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Abstract

Ordinary differential equations (ODEs) are essential for modeling the behavior of
complex dynamical systems in a variety of disciplines. In the absence of an analytical
solution, however, the use of numerical integration methods, which are always sub-
ject to error, is often unavoidable. Thus, there is an interest in probabilistic solutions
that take the uncertainty in numerical simulations into account. Another challeng-
ing problem is determining the model parameters that best explain experimental
measurements of the real system. In the event of such needs, it might be difficult
to replace a simulator that has previously been optimized for a specific practical
application.

In this work, methods for both problems are developed that allow the usage
of existing ODE solvers as a black box, provided that they are differentiable. For
probabilistic solutions, an estimator for the local error is also required, which is
usually available, e.g., in commonly used embedded Runge-Kutta methods. The two
proposed methods then apply Bayesian filtering techniques, primarily the extended
Kalman Filter, to perform inference in a probabilistic model over the ODE solution.
While the first method models the uncertainty about the solution through estimates
of the local error, the second method, which we call process noise tempering, gradually
reduces the added noise during gradient-based optimization of the parameters,
facilitating convergence to the global optimum.

An experimental evaluation shows that the produced probabilistic ODE solutions
capture the structure of the uncertainty on a qualitative level, but are not always
calibrated ideally. The use of overly large step sizes for simulation, however, can
lead to catastrophic failure in the form of mode collapses. Process noise tempering,
on the other hand, proves to estimate parameters reliably even for complex Hodgkin-
Huxley models with more than ten parameters.
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Zusammenfassung

Gewöhnliche Differentialgleichungen (ODEs) sind für die Modellierung des
Verhaltens komplexer dynamischer Systeme in einer Vielzahl von Wissenschaften
elementar. In Ermangelung einer analytischen Lösung ist die Verwendung numeri-
scher Integrationsmethoden, die immer fehlerbehaftet ist, oft jedoch unvermeidlich.
Daher besteht ein Interesse an probabilistischen Lösungen, die die Unsicherheit in nu-
merischen Simulationen berücksichtigen. Eine weitere Herausforderung besteht im
Bestimmen der Modellparameter, die experimentelle Messungen des realen Systems
am besten erklären. Im Falle solcher Bedarfe kann es allerdings schwierig sein einen
Simulator auszutauschen, wenn er zuvor für eine spezifische Praxisanwendung
optimiert wurde.

Im Rahmen dieser Arbeit werden Methoden für beide Probleme entwickelt, die
es erlauben, bestehende ODE-Löser als Black Box zu verwenden, vorausgesetzt, sie
sind differenzierbar. Für probabilistische Lösungen wird zusätzlich ein Schätzer für
den lokalen Fehler benötigt, der üblicherweise verfügbar ist, z.B. in weit verbreiteten
eingebetteten Runge-Kutta-Methoden. Beide Methoden wenden dann Bayes’sche
Filtertechniken an, vordergründig den erweiterten Kalman-Filter, um Inferenz in
einem probabilistischen Modell über die ODE-Lösung durchzuführen. Während die
erste Methode die Unsicherheit durch Schätzungen des lokalen Fehlers modelliert,
verringert die zweite Methode, die wir Prozessrauschtemperierung nennen, schrittwei-
se das hinzugefügte Rauschen während der gradientenbasierten Optimierung der
Parameter, um die Konvergenz zum globalen Optimum zu begünstigen.

Eine experimentelle Auswertung zeigt, dass die erzeugten probabilistischen
ODE-Lösungen die Struktur der Unsicherheit auf qualitativer Ebene erfassen, aber
nicht immer ideal kalibriert sind. Die Verwendung von zu hohen Schrittweiten bei
der Simulation kann jedoch zu katastrophalem Versagen in Form von kollabieren-
den Modi führen. Die Prozessrauschtemperierung hingegen erweist sich auch für
komplexe Hodgkin-Huxley-Modelle mit mehr als zehn Parametern als zuverlässig
in der Parameterschätzung.
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Introduction 1

In many cases, it is straightforward to express knowledge about a dynamical system by
the rate of change its state undergoes subject to the current state, yielding the formulation
of ordinary differential equations (ODEs). A few examples, among many others, are
the behavior of mechanical systems like celestial bodies (Musielak & Quarles, 2015) or
the time evolution of chemical reactions (D. J. Higham, 2008). Only recently, another
example of such a system – the spread of infectious diseases – received global attention,
as modeling, simulating, and forecasting its dynamics formed one of the pillars for taking
political measures and ultimately saving lives (Cooper et al., 2020).

Predicting a system’s state over time requires integration of the corresponding ODE.
However, this is only analytically tractable and therefore exact for a few simple cases.
Most systems of interest exhibit rather complex nonlinear dynamics and necessitate
numerical integration, which inevitably causes an error in the solution. Another problem
is that ODE parameters are often unknown. Estimating them from observations of the
state is difficult, as the objective function to be optimized is generally non-convex.

In recent years, the idea of rephrasing numerical algorithms as Bayesian inference
problems has emerged, forming a new computational paradigm called probabilistic numer-
ics (PN) (Hennig et al., 2022). The probabilistic framework allows modeling uncertainty
over various quantities, both data and latent variables, in the formulation of a problem.
This results in a probability measure over the space of possible solutions, in contrast
to mere point estimates of the solution and its error, as provided by many classical
numerical algorithms, e.g, ODE solvers.

However, there might be applications where problem-specific and highly optimized,
but non-probabilistic ODE solvers are already in use. As those solvers cannot be easily
exchanged, an additional demand of uncertainty quantification poses a challenge, mo-
tivating this work’s approach: We treat the numerical ODE solver as a black box with
only few requirements and build a probabilistic model around it by adding stochastic
noise. Given the model, we apply Bayesian filtering techniques to solve the correspond-
ing inference problem, and evaluate the calibration of the probabilistic solutions. Last,
we investigate whether a related probabilistic model can also be used to reliably solve
inverse problems, i.e., estimate parameters of ODEs.
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1. Introduction 1.1. Notation

1.1 Notation

Unless otherwise indicated, mathematical notation in this work is defined as follows:

v The natural numbers N are defined as the set of all positive integers, i.e., N �

r1, 2, 3, . . .x.

v For a general set of numbers X, notations X
�
� rx " X ¶ x % 0x and X

�
�

rx " X ¶ x $ 0x denote restrictions to positive and negative numbers, respectively.
Furthermore, X0 � X< r0x refers to the extension of X by zero. The latter may be
combined with one of the formers; in this case, the extension is performed after the
restriction.

v Scalars are written in italics, either upper or lower case (e.g., α or N).

v Vectors are written in boldface and lowercase (e.g., a). In general, they are defined
as column vectors. The same applies to vector-valued functions.

v Matrices are written in boldface and uppercase (e.g., A). The same applies to
matrix-valued functions.

v Square brackets indicate elements of a vector, i.e., �x�i � xi for a vector x �

�x1, . . . , xN�� " R
N . Moreover, �x�i�j � �xi, . . . , xj�� refers to a slice of the vector x

from its i-th to the j-th component, including the latter. Analogous notations apply
to matrices, with slices in different dimensions being separated by a comma.

v The vector or matrix consisting only of zeros and ones is denoted by 0 and 1,
respectively. Its concrete shape is context-dependent. The identity matrix is written
as I.

v The function diag��� transforms a vector into a square matrix with the elements of
the vector on the diagonal.

v The matrix square root A1©2 of a square matrix A " R
N�N is defined as any matrix

that satisfies the factorization A � �A1©2�� A1©2.

v Standard functions (e.g., exp���) and operators (e.g., d
dt ) defined for scalar quantities

are applied element-wise when applied to a vector or matrix.

v For a multivariate, vector-valued function f � R
n
� R

m, its Jacobian evaluated at
x " R

n, i.e., df�x�
dx�

" R
m�n, is denoted by Jf�x�. For functions with several arguments,

the one differentiated against is included in subscript, e.g., Jxf�x�.
2



1. Introduction 1.2. Outline

1.2 Outline

The remainder of this work is structured as follows:

Chapter 2 Preliminaries: Introduction to ODEs, numerical ODE solvers, and Bayesian
inference in state-space models. These are the fundamental theoretical building blocks
the chosen approaches are based on.

Chapter 3 Approach: Presentation of the approaches for probabilistic ODE solving and
reliable ODE parameter estimation. They draw on black box simulators and Bayesian
filtering methods.

Chapter 4 Evaluation: Experimental evaluation of the methods developed in this work.
The experiments are conducted with the aim to answer four research questions that are
formulated at the beginning of this chapter.

Chapter 5 Discussion: Critical assessment of the used methods, as well as an outlook
to future work.

Chapter 6 Related Work: Overview of recent research on probabilistic ODE solvers
and ODE parameter estimation.

Chapter 7 Conclusion: Summary of the present work.

Appendix A Implementation and Computing: Details on the implementation and
computing environment used for experiments.

