expression becomes more intricate because it has

to account for the total number of attribute categories 𝑍. In this case,

𝝅𝒊𝒙(𝚯) = [𝜋𝑖𝑥𝑧(𝚯)]𝑧∈[1,𝑍] and 𝑯 𝒌𝒙 = [𝐻𝑘𝑥𝑧]𝑧∈[1,𝑍] are 𝑍-dimensional

vectors. Within this framework, 𝐻𝑘𝑥𝑧 explains how much information

from the 𝑧-th category of attribute 𝑥 is used to create the 𝑘-th community,

and𝜋𝑖𝑥𝑧(𝚯) follows the modelling approach outlined in Contisciani et al.,

2020:

𝜋𝑖𝑥𝑧(𝚯) ≈ 1

2

𝐾∑
𝑘=1

(𝑈𝑖𝑘 +𝑉𝑖𝑘)𝐻𝑘𝑥𝑧 . (C.1)

C.2 Model settings and hyperparameters choice

We employ PIHAM consistently, maintaining the same configurations

and hyperparameters across all experiments. The only variation lies in

the choice of the likelihood function, customized to match the data types

under examination. Specifically, we adopt Bernoulli distributions for

binary information, Poisson distributions for nonnegative discrete data,

Gaussian distributions for real values, and Categorical distributions for

categorical data.

We set the prior distributions as standard normal distributions N (0, 1),
serving as shrinkage regularization. Indeed, due to the complexity of the

data, the objective function may become non-identifiable, thus requiring

the enforcement of concavity and differentiability. The selection of these

priors accommodates this necessity. On the contrary, for parameter

initialization, we opt for wider normal distributions N (0, 9) to facilitate

exploration of various initial points.

PIHAM performs inference using the gradient-based method Automatic

Differentiation, and in our implementation we employs the Adam op-

timizer to iteratively evaluate derivatives of the log-posterior. We set

the learning rate of the optimizer equal to 0.5 and run the optimization

procedure for 2000 iterations, maintaining a tolerance threshold of 10
−8

.

Furthermore, we execute the algorithm 50 times, each time starting from a

different random initialization, and output the parameters corresponding

to the realization with the highest objective function.
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C.3 Comparison with existing methods in a
homogeneous scenario

Data generation

We construct directed attributed multilayer networks following a pro-

cedure similar to that described in Contisciani et al., 2020. Initially, we

generate interactions using a multilayer mixed-membership stochastic

block model De Bacco et al., 2017. Subsequently, we assign node metadata,

ensuring a 50% match with the node communities, while the remaining

ones are made randomly. We set a configuration with 𝑁 = 500 nodes,

𝐿 = 2 layers of which one being assortative and the other disassortative,

a categorical attribute with 𝑍 = 3 categories, and 𝐾 = 3 overlapping

communities. Networks are generated with increasing average degrees

⟨𝑘⟩ ∈ {10, 15, 20, . . . , 50}, producing 20 independent samples for each

⟨𝑘⟩ value. To generate the membership matrices 𝑼 and 𝑽 , we initially

assign equal-size unmixed group memberships and then introduce the

overlapping for 20% of the nodes. The correlation between 𝑼 and 𝑽
is set equal to 0.1, with entries drawn from a Dirichlet distribution

with parameter 𝛼 = 0.1. The affinity matrix 𝑾 1
exhibits an assortative

block structure with main probabilities 𝑝1 = ⟨𝑘⟩𝐾/𝑁 and secondary

probabilities 𝑝2 = 0.1 𝑝1. Conversely, the affinity matrix 𝑾 2
is generated

using a disassortative block structure with off-diagonal probabilities

𝑝1 = ⟨𝑘⟩𝐾/𝑁 and diagonal probabilities 𝑝2 = 0.1 𝑝1. Self-loops are

removed, and sparsity is preserved.

The resulting networks depict a simpler scenario characterized by homo-

geneous layers with nonnegative discrete weights and a single categorical

attribute. Such scenario is crucial for testing our model against existing

methods.

Experiment details

For comparison, we use MTCOV Contisciani et al., 2020, a probabilistic

model that assumes overlapping communities as the main mechanism

governing both interactions and node attributes. This model is specifically

tailored to handle categorical attributes and nonnegative discrete weights,

and employs an EM algorithm for parameter inference. We run MTCOV

50 times with different random initializations, maintaining the same

tolerance as in our implementation. In addition, we set the maximum

number of EM steps before termination at 500, and the threshold for

declaring convergence based on the consecutive updates respecting

the tolerance equal to 15. Lastly, we fix the scaling hyperparameter

𝛾 = 0.5, reflecting the matching constraint imposed in the synthetic data

generation.