Appendix B The Hodgkin-Huxley Model: Details on the Hodgkin-Huxley model used
in experiments on ODE parameter estimation.

3



Preliminaries 2

The present chapter serves as a summary of the fundamental theory upon which this
work is built. In particular, it establishes notations used throughout subsequent chapters.

As outlined in Chapter 1, the methods proposed in this work deal with black box
ODE solvers. Consequently, Section 2.1 starts by introducing ordinary differential
equations and initial value problems. Section 2.2 then presents an exemplary class of
numerical ODE solvers, the celebrated Runge-Kutta methods. It also elaborates on ways
to theoretically quantify and practically estimate errors of the numerical solutions. For
the most part, Sections 2.1 and 2.2 are based on Hairer et al. (1993) and Iserles (2008).

Finally, since the probabilistic model used in this work fits into the broader class of
state-space models (SSMs), Section 2.3 covers Bayesian inference in the context of SSMs.
Here, the well-known (extended) Kalman filter is presented as an efficient method to
perform inference in these models, provided that further assumptions are made about
the problem setting. Section 2.3 is mainly based on Gharamani (2001) and Särkkä and
Svensson (2023).

2.1 Ordinary Differential Equations

Definition 2.1. An ordinary differential equation (ODE) of order N is an equation of the
form

dNz�t�
dtN � uθ �t, z�t�, dz�t�

dt
,

d2z�t�
dt2 , . . . ,

dN�1z�t�
dtN�1 � (2.1)

with a vector field uθ � T�R
D
�

N
��R

D
� R

D, parametrized by θ " R
W . Here, z�t� �

�z1�t�, z2�t�, . . . , zD�t�� " R
D denotes the D-dimensional state of the corresponding

dynamical system, dependent on the time t " T.1

An ODE relates a system’s state to its rate of change and possibly other, higher-order
time derivatives. Therefore, it encodes the dynamics of the system. By known laws
of nature, e.g., conservation laws, it is often straightforward to formulate ODEs that
describe a system’s behavior.

1In the following, we will assume T N R
�

0 .

4



2. Preliminaries 2.1. Ordinary Differential Equations

m m

z1 � 0 z2 � 0

z1 � 1 z2 � 1

k k k

Figure 2.1: Two-degree-of-freedom mass-spring-system. Two identical masses m (v),
attached to each other and two stationary walls via three identical horizontal springs
( ) of spring constant k. Frictionless system. Displacements z1 and z2 of the masses
from equilibrium indicated by arrows (�).

Example 2.1 (Fitzpatrick (2018), Chapter 3). Consider the following mechanical system,
visualized in Fig. 2.1: Two identical masses m are attached to each other as well as to
two stationary walls via three identical horizontal springs of spring constant k. The
entire system is frictionless. Its state at time t is described by the displacements z1�t�,
z2�t� of the left and right mass. With z1 � z2 � 0 specifying the equilibrium state in
which all springs are unexpended, their extensions at time t (from left to right) are z1�t�,
z2�t�� z1�t�, and �z2�t�, respectively. The behavior of the system is then described by
the two scalar second-order ODEs

m
d2z1�t�

dt2 � �kz1�t�� k�z2�t�� z1�t��, (2.2a)

m
d2z2�t�

dt2 � �k�z2�t�� z1�t��� k��z2�t��. (2.2b)

Equations (2.2a) and (2.2b) can be summarized as

Ẑ̂̂̂
^̂̂\

d2z1�t�
dt2

d2z2�t�
dt2

[_______] � ��2 k
m

k
m

k
m �2 k

m

� �z1�t�
z2�t�� , (2.3)

which follows the form of Eq. (2.1) with parameters θ � �k m��.

In subsequent parts of this work, it will be necessary to view any ODE from a purely
first-order perspective. To do that, we first establish stacked vector forms for the state
and the vector field of an arbitrary N-th-order ODE. Then, we show that the latter can be
rewritten as a system of N first-order ODEs, represented by a first-order ODE in stacked
vector form.

5



2. Preliminaries 2.1. Ordinary Differential Equations

Definition 2.2. Considering an ODE of order N in accordance to Definition 2.1, let

wz�i��t� � diz�t�
dti }N�1

i�0

(2.4)

be a set of N auxiliary states, corresponding to the state x�t� and its time derivatives up
to order N � 1. Then, we define stacked vector forms of the state and vector field as

x�t� �
Ẑ̂̂̂
^̂̂̂̂̂
\̂

z�0��t�
�

z�N�1��t�
[___________]
" R

ND (2.5)

and

fθ �t, x�t�� �
Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
\

z�1��t�
�

z�N�1��t�
uθ �t, z�0��t�, . . . , z�N�1��t��

[________________]
" R

ND, (2.6)

respectively.

Proposition 2.1. Every ODE of order N can be reformulated as a system of N first-order ODEs,
expressed by a first-order ODE in stacked vector form

dx�t�
dt

� fθ �t, x�t�� . (2.7)

Proof. We successively apply Definitions 2.1 and 2.2:

dx�t�
dt

(2.5)
�

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂\

dz�0��t�
dt
�

dz�N�2��t�
dt

dz�N�1��t�
dt

[__________________]
(2.4)
�

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
\̂

dz�t�
dt
�

dN�1z�t�
dtN�1

dNz�t�
dtN

[_________________]
(2.1)
�

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂\

dz�t�
dt
�

dN�1z�t�
dtN�1

uθ �t, z�t�, dz�t�
dt , d2z�t�

dt2 , . . . , dN�1z�t�
dtN�1 


[___________________]
(2.4)
�

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
\

z�1��t�
�

z�N�1��t�
uθ �t, z�0��t�, . . . , z�N�1��t��

[________________]
(2.6)
� fθ �t, x�t�� .

6



2. Preliminaries 2.1. Ordinary Differential Equations

Example 2.1 (continuing from p. 5). According to Proposition 2.1, we can rewrite Eq. (2.3)
as a first-order ODE in stacked vector form. Applying Definition 2.2, we obtain the state

x�t� �
Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
\

z1�t�
z2�t�
dz1�t�

dt
dz2�t�

dt

[________________]
and the vector field

fθ �t, x�t�� �
Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
\

�x�t��3�x�t��4

�2 k
m �x�t��1 �

k
m �x�t��2

k
m �x�t��1 � 2 k

m �x�t��2

[________________]
. (2.8)

in stacked vector form. Note how only the last two elements of the right-hand side vector
in Eq. (2.8) convey new information, while the rest is just copied from the state x�t� that
is argument to fθ. This is characteristic of how we defined the vector field in stacked
vector form in Eq. (2.6).

From here onwards, the term ODE will be used as a synonym for first-order ODE.
Consequently, unless otherwise indicated, we will always work with states x and vector
fields fθ in stacked vector form. By the fundamental theorem of calculus, integration of
an ODE over a time interval �t0, tk� N T yields the state x at time tk. However, without
specification of the state at the initial time t0, there are infinite possible solutions for x�tk�
just by varying x�t0�.
Definition 2.3. An initial value problem (IVP) is a tuple �fθ, x0� that consists of the vector
field fθ corresponding to an ODE, and an initial condition

x0 � x�t0�.

Applying the fundamental theorem of calculus, an IVP is solved at time tk by

x�tk� � x0 �E
tk

t0

fθ �t, x�t��dt. (2.9)

In order to be the unique solution, the Picard-Lindelöf theorem states that the recurrence

ϕ0�tk� � x0,

ϕn�1�tk� � x0 �E
tk

t0

fθ �t,ϕn�t��dt

7



2. Preliminaries 2.2. Numerical ODE Solvers

needs to converge to a fixed value – the solution x�tk� – in the limit of n � �. It can
be shown that this is the case if the vector field is continuous in the time domain and
Lipschitz-continuous in the state domain (Hairer et al., 1993). In the remainder of this
work, we will only consider ODEs that fulfill these conditions.

Example 2.1 (continuing from p. 7). We specify an exemplary IVP with the initial condi-
tion

x0 � �1 1 0 0�� .

It corresponds to the situation where both masses initially have zero velocity and are
displaced by one unit of length in the direction of the right wall, as shown in Fig. 2.1.

Alternative to an IVP is to consider the ODE on the closed time interval �t0, tn� and
specify constraints on both extremes of the restricted time domain. This gives rise to a
boundary value problem (BVP). However, since solving BVPs is different from solving
IVPs and generally more complex, it will not be discussed in this work.

2.2 Numerical ODE Solvers

The integral in Eq. (2.9) has closed-form solutions only for a few, rather simple cases.2

In practice, one often has to rely on numerical methods instead. These operate by
discretizing the problem along the time axis and iteratively extrapolating from the initial
state. As a consequence, they always introduce an approximation error to the true
solution (Section 2.2.3). By choosing a finer discretization, the error can be reduced,
posing a trade-off between computational cost and accuracy of the simulation. In the
following, we will first establish general definitions and subsequently discuss some
numerical algorithms for ODE solving.

Definition 2.4. Let �t0, tK� N T be a time interval and let h " R
� denote a step size, where

K � " tK � t0

h
(

denotes the number of steps. Then, the equidistant time-discretization of the above interval
by h is defined as

sT � rt0, t0 � h, . . . , t0 � Khx . (2.10)

2The presented Example 2.1 is one of these cases for which a closed-form solution exists. For the sake of
brevity, we refrain from discussing it here and refer to Fitzpatrick (2018) for a derivation.

8



2. Preliminaries 2.2. Numerical ODE Solvers

In the context of the time discretization given by Eq. (2.10), we also introduce shorthand
notations

tk � t0 � kh,

xk � x�tk�
for k " r0, 1, . . . , Kx.

Definition 2.5. Let F � rT�R
ND
� R

NDx denote the function space of vector fields fθ.
Moreover, according to Definition 2.4, we assume an equidistant time discretization sT
with step size h " R

�. A numerical ODE solver is a function Ξ � F �T�R
ND
�R

�
� R

ND

that takes a vector field fθ " F , the current time tk " sT, the corresponding state xk " R
ND

as well as the step size h " R
� and yields the approximate state rxk�1 � xk�1 at the next

point in time tk�1,
rxk�1 � Ξ �fθ, tk, xk, h� . (2.11)

Remark 2.1. In the process of computing a state’s trajectory numerically, the step size
h does not necessarily have to be constant, which then leads to an inequidistant time
discretization sT. In fact, there are algorithms that adaptively change the step size based
on local error estimates (Section 2.2.4, see Hairer et al. (1993) for an extensive overview).
However, using an equidistant discretization simplifies subsequent parts of this work
substantially, which is why we restrict ourselves to them for now. We will return to
adaptive step sizes in Chapter 5.

2.2.1 Euler’s Method

The most basic representative of a numerical ODE solver is called the explicit Euler
method (Euler, 1768). It simplifies the integration problem by making the assumption of
stepwise constant dynamics, allowing for steps taken by single evaluations of the vector
field fθ.

Assumption 2.1. Given a vector field fθ as well as two consecutive points in time
tk, tk�1 " sT, assume approximately constant dynamics within the step interval �tk, tk�1�
equal to the dynamics at tk, i.e.,

fθ �t, x�t�� � fθ �tk, xk�
for t " �tk, tk�1�.
Definition 2.6. The explicit Euler method is defined as

Ξ �fθ, tk, xk, h� � xk � hfθ �tk, xk� . (2.12)

9
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Intuitively, Assumption 2.1 is only valid in combination with a rather small step
size h, depending on how much the dynamics change over time. For stiff ODEs, i.e.,
equations that exhibit rapid changes over several orders of magnitude, it becomes highly
inaccurate, if the step size is not extremely small. This inaccuracy can cause severely
unstable behavior of the explicit Euler method, e.g., erroneously oscillating or exploding
trajectories. In such cases, the following adaptation of Assumption 2.1 is more suitable,
giving rise to the implicit Euler method.

Assumption 2.2. Given a vector field fθ as well as two consecutive points in time
tk, tk�1 " sT, assume approximately constant dynamics within the step interval �tk, tk�1�
equal to the dynamics at tk�1, i.e.,

fθ �t, x�t�� � fθ �tk�1, xk�1�
for t " �tk, tk�1�.
Definition 2.7. The implicit Euler method is defined as

Ξ �fθ, tk, xk, h� � xk � hfθ �tk � h, x�tk � h�� . (2.13)

Its advantage in terms of stability comes at a price: The state x�tk � h� on the right-
hand side of Eq. (2.13) is unknown at compute time. Since the left-hand side is an estimate
rx�tk � h� for x�tk � h� (cf. Eq. (2.11)), this yields the root-finding problem

x�tk � h� � xk � hfθ �tk � h, x�tk � h��
w.r.t. x�tk � h�, which generally has no closed-form solution. There are several algorithms
to solve it numerically, e.g., Newton’s method (Kelley, 2003), but they inevitably increase
the computational cost and introduce an additional approximation error in every step of
the implicit Euler method.

2.2.2 Runge-Kutta Methods

A broader, more sophisticated class of solvers is called Runge-Kutta methods after works
of Runge (1895) and Kutta (1901). The basic idea is to evaluate the vector field fθ not only
once per step at a boundary of the step interval �tk, tk�1�, but also additional times in
between.3 This sequence of evaluations is aggregated to a weighted sum, which is then
used as a better, more informed approximation for the assumption of constant dynamics
within the step interval.

3Evaluations are usually and most intuitively at times within the interval �tk, tk�1�. However, this is not
a necessary condition. See, e.g., Kraaijevanger and Spijker (1989) for a contrary example.

10
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Assumption 2.3. Let rxt1, . . . , xtsx L T and b " R
s denote a set of times and a vector of

weights, respectively. Given a vector field fθ as well as two consecutive points in time
tk, tk�1 " sT, assume approximately constant dynamics within the step interval �tk, tk�1�
equal to the b-weighted sum of dynamics at xt1, . . . , xts, i.e.,

fθ �t, x�t�� � s

=
i�1

�b�ifθ �xti, x�xti��
for t " �tk, tk�1�.

The states x�xt1�, . . . , x�xts� are usually unknown at the beginning of a step. So-called
explicit Runge-Kutta (RK) methods iteratively estimate them by evaluating the vector
field at weighted sums of already estimated states x�xti�, with the first state x�xt1� being
estimated by the explicit Euler method (Definition 2.6). In contrast, implicit RK methods
generally need to solve a system of s non-linear equations, e.g., again by applying
Newton’s method (Kelley, 2003).

Definition 2.8. A Runge-Kutta (RK) method is defined as

Ξ �fθ, tk, xk, h� � xk � h
s

=
i�1

�b�iki

with ki � fθ
���tk � h�c�i, xk � h

s

=
j�1

�A�ijkj
�� ,

(2.14)

where s " N denotes the stage of the method, and A " R
s�s, b " R

s, and c " R
s are

called the RK matrix, weights, and nodes, respectively. If �A�ij � 0 for i & j, the method
is called explicit, otherwise implicit. An RK method is compactly notated by means of a
so-called Butcher tableau

c A

b
�

.

For any RK method, the stage s represents the number of vector field evaluations, the
RK matrix A as well as the nodes c determine where it is evaluated, and the weights b
are used for the final aggregation of evaluations. Specific choices of these parameters
give rise to concrete RK methods within the general class defined by Eq. (2.14). For a
certain stage s, the parameters A, b, and c are typically set such that the local error is
minimized, upper bounded by a power of the step size h (cf. Section 2.2.3).

11
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x

x�tk�� hk1

rx�tk � h�
x�tk�

ttk tk � h tk � 2h

Figure 2.2: Heun’s method. Background: True solution ( ) and slopes produced
by one-dimensional vector field (�). Foreground: Integration step from �tk, x�tk�� to�tk � h, rx�tk � h��. First, evaluation of the vector field at �tk, x�tk��, yielding the slope k1
(�). Next, explicit Euler step from �tk, x�tk�� to �tk � h, x�tk�� hk1� and evaluation of
the vector field at �tk � h, x�tk�� hk1�, providing the slope k2 (�). Last, integration step
from �tk, x�tk�� to �tk � h, rx�tk � h�� using the average of slopes k1 and k2 (�).

Example 2.2. Both the explicit and implicit Euler method presented in Section 2.2.1 are
stage one RK methods with Butcher tableaux

0 0

1
and

1 1

1
,

respectively. To see this, insert parameters into Eq. (2.14) according to Definition 2.8, and
compare with Eqs. (2.12) and (2.13).

Example 2.3. Heun’s method is an explicit stage two RK method defined as

Ξ �fθ, tk, xk, h� � xk � h �1
2k1 �

1
2k2
 (2.15a)

with k1 � fθ �tk, xk� , (2.15b)

k2 � fθ �tk � h, xk � hk1� , (2.15c)

or, equivalently, by the Butcher tableau

0 0 0
1 1 0

1©2 1©2

.

Intuitively, for a one-dimensional vector field fθ, the method computes the slope of the
trajectory at points �tk, x�tk�� and �tk � h, x�tk � h��. Because the state x�tk � h� is not

12
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known, it is estimated using a step of the explicit Euler method (cf. Definition 2.6). Then,
the equally-weighted average of both slopes is used to perform the actual integration
step. The whole procedure is also visualized in Fig. 2.2.

2.2.3 Local and Global Error

Due to time discretization (Definition 2.4) and the assumption of stepwise constant
dynamics (Assumption 2.3), solving ODEs numerically inevitably leads to an approx-
imation error compared to the true solution. We distinguish between local and global
errors.

Definition 2.9. Let xk, xk�1, xk�n be true states at times tk, tk�1, tk�n " sT with n " N. The
local error δx�tk�1� induced by a numerical ODE solver Ξ when extrapolating from tk to
tk�1 is defined as

δx�tk�1� � ¶xk�1 � rxk�1¶
with rxk�1 � Ξ �fθ, tk, xk, h� .