We assess the performance of PIHAM and MTCOV in both prediction

and community detection tasks. Specifically, we evaluate their predictive

capabilities using a 5-fold cross-validation routine, in which the dataset

is split into five equal-size groups (folds), selected uniformly at random.

The models are then trained on four of these folds (training set), covering

80% of the triples (𝑖 , 𝑗 , ℓ ) and 80% of the categorical vector entries, to

learn their parameters. Next, we evaluate the models’ performance on the
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held-out group (test set). This process is repeated five times by varying

the test set, resulting in five trials per iteration. As performance metrics,

we use the Area Under the Curve (AUC) for the edge prediction, which

represents the probability that a randomly selected edge has a higher

expected value than a randomly selected non-existing edge, and accuracy

for covariate prediction.

To evaluate the methods’ performance in recovering communities, we

first need to transform the inferred memberships to match the parameter

space of the planted communities. Indeed, the ground truth mixed-

memberships are represented as normalized vectors summing to 1,

whereas our inferred parameters belong to the real-space. As discussed

in the section “Parameter space and transformations” of the main text,

two approaches can be adopted for such alignment: i) applying a softmax

transformation to the point estimates �̂�𝜽
, or ii) employing the LM tech-

nique to obtain Dirichlet posterior distributions and utilizing a suitable

statistic of these, where the mean serves as a viable option. In this experi-

ment, we use both methods. For assessing performance, we utilize the

Cosine Similarity (CS), a metric adept at capturing both hard and mixed-

membership communities, ranging from 0 (indicating no similarity) to 1

(denoting perfect recovery). We compute the average cosine similarities

of both membership matrices 𝑼 and 𝑽 , and then average them across

the nodes.

Results

The results of both models in prediction and community detection tasks

are depicted in Figure C.1. While MTCOV is expected to exhibit better

performance due to its close alignment with the generative process

underlying the synthetic data, PIHAM demonstrates comparable perfor-

mance across all tasks despite its broader framework. This similarity is

particularly notable in scenarios featuring denser networks. Indeed, our

model, by treating all information equally, may face challenges in very

sparse networks when relying only on a single covariate. Conversely,

this is not an issue for MTCOV as it utilizes a linear combination of node

and edge information, leveraging node covariates to address network

sparsity.

An additional consideration is the choice of transformation used to

compare the inferred communities with the planted ones. Both options

yield similar results, as shown in Figure C.1C. The slight discrepancy

between the two arises from the Dirichlet mean providing slightly more

mixed-memberships.

Overall, these findings collectively suggest that PIHAM remains a valid

approach even in less heterogeneous scenarios, demonstrating its ability

to effectively compete with ad-hoc existing methods.
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A B C

Figure C.1: Prediction and community detection performance on synthetic data. We analyze synthetic attributed multilayer networks

with 𝑁 = 500 nodes, 𝐿 = 2 layers (one being assortative and the other disassortative), a categorical attribute with 𝑍 = 3 categories, 𝐾 = 3

overlapping communities, and increasing average degrees ⟨𝑘⟩ ∈ {10, 15, 20, . . . , 50}. The results represent averages and confidence

intervals over 20 independent samples. For prediction tasks, we employ a 5-fold cross-validation procedure. The evaluation metrics

include (A) the AUC for edge prediction, with a baseline of 0.5 corresponding to random choice, and (B) accuracy for covariate prediction.

Here, MRF represents a baseline given by the predictions obtained from the maximum frequency in the training set, while Random

denotes the uniform random probability over 𝑍. (C) Community detection performance is assessed using CS. As inferred point estimates,

we consider both the mean of transformed Dirichlet posterior distributions and the softmax transformation of �̂�𝜽
. Overall, PIHAM

exhibits comparable performance to MTCOV across all tasks despite its broader framework, especially in scenarios involving denser

networks.

C.4 Validation on heterogeneous data

Data generation

We construct directed, heterogeneous, and attributed multilayer networks

using the framework of PIHAM. Initially, we draw the latent variables

𝚯 = (𝑼 ,𝑽 ,𝑾 ,𝑯) from Gaussian distributions with specified hyper-

parameters, and then generate 𝑨 and 𝑿 according to the data types,

following Eqs. 5.2-5.7 in the main text. We configure the networks with

𝐿 = 3 heterogeneous layers: one with binary interactions, the second

with nonnegative discrete weights, and the third with real values. Addi-

tionally, each node is associated with three covariates: one categorical

with 𝑍 = 4 categories, one with nonnegative discrete values, and the

last with real values. Networks are generated with increasing number

of nodes 𝑁 ∈ {100, 200, . . . , 1000}, and varying number of overlapping

communities 𝐾 ∈ {3, 4, 5}. For each combination (𝑁, 𝐾), we generate 20

different samples. To generate the membership matrices 𝑼 and 𝑽 , we as-

sign equal-size group memberships and draw the entries of the matrices

from distributions with different means, according to the group the nodes

belong to. Specifically, 𝑢𝑖𝑘 ∼ N (2, 0.04) if 𝑖 is associated with group 𝑘,

otherwise 𝑢𝑖𝑘 ∼ N (−1, 0.04). Similarly, 𝑣𝑖𝑘 ∼ N (2, 0.09) if 𝑖 is associated

with group 𝑘, otherwise 𝑣𝑖𝑘 ∼ N (−1, 0.09). The affinity tensor𝑾 exhibits

an assortative block structure in each layer, with diagonal entries follow-

ing normal distributions with zero mean and 𝜎 = 0.45, and off-diagonal

entries drawn from normal distributions with 𝜇 = −4 and 𝜎 = 0.45. The

community-covariate matrix 𝑯 is set to maintain coherence between

node interactions and covariates, avoiding additional noise in the data.

For the categorical variable, 𝐻𝑘𝑥𝑧 ∼ N (0.5 + 𝑘, 0.04) if 𝑘 = 𝑧, otherwise

𝐻𝑘𝑥𝑧 ∼ N (0, 0.04). When 𝐾 = 3 or 𝐾 = 5, we set 𝐻𝑘𝑥4 ∼ N (0.2, 0.04)
or 𝐻5𝑥𝑧 ∼ N (0.2, 0.04), respectively. The nonnegative discrete attribute

is generated according to 𝐻𝑘𝑥 ∼ N (1.5 × 𝑘+2

3
, 0.01), while the covariate

with real values is constructed with 𝐻𝑘𝑥 ∼ N (4 + (1 − 𝑘) × 3, 0.04).

The resulting networks represent a general scenario featuring heteroge-
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neous interactions and node covariates, which is essential to validate our

approach and demonstrate its flexibility.

Experiment details

We assess the performance of PIHAM by evaluating its predictive capa-

bilities through a 5-fold cross-validation routine. In this approach, the

dataset is randomly divided into five equal-sized groups (folds), and the

model is trained on four of them (the training set), which include 80% of

the triples (𝑖 , 𝑗 , ℓ ) and 80% of the entries of each attribute vector, to learn

its parameters. The performance of the model is then evaluated on the

remaining fold (the test set). This process is repeated five times, each time

with a different fold as the test set, resulting in five trials per iteration.

For performance metrics, we use different measures depending on the

type of information being evaluated. For binary interactions, we use the

Area Under the Curve (AUC), which represents the probability that a

randomly selected edge has a higher expected value than a randomly

selected non-existing edge. The AUC ranges from 0 to 1, with 0.5 repre-

senting the random baseline. For nonnegative discrete data, we use the

Maximum Absolute Error (MAE), and for real values, we use the Root

Mean Squared Error (RMSE). In both cases, lower values indicate better

performance. Additionally, for categorical attribute predictions, we use

accuracy, which ranges from 0 to 1, with 1 indicating perfect recovery.

C.5 Interpretation of posterior estimates

Experiment details

Interpreting posterior distributions can be challenging, especially with

large datasets. To address this, we propose two different approaches to

summarize the inferred results.