(2.16)

In addition, the global error ∆x�tk�n� induced when extrapolating from tk to tk�n is defined
as

∆x�tk�n� � ¶xk�n � rxk�n¶
with rxk�i �

~��������
Ξ �fθ, tk, xk, h� i � 1,

Ξ �fθ, tk�i�1, rxk�i�1, h� 1 $ i & n.

(2.17)

As before, we also introduce the shorthand notations

δxk�1 � δx�tk�1�,
∆xk�1 � ∆x�tk�1�.

Definition 2.8 (continuing from p. 11). An RK method is called of order p if the local error
induced by it is in O�hp�1�, i.e.,

¾tk " sT � ¿C " R
�
� δxtk�1 & Chp�1.

Moreover, it can be shown that the global error induced by a p-th-order RK method is in
O�hp� (Hairer et al., 1993), i.e.,

¾tk " sT � ¾n " r1, . . . , K � kx � ¿C " R
�
� ∆xtk�n & Chp.

13
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To check if a given RK method is of order p or to derive a new RK method of order
p, a straight-forward approach is to construct Taylor series expansions of both the true
solution x�tk � h� and the approximation rx�tk � h� about the point tk (or equivalently, for
h � 0). Next, one compares arising terms of equal order in h and deduces conditions on
the RK method’s parameters such that terms up to order p cancel out on subtraction of
the two Taylor series.

Example 2.3 (continuing from p. 13). As an example, we will show that Heun’s method
is a second-order RK method. First, we consider Eq. (2.15c) as a function ϕ of h, i.e.,

ϕ�h� � k2
(2.15c)
� fθ �tk � h, xk � hk1� .

Its Taylor series expansion about h � 0 up to first order is given by

ϕ�h� � ϕ�0�� h
dϕ�0�

dh
�O�h2�

� fθ �tk, xk�� h
∂fθ�tk, xk�

∂t
� hk1

∂fθ�tk, xk�
∂x

�O�h2�. (2.18)

Inserting Eqs. (2.15b) and (2.18) into Eq. (2.15a) and then simplifying yields

rx�tk � h� � xk � hfθ �tk, xk�� h2

2 �∂fθ�tk, xk�
∂t

� fθ �tk, xk� ∂fθ�tk, xk�
∂x


�O�h3�. (2.19)

Second, the Taylor series expansion of x�tk � h� at the point t � tk up to second order
evaluates to

x�tk � h� � xk � h
dx�tk�

dt
�

h2

2
d2x�tk�

dt2 �O�h3�
� xk � hfθ �tk, xk�� h2

2 �∂fθ�tk, xk�
∂t

� fθ �tk, xk� ∂fθ�tk, xk�
∂x


�O�h3�.
(2.20)

Finally, by comparing Eqs. (2.19) and (2.20), we see that they are identical and all terms
up to order two cancel out on subtraction, confirming that Heun’s method is of order
two.

Unfortunately, the above derivation quickly becomes cumbersome for higher-order
conditions. Using a graph theoretical description of the problem, it is possible to analyze
its structural properties in a more organized way. Ultimately, this provides a general
formalism to deduce the set of order conditions for any p. While its detailed introduction
would exceed the scope of this work, one particular result is that

b
�

Ap�11 �
1
p! (2.21)

14
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is an omnipresent constraint for RK methods of all orders p (Zhang, 2019). It gives rise to
a lower bound of an explicit RK method’s number of stages s, if the method should be of
order p.

Proposition 2.2 (Zhang (2019), Theorem 1.26). For all p " N, any explicit RK method of
order p must have at least s ' p stages.

Proof. Proof by contradiction: For all p " N, suppose there is an explicit RK method
of order p with s $ p stages. By definition of being an explicit method, its RK matrix
A " R

s�s is lower-triangular. As a consequence, it is nilpotent of index s, and any power
Aq with q ' s is the zero matrix. Last, the initial assumption s $ p is equivalent to
p� 1 ' s, thus the power Ap�1 is the zero matrix and Eq. (2.21) is contradicted:

¾b " R
s
� b

�

Ap�11
(2.21)
�

1
p!

E
� 0.

While Proposition 2.2 reveals that any explicit RK method must have at least s ' p
stages if it is of order p, the converse (“If an explicit RK method has s ' p stages, it is of
order p.”) is only true up to order p � 4 (Hairer et al., 1993). This is also known as the
Butcher barrier and boils down to the fact that the number of order conditions grows
asymptotically exponentially in p (Zhang, 2019), whereas the number of degrees of
freedom by the RK method only grows polynomially in s. Satisfaction of all constraints
then typically requires more degrees of freedom than given by an RK method with s � p
stages.

2.2.4 Embedded Runge-Kutta Methods

Knowledge of the approximation error is essential to decide where the numerical solution
of an ODE can be trusted and where more accuracy (usually in the form of step size
reduction) is necessary. Without access to the true solution, however, it is generally not
possible to determine the exact local or global error, as expressed by Eqs. (2.16) and (2.17),
respectively.

Embedded RK methods provide an elegant way to estimate the local error with only
little additional computational effort. In essence, they combine two RK methods with
different orders in one by letting the higher-order method share parts of its RK matrix A
and nodes c with the lower-order method. They differ in the weights b, necessitating
only the additional computation of a weighted sum for the lower-order approximation
when compared to the higher-order RK method alone.
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Definition 2.10. A numerical ODE solver with local error estimator is a function Ξδ � F �T�

R
ND

�R
�
� R

2�ND that takes a vector field fθ " F , the current time tk " sT, the
corresponding state xk " R

ND as well as the step size h " R
� and yields the approximate

state rxk�1 � xk�1 at the next point in time tk�1 as well as an estimate sδxk�1 � δxk�1 for the
local error that arises when extrapolating from tk to tk�1,

�rxk�1 sδxk�1�� � Ξδ �fθ, tk, xk, h� .

Definition 2.11. An embedded RK method of order p1(p2) is a numerical ODE solver with
local error estimator Ξδ according to Definition 2.10, where

rxk�1 � xk � h
s

=
i�1

�b�1��
i
ki, (2.22a)

sδxk�1 �

»»»»»»»»»»h
s

=
i�1

�b�1��
i
ki � h

s

=
i�1

�b�2��
i
ki

»»»»»»»»»» (2.22b)

with ki � fθ
���tk � h�c�i, xk � h

s

=
j�1

�A�ijkj
�� . (2.22c)

As before, s " N denotes the stage of the method in Eqs. (2.22a) to (2.22c). Moreover,
b�1�, b�2�

" R
s are the weights that together with the RK matrix A " R

s�s and the
nodes c " R

s parametrize individual RK methods of order p1 and p2, respectively. An
embedded RK method is summarized by a Butcher tableau of the form

c A

�b�1���
�b�2���

.

In order to keep the additional computational effort as well as the accuracy of the
numerical solution and the error estimate in reasonable balance, orders p1 and p2 usually
differ by one. If p1 $ p2, sδx can be considered asymptotically as an error estimator for
δx (Hairer et al., 1993). Otherwise, if p1 % p2, sδx tends to overestimate the true local
error, but using the higher-order approximation as solution is often beneficial in terms of
accuracy and stability (Shampine & Watts, 1976). This mode is called local extrapolation
and most modern embedded RK methods are developed in its favor, i.e., their parameters
are chosen to minimize the error of the higher-order solution (Bogacki & Shampine, 1989;
Dormand & Prince, 1980; Prince & Dormand, 1981).
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Example 2.3 (continuing from p. 14). Heun’s method already exploits the explicit Euler
method to estimate the first intermediate state (cf. Eqs. (2.15b) and (2.15c)). By Propo-
sition 2.2, the explicit Euler method is of order one. Consequently, Heun’s method can
readily be transformed into an embedded RK method with the explicit Euler method
as lower-order method. If local extrapolation is performed, the resulting embedded RK
method, subsequently referred to as Heun-Euler method, is of order 2�1� and corresponds
to the Butcher tableau

0 0 0
1 1 0

1©2 1©2

1 0

.

2.3 Bayesian Inference in State-Space Models

In probability theory, Bayesian inference describes the process of updating the probability
distribution p �x� of a random variable x using new information y. At the center of
this framework is Bayes’ theorem, which states that the posterior distribution on x after
conditioning on y is given by

p �x ¶ y� � p �x, y�
p�y� �

p �x, y�
D p �x, y�dx

�
p �y ¶ x� p �x�

D p �y ¶ x� p �x�dx
, (2.23)

where p �y ¶ x�, p �x� and p �y� are called likelihood, prior, and evidence, respectively. Unfor-
tunately, (naive) Bayesian inference quickly becomes intractable for higher-dimensional
problems due to its exponential complexity. Partial remedy for the curse of dimensional-
ity lies in the exploitation of conditional independence between random variables.

Example 2.4. Consider the case of component-wise binary random variables x " r0, 1xM

and y " r0, 1xL. Their joint probability distribution p �x, y� has 2M�L
� 1 parameters

and the integral in the denominator of Eq. (2.23) turns into a sum over 2M terms, being
infeasible to store and compute, respectively, for large M and L.

For the sake of clarity, we suppose M � L � 2 and define xi � �x�i and yj � �y�j

for i, j " r1, 2x. By the chain rule, every n-variate joint probability distribution can be
factorized into a product of n univariate conditional and marginal distributions. Thus,
we can rewrite the joint probability distribution of x and y as, e.g.,

p �x, y� � p �y1 · y2, x1, x2� p �y2 · x1, x2� p �x1 ¶ x2� p �x2� . (2.24)
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Under the exemplary assumption that the conditional independence statements

y1 áá x2, y2 ¶ x1,

y2 áá x1, y1 ¶ x2,

hold, Eq. (2.24) can be simplified to

p �x, y� � p �y1 · x1� p �y2 · x2� p �x1 ¶ x2� p �x2� . (2.25)

When comparing Eqs. (2.24) and (2.25), we see that the second, simplified representation
only requires 7 parameters instead of the 15 parameters needed by the first one.

2.3.1 State-Space Models

In the following, we will focus on a special class of probabilistic models called state-space
models. Ultimately, they will form the framework for constructing a probabilistic model
around generic ODE solvers. State-space models are composed of stochastic processes.

Definition 2.12. A discrete-time stochastic process X is defined as a collection of random
variables rxkxK

k�0 L R
M, indexed by non-negative integers that refer to discrete points in

time rtkxK
k�0.

In accordance with Sections 2.1 and 2.2, we also refer to a random variable xk in
the context of a stochastic process as state and use notations xk � x�tk� interchangeably
for a previously specified set of corresponding times sT � rtkxK

k�0. In addition, we
abbreviate collections of states consecutive in time by xk�k�j � rxk, xk�1, . . . , xk�jx and
define x�j�k � x0�k for any j ' 0, respectively.

Definition 2.13. A discrete-time stochastic process X � rxkxK
k�0 is called n-th-order

Markov, if the Markov condition

p �xk ¶ x0�k�1� � p �xk ¶ xk�n�k�1� (2.26)

holds, i.e., a state xk is conditionally independent w.r.t. states x0�k�n�1 in the far past,
given the states xk�n�k�1 in the immediate past.

Remark 2.2. In an analogous way to how any n-th-order ODE can be transformed into a
first-order ODE (cf. Proposition 2.1), any n-th-order Markov process can be transformed
into a first-order Markov process by stacking n states consecutive in time into a single
state. Consequently, we will use the term Markov as a synonym for first-order Markov
below.
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x0 x1 . . . xK�1 xK

(a) Non-Markov process.

x0 x1 . . . xK�1 xK

(b) Markov process.

Figure 2.3: Dynamic Bayesian networks of a stochastic process rxkxK
k�0. Left: Without

Markov assumption. Right: With Markov assumption.

For a Markov process, the joint probability distribution factorizes into

p �x0�K� � p �x0� K

5
k�1

p �xk ¶ x0�k�1�
(2.26)
� p �x0� K

5
k�1

p �xk ¶ xk�1� .

(2.27)

Using graphical representations, the independence structure of a probabilistic model
can be visualized. Figures 2.3a and 2.3b show so-called dynamic Bayesian networks of
a non-Markov and a Markov process, respectively, where arrows point from variables
being conditioned on to variables that condition on these. In particular, they visualize
how the factorization is simplified in Eq. (2.27) due to the Markov property.

Definition 2.14. A probabilistic SSM, also known as hidden Markov model, is a pair of
two interdependent Markov processes �X ,Y� with X � rxkxK

k�0 L R
M, Y � rykxK

k�1 L

R
L, where states xk are unobserved. Consequently, we refer to states yk as observations.

Every state xk is independent of past states x0�k�2 and past observations y1�k�1, given its
previous state xk�1. Moreover, every observation yk is conditionally independent of past
states x0�k�1 and past observations y1�k�1, yielding the Markov conditions

p �xk · x0�k�1, y1�k�1� � p �xk ¶ xk�1� , (2.28a)

p �yk · x0�k, y1�k�1� � p �yk · xk� . (2.28b)

The conditional distributions p �xk ¶ xk�1� and p �yk · xk� are called transition and observa-
tion models, respectively.

Figure 2.4 shows a probabilistic SSM, represented by a dynamic Bayesian network.
Next, we will discuss how to efficiently perform inference tasks in such models.
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x0 x1 x2 . . . xK�2 xK�1 xK

y1 y2 yK�2 yK�1 yK

Figure 2.4: Dynamic Bayesian network of a probabilistic SSM: Unobserved states x0�K
(r), observations y1�K (r).

2.3.2 Bayesian Filtering

Depending on the quantity being inferred, Bayesian inference tasks have different names
in the context of SSMs:

1. Prediction: p�xk ¶ y1�k�1�,
2. Filtering: p�xk ¶ y1�k�,
3. Smoothing: p�xk ¶ y1�K�.

In the remainder of this work, we will only consider prediction and filtering tasks. As
a consequence of the Markov dependence structure, there is a linear-in-time recursive
algorithm that solves these two tasks at once, called Bayesian filtering. Every recursive
step in the algorithm consists of two substeps, referred to as prediction and update step.

In essence, the k-th prediction step estimates the distribution of the state xk condi-
tioned on previous observations y1�k�1, using the distribution of the previous state xk�1,
itself conditioned on previous observations y1�k�1. It is computed by

p �xk · y1�k�1� � E p �xk, xk�1 · y1�k�1�dxk�1

� E p �xk · xk�1, y1�k�1� p �xk�1 · y1�k�1�dxk�1

(2.28a)
� E p �xk ¶ xk�1�ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

transition
model

p �xk�1 · y1�k�1�ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
previous filtering

distribution

dxk�1,

(2.29)

also known as Chapman-Kolmogorov equation in the literature (Särkkä & Svensson, 2023).
In the first prediction step, the previous filtering distribution is provided as initial state
distribution p�x0�.

The update step then corrects that estimate using the corresponding observation yk,
yielding the distribution of the state xk conditioned on up-to-date observations y1�k. It is
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derived as follows:

p �xk · y1�k� � p �xk · y1�k�1, yk�
�

p �yk · xk, y1�k�1� p �xk · y1�k�1�
D p �yk · xk, y1�k�1� p �xk · y1�k�1�dxk

(2.28b)
�

p �yk · xk� p �xk · y1�k�1�
D p �yk · xk�ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

observation
model

p �xk · y1�k�1�ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
prediction

distribution

dxk
.

(2.30)

2.3.3 The (Extended) Kalman Filter

Although Markovianity enables linear-in-time inference, Eqs. (2.29) and (2.30) might
still be difficult to apply in practice, as they contain integrals of general probability
distributions over potentially high-dimensional states. In most cases, there exist no
closed-form solutions to these integrals, necessitating the usage of expensive Monte-
Carlo based methods (sometimes called particle filters (Gordon et al., 1993)) with rather
bad convergence rates (Crisan & Doucet, 2002). However, if one is able to make further
assumptions on the used probability distributions as well as transition and observation
models, computational complexity can be reduced drastically.

Definition 2.15. An SSM �X ,Y� with X � rxkxK
k�0 L R

N , Y � rykxK
k�1 L R

L is called
Gaussian SSM, if its transition and observation models are Gaussian, i.e.,

p�xk ¶ xk�1� � N �xk; f�xk�1�, Qk�1� , (2.31a)

p�yk ¶ xk� � N �yk; h�xk�, Rk� (2.31b)

for a transition function f � R
N
� R

N , a observation function h � R
N
� R

L, a process
noise covariance matrix Qk�1 " R

N�N at time tk�1, and a observation noise covariance matrix
Rk " R

L�L at time tk.4 If both the transition function f and the observation function h are
also affine, i.e.,

p�xk ¶ xk�1� � N �xk; Ak�1xk�1 � bk�1, Qk�1� , (2.32a)

p�yk ¶ xk� � N �yk; Hkxk � ck�1, Rk� , (2.32b)

the SSM is called affine Gaussian SSM. Here, Ak�1 " R
N�N and bk�1 " R

N are the
transition matrix and transition offset at time tk�1, whereas Hk " R

L�N and ck " R
L denote

the observation matrix and observation offset at time tk, respectively.
4In general, the transition function f may also depend on the time tk�1, and the covariance matrix

Qk�1 may also depend on the state xk�1, but we omit the explicit notation of these dependencies here,
following Särkkä and Svensson (2023).

21



2. Preliminaries 2.3. Bayesian Inference in State-Space Models

Assumption 2.4. Assume an affine Gaussian SSM according to Definition 2.15. In
addition, assume Gaussian prediction, filtering, and initial state distributions, i.e.,

p�x0� � N �x0; m0, P0� ,

p�xk ¶ y1�k�1� � N �xk; smk, rPk� ,

p�xk ¶ y1�k� � N �xk; mk, Pk� .