First, we employ a metric to quantify the area of overlap between distri-

butions. We use the method proposed in Wand et al., 2011, which defines

the integrated absolute error (IAE) between two distributions as:

IAE =

∫ ∞

−∞

�� 𝑝1(𝑥) − 𝑝2(𝑥)
��𝑑𝑥 , (C.2)

with IAE ∈ [0, 2]. When 𝑝1 and 𝑝2 completely overlap, the difference

between them is a line in zero, and the IAE is 0. Conversely, if there is

no overlap, the IAE is 2, which is the sum of the integrals of the two

distributions. To normalize this metric to the range [0, 1], we define:

Overlap = 1 − 1

2

IAE . (C.3)

In this case, an Overlap of 0 indicates no overlap between the distributions,

while an Overlap of 1 represents perfect matching. We compute this

measure between every pair of distributions for each node and then

calculate the average.
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Computing the Overlap for many communities can be computationally

expensive due to the need to evaluate all pairwise combinations. As an

alternative, we use the 𝐿2-barycenter distribution, which represents a

weighted average of the node-community distributions Benamou et al.,

2015; Coz et al., 2023. This approach simplifies the problem by focusing

on a single distribution per node instead of 𝐾 different ones. We calculate

this distribution using the POT Python package flamary2021pot, and

we quantify it by computing its variance (𝜎2
) using the trapezoidal rule

to approximate the integral. Higher values indicate nodes with harder

memberships, as the barycenter is more spread due to the individual

distributions being more distant from each other. Conversely, lower

variance suggests more overlap among the distributions, indicating a

more mixed-membership scenario.

C.6 Analysis of a social support network of a
rural Indian village

Data pre-processing

We analyze a real-world dataset describing a social support network

within a village in Tamil Nadu, India, referred to as “Alakāpuram” Power,

2015; Power, 2017. The data were collected in 2013 through surveys, in

which adult residents were asked to nominate individuals who provided

various types of support. In our analysis, we consider six different

binary support questions, each forming a layer in the network, and

we exclude individuals without any of these interactions. Details on

these layers, including the number of edges and the average degree, are

provided in Table C.1, while a visual representation can be found in

Figure C.2. Additionally, we construct a seventh layer that incorporates

the geographical distance between individuals’ households. Specifically,

we define the entries of this layer as𝐴7

𝑖 𝑗
= 1√

1+𝑑𝑖 𝑗
, where 𝑑𝑖 𝑗 is the distance

between the households of individuals 𝑖 and 𝑗, and we set 𝐴7

𝑖𝑖
= 0. Note

that higher values indicate closer proximity, while lower values represent

greater distances. The resulting adjacency tensor is then represented as

𝑨 = {𝑨ℓ ∈ {0, 1}𝑁×𝑁 ∀ℓ ∈ [1, 6],𝑨7 ∈ ℝ𝑁×𝑁 }.

In addition, several attributes were collected, including information like

gender, age, and caste, among others. For our analysis, we focus on caste,

religion, and years of education, as ethnographic work and previous

analyses Power, 2017; Power and Ready, 2018 suggest these attributes

Table C.1: Summary statistics for the first six binary layers of the “Alakāpuram” social support network. E denotes the number of edges,

while ⟨𝑘⟩ represents the average degree. A visual representation of these layers can be found in Figure C.2.

Layer Description E ⟨𝑘⟩
𝐿1 Talk about important matters 880 4.2

𝐿2 Help finding a job 437 2.1

𝐿3 Help with physical tasks 758 3.6

𝐿4 Borrow household items from 876 4.2

𝐿5 Ask for money 386 1.8

𝐿6 Talk to for pleasure 824 3.9
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Figure C.2: Visual representation of the first six binary layers of the “Alakāpuram” social support network. Details on these layers,

including the information encoded, the number of edges, and the average degree, are provided in Table C.1. The position of the nodes

reflects the geographical distance between individuals’ households.

significantly influence how villagers relate to one another. Specifically,

caste is a categorical attribute with 𝑍𝑐𝑎𝑠𝑡𝑒 = 14 categories, religion

has 𝑍𝑟𝑒𝑙𝑖𝑔𝑖𝑜𝑛 = 3 categories, and years of education are represented as

nonnegative discrete values 𝑿 ·3 ∈ ℕ𝑁
0

.

The resulting heterogeneous attributed multilayer network comprises

𝑁 = 419 nodes, 𝐿 = 7 layers, and 𝑃 = 3 node attributes.

Results

To determine the number of communities 𝐾, we employ a 5-fold cross-

validation procedure for 𝐾 ∈ [1, 10] and select the value that exhibits the

optimal performance. Similar to the synthetic experiments, for a given 𝐾,

we train the model on four folds (training set), which include 80% of the

triples (𝑖 , 𝑗 , ℓ ) and 80% of the entries of each attribute vector, to learn its

parameters. The model’s performance is then evaluated on the remaining

fold (the test set). This process is repeated five times, each with a different

fold as the test set, resulting in five trials per iteration. We evaluate

prediction performance in the first six binary layers using the Area Under

the Curve (AUC), representing the probability that a randomly selected

edge has a higher expected value than a randomly selected non-existing

edge. The AUC ranges from 0 to 1, with 0.5 indicating the random baseline.