With Assumption 2.4, there is a cubic-in-state Bayesian filtering algorithm called the
Kalman filter. Its efficiency is gained by the facts that Gaussians are closed under affine
transformations, multiplication, marginalization as well as conditioning, and that these
operations effectively reduce to simple linear algebra operations in this case (Särkkä &
Svensson, 2023).

While the favorable complexity properties make the Kalman filter appealing in theory,
its restrictive assumptions on affinity and Gaussianity ultimately limit applicability in
many practical situations. In particular, the affinity assumption expressed by Eqs. (2.32a)
and (2.32b) poses a problem: Probability distributions can often be approximated reason-
ably well by Gaussians, but non-linear transition and/or observation functions are hard
exclusion criteria for the Kalman filter.

Assumption 2.5. Assume a locally approximately affine Gaussian SSM, i.e.,

p�xk ¶ xk�1� � N �xk; Ak�1xk�1 � bk�1, Qk�1� ,

p�yk ¶ xk� � N �yk; Hkxk � ck�1, Rk� .

The extended Kalman filter (EKF) is an adaptation of the Kalman filter that tries to
overcome the problem of non-linear functions f and h by linearizing them locally using a
first-order Taylor expansion. Under Assumption 2.5, this is a reasonable approximation.
However, since the linearization becomes increasingly inaccurate at greater distances
from the point around which it is formed, it needs to be recomputed in every step.
First-order Taylor expansions of f and h around mk�1 and smk are

f �x� � f �mk�1�� Jf�mk�1� �x�mk�1�
� Jf�mk�1�ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Ak�1

x� f �mk�1�� Jf�mk�1�mk�1Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
bk�1

(2.33)

and
h �x� � h �smk�� Jh�smk� �x� smk�

� Jh�smk�ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Hk

x� h �smk�� Jh�smk�smkÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
ck

, (2.34)
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respectively. Being affine functions, Eqs. (2.33) and (2.34) then allow usage of the basic
Kalman filter.

All computational steps of the EKF are summarized by Algorithm 1, where Eqs. (2.35)
and (2.36) correspond to the prediction step and Eqs. (2.37) to (2.41) to the update step. A
detailed derivation of these equations from Eqs. (2.29) and (2.30) is omitted at this point,
the interested reader is referred to Särkkä and Svensson (2023).

Algorithm 1: Extended Kalman filter

Input:
m0, P0 Initial filtering mean and covariance matrix
y1�K Observations
f Transition function
h Observation functionrQkxK�1

k�0 Process noise covariance matricesrRkxK
k�1 Observation noise covariance matrices

Output:

rsmkxK
k�1 Prediction meansrrPkxK

k�1 Prediction covariance matricesrmkxK
k�1 Filtering meansrPkxK

k�1 Filtering covariance matricesrrykxK
k�1 Data likelihood meansrSkxK
k�1 Data likelihood covariance matrices

for k � 1, 2, . . . , K do

smk � f �mk�1� (2.35)

rPk � Jf�mk�1�Pk�1Jf�mk�1�� �Qk�1 (2.36)
ryk � h �smk� (2.37)

Sk � Jh�smk�rPkJh�smk�� �Rk (2.38)

Kk � rPkJh�smk��S�1
k (2.39)

mk � smk �Kk �yk � ryk� (2.40)

Pk � rPk �KkSkK
�

k (2.41)

end

Prediction step

Update step
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Approach 3

The following two sections describe the methods developed in this work. First, Section 3.1
deals with the definition of a probabilistic model that is based on black box ODE solvers
and an estimator for their local error. Two ways to perform inference in this model are
presented, one of which is sequential sampling and the other using the EKF. Furthermore,
the requirements for the applicability of a solver, as well as additional assumptions are
set out. In Section 3.2, process noise tempering is developed as a method to estimate ODE
parameters more reliably than with the standard approach of non-linear least-squares-
regression, which often converges only to local minima. Process noise tempering is
based on another probabilistic model that indirectly accounts for the uncertainty about
parameters during simulation. In the course of optimization, this uncertainty is gradually
decreased to facilitate convergence to the global optimum.

3.1 Black Box Probabilistic ODE Solvers

This work’s approach of extending existing ODE solvers by probabilistic output is
based on a work by Conrad et al. (2017). There, the authors perturbed predictions of
a classic RK solver step-wise using zero-mean Gaussian noise. By sampling from the
noise distribution in every step, they produced a collection of sample trajectories that
represents a probabilistic ODE solution. However, in order to achieve a good calibration
of the uncertainty in these samples, they had to determine the noise covariance specific
for every new simulation setting, e.g., different initial values or parameter choices, by
solving a non-linear optimization problem. Below, we will define a similar probabilistic
model, but define the Gaussian noise using an estimator for the solver’s local error,
circumventing manual calibration.

3.1.1 Probabilistic Model

Definition 3.1. Let fθ be a vector field, let sT be an equidistant time discretization with
corresponding step size h, and let Ξ be a numerical ODE solver. The probabilistic model
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x

rx�tk � h�� sδx�tk � h�
rx�tk � h�

x�tk�

ttk tk � h

Figure 3.1: Probabilistic model pnum.. Background: True solution ( ) and slopes pro-
duced by one-dimensional vector field (�). Foreground: Integration step from �tk, x�tk��
to �tk � h, rx�tk � h�� using Heun’s method (�). An estimate for the local error sδx�tk � h�
is provided by the explicit Euler method (�). The two predicted quantities rx�tk � h� and
sδx�tk � h� together define a Gaussian distribution on the state x�tk � h� ( ), according
to Eq. (3.3).

by Conrad et al. (2017) over the state xk�1, given the previous state xk is defined as

pConrad �xk�1 ¶ xk� � N �xk�1;Ξ �fθ, tk, xk, h� , σ
2I� , (3.1)

where σ
2
" R

�

0 denotes the constant scalar variance applied to all state components.

Definition 3.2. Let fθ be a vector field, let sT be an equidistant time discretization with
corresponding step size h, and let Ξδ be a numerical ODE solver with local error estimator.
Moreover, according to Definition 2.10, let

�rxk�1 sδxk�1�� � Ξδ �fθ, tk, xk, h� (3.2)

denote the predicted state and the estimated local error at time tk�1 " sT, given the
previous time tk " sT and corresponding state xk " R

ND. We define the following
probabilistic model over the state xk�1, given the previous state xk:1

pnum. �xk�1 ¶ xk� � N �xk�1; rxk�1, diag �sδx
2
k�1		 . (3.3)

Example 2.3 (continuing from p. 17). We use the Heun-Euler method for Ξδ and assume a
one-dimensional vector field fθ as shown in Fig. 2.2. For a given state xk, the probabilistic

1Note that both rxk�1 and sδxk�1 depend on xk via Eq. (3.2).
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model defined by Eq. (3.3) is a Gaussian distribution centered in the approximate next
state rxk�1 that is predicted by Heun’s method. About 68 percent of its probability mass
is contained in the interval �rxk�1 � sδxk�1, rxk�1 � sδxk�1�, where the local error estimate
sδxk�1 arises from the difference of predictions by Heun’s method and the explicit Euler
method. The described setting is also visualized in Fig. 3.1.

3.1.2 Inference

The probabilistic model pnum. introduced in Section 3.1.1 can be used to create probabilis-
tic solutions over an ODE. Following Conrad et al. (2017), one way to perform inference
in this model is to sample from it in every time step. Another is to linearize the numerical
ODE solver and apply the EKF without observation model, i.e., only conducting the
predict step. While we focus on these two methods in the present work, there are others
reported for non-linear filtering problems in the literature, each of which has its own
advantages and disadvantages. Examples are the unscented Kalman filter (Julier &
Uhlmann, 1997) and Gaussian mixture filters (Alspach & Sorenson, 1972; Huber, 2011).
In Chapter 4, we will experimentally evaluate how well probabilistic solutions created
with this work’s model are calibrated in comparison to a baseline provided by the model
of Conrad et al. (2017).

Sequential Sampling Starting with the initial value x0, the first integration step is
performed by the numerical ODE solver Ξδ, producing the predicted next state rx1 as
well as the corresponding local error estimate sδx1. Next, a fixed number of M sam-
ples xx�1�

1 , . . . , xx�M�
1 is drawn from the Gaussian distribution defined by Eq. (3.3). In the

subsequent and all following integration steps, each of these samples represents a dis-
tinct starting point, yielding M different predicted states rx�1�

k , . . . , rx�M�
k and local error

estimates sδx
�1�
k , . . . , sδx

�M�
k . They give rise to a collection of M individual Gaussian distri-

butions, each of which is sampled once, resulting in the sample states xx�1�
k , . . . , xx�M�

k for
the next integration step. Ultimately, the obtained set of sample trajectories rrxx�i�

k xK
k�1xM

i�1

represents an empirical approximation to the true stochastic process that satisfies Eq. (3.3).
The whole procedure is also summarized by Algorithm 2.