For the seventh layer containing real values, we use the Root Mean

Squared Error (RMSE), where lower values indicate better performance.

Additionally, we assess prediction performance for the attributes using

accuracy for caste and religion, which ranges from 0 to 1 (with 1 indicating

perfect recovery), and the Maximum Absolute Error (MAE) for years of
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Table C.2: Prediction performance on the “Alakāpuram” social support network. For a given number of communities 𝐾, we employ a

5-fold cross-validation procedure and report averages and standard deviations over the five trials, each using a different fold as the test

set. We evaluate prediction performance in the first six binary layers using the Area Under the Curve (AUC) and for the seventh layer

containing real values using the Root Mean Squared Error (RMSE). Additionally, we assess prediction performance for the attributes

using accuracy for caste (𝑿 ·1) and religion (𝑿 ·2), and the Maximum Absolute Error (MAE) for years of education (𝑿 ·3), represented as

nonnegative discrete values. The baselines are omitted for brevity. In our experiments, we set 𝐾 = 6 as it achieves the best performance

across most prediction metrics, and overall, PIHAM demonstrates robust outcomes with the chosen fixed value of 𝐾.

𝐾 AUC ([𝑨ℓ]ℓ∈[1,6]) RMSE (𝑨7) Accuracy (𝑿 ·1) Accuracy (𝑿 ·2) MAE (𝑿 ·3)
1 0.575 ± 0.007 0.096 ± 0.003 0.55 ± 0.05 0.84 ± 0.04 4.3 ± 0.3

2 0.717 ± 0.009 0.096 ± 0.003 0.55 ± 0.04 0.84 ± 0.04 4.3 ± 0.2

3 0.73 ± 0.01 0.096 ± 0.003 0.55 ± 0.05 0.84 ± 0.04 4.3 ± 0.1
4 0.77 ± 0.01 0.093 ± 0.003 0.58 ± 0.05 0.84 ± 0.03 4.4 ± 0.1

5 0.77 ± 0.02 0.088 ± 0.005 0.63 ± 0.06 0.87 ± 0.06 4.4 ± 0.1

6 0.76 ± 0.01 0.086 ± 0.003 0.70 ± 0.07 0.87 ± 0.02 4.4 ± 0.1

7 0.74 ± 0.01 0.089 ± 0.003 0.63 ± 0.04 0.85 ± 0.04 4.4 ± 0.1

8 0.73 ± 0.01 0.095 ± 0.003 0.27 ± 0.06 0.83 ± 0.04 4.4 ± 0.1

9 0.72 ± 0.01 0.095 ± 0.003 0.20 ± 0.04 0.84 ± 0.04 4.4 ± 0.1

10 0.72 ± 0.01 0.095 ± 0.003 0.2 ± 0.2 0.84 ± 0.04 4.4 ± 0.2

education, with lower values indicate better performance. The results are

displayed in Table C.2. In our experiments, we set 𝐾 = 6 as it achieves the

best performance across most prediction metrics. Note that, summarizing

and evaluating results in a heterogeneous setting using a single metric is

challenging, as discussed in the section “Validation on heterogeneous

data” of the main text. The results in Table C.2 further demonstrate that

PIHAM achieves robust outcomes with the chosen fixed value of 𝐾.

To provide a qualitatively interpretation of the inferred results, Fig. 4 in the

main text shows the inferred out-going communities �̂� . Here, we present

additional visualizations for other model parameters. In particular, Figure

C.3 displays the inferred 𝐾 × 𝑍𝑐𝑎𝑠𝑡𝑒 -dimensional matrix �̂� ·1, which

explains the contributions of each caste category to the formation of the

𝑘-th community. Panel B presents the inferred posterior distributions

�̂�𝑘1𝑧 ∼ N (�̂�𝑘1𝑧 ; �̂�𝐻𝑘1𝑧 , (�̂�
𝐻
𝑘1𝑧

)2), with different colors representing distinct

caste categories. Panel A, instead, shows the softmax transformation of

the MAP estimates �̂�𝑯
𝒌1 for easier interpretation. Note that, the matrix

is transposed in the plot, so that each column sums to 1, and the y-

axis lists the caste categories. From this figure, we observe that the

first and second communities predominantly consist of nodes from to

the Yatavar and Paraiyar castes, respectively. Similarly, 𝐾3 comprises

nodes from the Kulalar and Maravar castes, while communities 𝐾4, 𝐾5,

and 𝐾6 are predominantly composed by nodes from the Pal
.
l
.
ar caste,

which is also the most represented caste in the dataset. Furthermore,

Figure C.4 shows the inferred posterior distributions of the community-

covariate vector related to years of education, �̂�𝑘3 ∼ N (�̂�𝑘3; �̂�𝐻
𝑘3
, (�̂�𝐻

𝑘3
)2).