Compared to the regular case of solving ODEs deterministically, sequential sampling
increases the computational effort in terms of calls of the numerical ODE solver by a
factor of M. However, as all samples at a time tk are independent of each other, these
additional calls can be effectively parallelized, if sufficient compute hardware is available.

Remark 3.1. Sequential sampling greatly benefits from the fact that the used time dis-
cretization is equidistant, as both sampling and calls of the numerical ODE solver can be
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Algorithm 2: Sequential sampling

Input:
Ξδ Numerical ODE solver with local error estimator
fθ Vector field
sT Equidistant time discretization
h Step size
x0 Initial value
M Number of samples

Output:

rrxx�i�
k xK

k�1xM
i�1 Sample trajectories

�rx1 sδx1�� � Ξδ �fθ, t0, x0, h�
for i � 1, 2, . . . , M do

xx�i�
1 � N �x1; rx1, diag �sδx

2
1		

end
for k � 2, 3, . . . , K do

for i � 1, 2, . . . , M do

�rxk sδxk�� � Ξδ �fθ, tk�1, xx�i�
k�1, h	

xx�i�
k � N �xk; rx�i�

k , diag ��sδx
�i�
k 	2



end
end

parallelized perfectly. Besides, it leads to collections of sample states rxx�i�
k xM

i�1 correspond-
ing to the same point in time tk, enabling post-hoc computation of statistics like empirical
moments. With adaptive step size selection, on the other hand, sampled states are in
general not time-coherent. This complicates the computation of meaningful statistics and
is less efficient if individual trajectories take more integration steps than others.

Extended Kalman Filter Since a numerical ODE solver is in general a non-linear func-
tion w.r.t. its input state, the probabilistic model defined by Eq. (3.3) specifies a non-linear
Gaussian transition model in the form of Eq. (2.31a). Hence, approximate Gaussian
inference can be conducted using the predict step of the EKF (cf. Eqs. (2.35) and (2.36)).
This results in approximations for the first two moments of the true underlying stochastic
process.

Due to finite precision arithmetic, the EKF as introduced in Section 2.3.3 is prone to
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numerical instabilities. In practical applications where the matrix-multiplied Jacobians
or the added noise matrices may contain extremely small numbers, this can lead to
round-off errors that accumulate considerably over long time horizons. By using an
adapted version of the algorithm that only operates on the square roots of covariance
matrices, this problem can be mitigated (Grewal & Andrews, 2014).

Proposition 3.1. Let A1, A2, . . . , An " R
N�N be n square matrices with matrix square roots

A1©2
1 , A1©2

2 , . . . , A1©2
n , respectively. Moreover, let

QR �

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
\̂

A1©2
1

A1©2
2

�

A1©2
n

[_________________]
(3.4)

denote the reduced QR decomposition (Trefethen & Bau, 2022) of the matrix that results from
stacking A1©2

1 , A1©2
2 , . . . , A1©2

n vertically, with Q " R
M�N and R " R

N�N being orthogonal and
upper-triangular matrices, respectively. Then, R is a matrix square root of the sum of matrices
A1, A2, . . . , An, i.e.,

R � � n

=
i�1

Ai�
1©2

.

Proof. We first rewrite the sum of matrices as a product of stacked matrix square roots,
applying the definition of the matrix square root (cf. Section 1.1). Subsequently, we
insert Eq. (3.4) and exploit the fact that the matrix Q is orthogonal, hence Q

�
Q � I. Last,

we apply the definition of the matrix square root again.

� n

=
i�1

Ai�
1©2

�

������������
��A1©2

1 	� �A1©2
2 	� � �A1©2

n 	��
Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
\̂

A1©2
1

A1©2
2

�

A1©2
n

[_________________]

�����������

1©2

(3.4)
� �R�

Q
�

QR	1©2

� �R�

R	1©2

�R
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Definition 3.3. Let

QR �

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
\

B1

B2

�

Bn

[________________]
denote the reduced QR decomposition of the matrix that results from stacking n matrices
B1 " R

M1�N , B2 " R
M2�N , . . . , Bn " R

Mn�N vertically. For this case, we define the
shorthand notation

qrr�B1, B2, . . . , Bn� �R.

When performing inference, we assume that the initial value x0 is known, so the
initial covariance matrix square root is the zero matrix. For the both-sided matrix
product between the Jacobian Jf�mk�1� and the previous filtering covariance matrix Pk�1

in Eq. (2.36), its square root evaluates to P1©2
k�1Jf�mk�1��, since

Jf�mk�1�Pk�1Jf�mk�1��Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
A

� Jf�mk�1� �P1©2
k�1	� P1©2

k�1Jf�mk�1��

� �P1©2
k�1Jf�mk�1��	�Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

�A1©2�
�

P1©2
k�1Jf�mk�1��Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

A1©2

.

Finally, by Proposition 3.1, the addition of the process noise matrix square root can be
realized using a QR decomposition. Algorithm 3 lists the computational steps of the EKF
in square-root form, applied to the probabilistic model defined by Eq. (3.3) as transition
model and without observation model.

Compared to sequential sampling, the EKF requires only one call of the numerical
ODE solver per integration step, but still increases the effort over a pure run of the solver.
Due to additional matrix multiplication and QR decomposition, the computational
complexity is O�N3D3� (N. J. Higham, 2008).

3.1.3 Assumptions and Requirements

The idea behind the presented approach is to extend existing black-box simulators by
probabilistic output, avoiding their replacement in otherwise well-working settings.
Applying the approach, however, is tied to a few assumptions and requirements, which
are set out below.

Local Error Estimator Trivially, a numerical ODE solver has to provide a local error
estimator in order to be used in the context of the probabilistic model defined by Eq. (3.3).
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Algorithm 3: Extended Kalman filter (square-root form, no update step)

Input:
Ξδ Numerical ODE solver with local error estimator
fθ Vector field
sT Equidistant time discretization
h Step size
x0 Initial value

Output:

rsmkxK
k�1 Prediction means

rrP1©2
k xK

k�1 Prediction covariance matrix square roots

sm0 � x0

rP1©2
0 � 0

for k � 1, 2, . . . , K do

�smk sδxk�� � Ξδ �fθ, tk�1, smk�1, h�
rP1©2

k � qrr �rP1©2
k�1 �J

smk�1
�Ξδ �fθ, tk�1, smk�1, h��1�� , diag �sδxk�


end

The estimator should not be too computationally demanding compared to the solver
itself, which would render the approach unattractive. A good and efficient example are
embedded RK methods as introduced in Section 2.2.4, which compute the error estimator
with minimal overhead. Another way would be to use a solver without error estimator,
but running additional solves with halved step size in parallel, whose difference to the
main solve then represents an estimate for the numerical error. In this case, however, one
could also half the step size for the main solve, increasing the solution’s accuracy and
potentially making a probabilistic solution obsolete.

Furthermore, the estimator should be of sufficiently high accuracy. While underesti-
mating the true error would, in the worst case, lead to a highly overconfident solution,
overestimation poses a different issue: If sequential sampling is applied to create a col-
lection of sample trajectories, overly large error estimates could lead to perturbations
far away from the true solution with non-zero probability and hence cause divergent
behavior. Conrad et al. (2017) conducted an extensive theoretical analysis on convergence
properties of their probabilistic model. They showed that the unknown stochastic process
which underlies computed sample trajectories converges to the true solution with the
same polynomial rate in the step size h as a used RK method, if the model’s covariance is
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upper bounded with at least the doubled polynomial order. Applied to the probabilistic
model in the present work, this means that such convergence is guaranteed, if the local
error estimator is of the same or higher order as/than the numerical ODE solver. Popular
embedded RK methods that perform local extrapolation, for example, do not meet this
assumption, as the order of their error estimator is at least one less than the order of the
main solver itself. In Chapter 4, we will examine whether this affects the applicability of
the probabilistic model to those methods.

Time Discretization If the chosen time discretization is too coarse, corresponding to a
too large step size h, the accuracy of a numerical ODE solution will generally suffer. In
addition, this will also violate the inherent assumption of the probabilistic model defined
by Eq. (3.3), i.e., the true next state being normally distributed around the solver’s
prediction: If the solver’s prediction is a bad estimate for the true next state, centering the
normal distribution at it will introduce a systematic bias, as already identified by Conrad
et al. (2017). Moreover, overly large step sizes are likely to decrease the accuracy of the
local error estimator as well, which then leads to the same problems as outlined in the
preceding paragraph. If one performs inference using the EKF, this might also violate the
EKF’s local affinity assumption (cf. Assumption 2.5). As a consequence, the propagated
uncertainty could be distorted substantially when consecutive states xk and xk�1 are far
apart.

Ultimately, choosing an appropriate step size is both dependent on the given simula-
tion problem and the used numerical solver. We will investigate the influence of different,
both more fine- and coarse-grained time discretizations on the quality of the probabilistic
solutions in Chapter 4.