From this figure, it is evident that this attribute plays a more significant

role in determining 𝐾6, as its distribution has a notably higher mean

compared to the distributions of the other communities. Lastly, Figure C.5

displays the affinity tensor �̂� , which explains the edge density between

different community pairs in the various layers. To improve visualization

clarity, we apply a logistic transformation to the MAP estimates [�̂�ℓ
𝑘𝑞
]𝑊 .

This figure suggests that the different layers predominantly exhibit an

assortative structure, where nodes tend to interact more with individuals

within the same community than with those from different communities.
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A B

Figure C.3: Inference of the community-caste parameter in the “Alakāpuram” social support network. We display the inferred 𝐾 ×𝑍𝑐𝑎𝑠𝑡𝑒 -
dimensional matrix �̂� ·1, which explains the contributions of each caste category to the formation of the 𝑘-th community. For privacy

reasons, nodes belonging to castes with fewer than five individuals are aggregated into an “Other” category. (A) Transformation of the

MAP estimates �̂�𝑯
𝒌1 inferred by PIHAM using the softmax function. In this plot, the matrix is transposed, so that each column sums

to 1, and the y-axis lists the caste categories. (B) Inferred posterior distributions �̂�𝑘1𝑧 ∼ N (�̂�𝑘1𝑧 ; �̂�
𝐻
𝑘1𝑧
, (�̂�𝐻

𝑘1𝑧
)2), with different colors

representing distinct caste categories. The first and second communities predominantly consist of nodes from to the Yatavar and Paraiyar

castes, respectively. 𝐾3 comprises nodes from the Kulalar and Maravar castes, while communities 𝐾4, 𝐾5, and 𝐾6 are predominantly

composed by nodes from the Pal
.
l
.
ar caste.

However, we notice some variations for certain layers. For instance,

𝐿2 (help finding a job) has few non-zero diagonal values, suggesting

that this type of support sometimes requires seeking out individuals in

different communities. Moreover, 𝐿7, corresponding to the geographical

distance between nodes, has several off-diagonal entries, particularly for

communities 𝐾4, 𝐾5, and 𝐾6, suggesting a weakened effect for physical

proximity for those communities.

Taken together, these findings suggest that PIHAM utilizes all the input

information to infer partitions that effectively integrate all of them

in a meaningful manner. In addition, the inferred affinity matrices

illustrate how different layers can exhibit different community structures,

a diversity that can be captured by our model.
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Figure C.4: Inference of the community-education parameter in the “Alakāpuram” social support network. We display the inferred

posterior distributions �̂�𝑘3 ∼ N (�̂�𝑘3; �̂�𝐻
𝑘3
, (�̂�𝐻

𝑘3
)2), which explain how the attribute related to years of education is distributed among the

𝐾 communities. The distribution of the attribute in 𝐾6 has a notably higher mean compared to the distributions of the other communities,

suggesting that 𝑿 ·3 plays a significant role in determining this community.

Figure C.5: Inference of the affinity ten-

sor in the “Alakāpuram” social support

network. We display the MAP estimates

of the inferred �̂� , which explain the

edge density between different commu-

nity pairs in the various layers. To im-

prove visualization clarity, we apply a

logistic transformation to the MAP esti-

mates [�̂�ℓ
𝑘𝑞
]𝑊 . The different layers pre-

dominantly exhibit an assortative struc-

ture, with some variations for certain lay-

ers. For instance, 𝐿2 (help finding a job)

has few non-zero diagonal values, sug-

gesting that this type of support some-

times requires seeking out individuals in

different communities. Moreover, 𝐿7, cor-

responding to the geographical distance

between nodes, has several off-diagonal

entries, particularly for communities 𝐾4,

𝐾5, and 𝐾6, suggesting a weakened effect

for physical proximity for those commu-

nities.
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