Differentiability The EKF requires the computation of Jacobian matrices of the numer-
ical ODE solver w.r.t. its input state (cf. Algorithm 3). Thus, in order to apply the EKF to
the probabilistic model proposed in Definition 3.2, the used numerical ODE solver needs
to be at least once differentiable. Theoretically, this is the case with the vast majority of
common ODE solvers, in particular with RK methods. In practice, however, it might be
a problem for legacy software, which often does not offer the automatic differentiation
capabilities of modern scientific computing libraries like JAX (Bradbury et al., 2018) or
PyTorch (Ansel et al., 2024).
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3.2 ODE Parameter Estimation

Another goal of this work is to estimate unknown parameters of ODEs reliably, given their
functional form and a collection of noisy measurements of the state. Building upon the
probabilistic model defined in Section 3.1, the approach adopted here in general inherits
the assumptions and requirements listed in Section 3.1.3. Moreover, it is fundamentally
based on gradient-based maximum likelihood estimation, which is described below.

3.2.1 Gradient-based Maximum Likelihood Estimation

Assumption 3.1. For an ODE parametrized by θ, assume partially observed measure-
ments y1, . . . , yK " R

L of a true trajectory of states x1, . . . , xK " R
ND, with H " R

L�ND

denoting the matrix that maps a state xk to its partially observed counterpart yk. In addi-
tion, assume that observations are distorted by zero-mean Gaussian noise of covariance
R " R

L�L, i.e.,
yk � p �yk · xk� � N �yk; Hxk, R� . (3.5)

Assumption 3.2. Assume that observations y1, . . . , yK are conditionally independent,
given parameters θ, i.e.,

p �yk · y1�k�1, yk�1�K,θ� � p �yk · θ� .

Assumption 3.3. Assume that a trajectory of states x1, . . . , xK is uniquely defined by
parameters θ of the ODE, and vice versa, i.e., there are no two different parametrizations
θ
�1�

j θ
2 that induce the same trajectory of states x1, . . . , xK, and there are no two

different trajectories of states at equal points in time x�1�
1 , . . . , x�1�

K and x�2�
1 , . . . , x�2�

K that
correspond to the same parameters θ, provided that they share the same initial value x0.

Definition 3.4. For a conditional distribution p�y1�K ¶ θ� of observations y1�K, given
parameters θ, the likelihood function L of θ is defined as

L�θ; y1�K� � p�y1�K ¶ θ�.
Furthermore, the maximum likelihood estimate θ̂MLE of θ is defined as

θ̂MLE � arg max
θ

L�θ; y1�K�. (3.6)
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Under Assumptions 3.1 to 3.3, the likelihood function of parameters θ evaluates to

L�θ; y1�K� �
K

5
k�1

p �yk · θ� �
K

5
k�1

p �yk · xk� � K

5
k�1

N �yk; Hxk, R� . (3.7)

Equation (3.7) is usually intractable in practice, as the solution of the ODE is unknown
and the true states x1, . . . , xK are therefore not available. Through numerical integration of
the ODE, however, the true states can be approximated by the predicted states rx1, . . . , rxK,
giving rise to a tractable approximation of Eq. (3.7).

Definition 3.5. Let fθ be a vector field parametrized by θ " R
W , let sT be an equidistant

time discretization with corresponding step size h, and let Ξ be a numerical ODE solver.
Moreover, let rx1, . . . , rxK denote the trajectory of states predicted by Ξ, starting at an initial
value x0, and let y1, . . . , yK denote a collection of partially observed, noisy measurements
of the true states x1, . . . , xK, according to Assumption 3.1. Then, a tractable approximation
LNLSR to the exact likelihood function L is defined by

L�θ; y1�K� � LNLSR�θ; y1�K� �
K

5
k�1

N �yk; Hrxk, R� . (3.8)

Since maximization of the likelihood LNLSR�θ; y1�K� is equivalent to minimizing the
negative log-likelihood (NLL), the optimization problem in Eq. (3.6) can be rewritten as

θ̂MLE � arg max
θ

L�θ; y1�K�
� arg min

θ

� logL�θ; y1�K�
(3.8)
� arg min

θ

1
K

K

=
k�1

½Hrxk � yk½2
2.

(3.9)

This is also known as non-linear least-squares-regression (NLSR) (Bard, 1974). If the used
numerical solver Ξ is differentiable, gradient-based methods can be applied to solve the
optimization problem in Eq. (3.9), e.g., the limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) algorithm (Liu & Nocedal, 1989).

Unfortunately, the above NLL function is generally non-convex in θ and often con-
tains a multitude of local minima in case of non-linear dynamics (Cao et al., 2011). In
order to converge to the global minimum that corresponds to the desired true parameters,
the optimization must therefore be restarted for several initializations of θ, which quickly
becomes infeasible in high-dimensional parameter spaces.
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σ = 0.0 σ = 50.0 σ = 100.0 σ = 150.0

Figure 3.2: Idea behind process noise tempering. An analogy: By increasing the variance
σ

2 of the Gaussian filter applied to a one-dimensional image (top), the corresponding
intensity profile (bottom) becomes more convex.

3.2.2 Process Noise Tempering

This work’s approach to estimate the true parameters more reliably, i.e., determining the
global optimum for various initializations in the majority of cases, can be outlined as
follows: First, we observe that the likelihood function LNLSR (cf. Definition 3.5) assumes
no uncertainty about parameters in the process of numerical integration. However, we
can construct a Gaussian transition model between subsequent states that indirectly
accounts for the uncertainty about parameters in a controllable manner. Together with
available observations and the known observation model, this defines a probabilistic
SSM that can be inferred approximately using the EKF, leading to a tractable likelihood
on parameters that incorporates the uncertainty about them. Finally, we can gradually
decrease the uncertainty in the transition model and optimize the resulting likelihood
function. In the following, this method is referred to as process noise tempering (PNT).

The idea behind PNT is to smooth out the NLL function and therefore make it convex
initially, enabling convergence to the global minimum of this manipulated objective
function. In general, the global minimum of the smoothed NLL is not identical to the
global optimum of the original NLL, but it is often located in the vicinity of the latter. By
iteratively restarting optimization at the previous point of convergence and reducing
the magnitude of smoothing, the true global minimum may be reached ultimately.
Related techniques to solve non-convex optimization problems have been reported in
the literature under various names, e.g., graduated optimization (Blake & Zisserman, 1987)
in computer vision and deterministic annealing (Rose, 1998) in the context of clustering.
Process noise tempering has been inspired in particular by the work of Beck et al. (2024),
where the authors gradually lowered the diffusion parameter of a PN ODE solver, which
controls the uncertainty in the prior model over solutions.
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θ

x0 x1 x2 . . . xK�2 xK�1 xK

y1 y2 yK�2 yK�1 yK

Figure 3.3: Dynamic Bayesian network of the probabilistic SSM used for parameter
estimation: Parameters θ (q), unobserved states x0�K (r), observations y1�K (r).

Example 3.1. The basic principle of PNT can be exemplified by the following analogy,
illustrated in Fig. 3.2: Consider a high-frequent one-dimensional grayscale image, similar
to a barcode, but with smooth transitions and differently bright and dark patches. The
intensity profile of this image is non-convex and contains several local minima. By
applying a low-pass Gaussian filter to the image, high frequencies that induce non-
convexity are eliminated and the intensity profile of the resulting blurred image becomes
more convex. The strength of this smoothing effect depends on the variance σ

2 of the
Gaussian filter. By starting with a large variance and then lowering it, an initially convex
approximation to the true intensity profile can be gradually transformed into the latter.

Assumption 3.1 gives rise to a probabilistic SSM on states xk and observations yk,
where the states are conditioned on parameters θ through the solution of the ODE.
Here, we assume that the initial value x0 is known beforehand. This SSM is visualized
by Fig. 3.3. While its observation model p�yk ¶ xk� is defined by Eq. (3.5), the transition
model p�xk ¶ xk�1,θ� has not been specified yet. Therefore, it can be used to encode the
uncertainty about parameters θ.

Remark 3.2. A priori knowledge of the initial value x0 is a simplifying assumption made
in the present model. In the scope of this work, we generally consider only the case of
fully known initial values. If unknown, however, the initial value could in principle also
be treated as part of the parameters to be estimated.

Definition 3.6. Let fθ be a vector field parametrized by θ, let sT be an equidistant time
discretization with corresponding step size h, and let Ξδ be a numerical ODE solver with
local error estimator. Moreover, according to Definition 2.10, let

�rxk�1 sδxk�1�� � Ξδ �fθ, tk, xk, h�
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denote the predicted state and the estimated local error at time tk�1 " sT, given the
previous time tk " sT and corresponding state xk " R

ND. Finally, let γ " R
�

0 denote
a scaling factor that controls the uncertainty about parameters θ, called process noise
temperature. We define the following probabilistic model over the state xk�1, given the
previous state xk and parameters θ:

pPNT �xk�1 ¶ xk,θ� � N �xk�1; rxk�1, γI� . (3.10)

Combining with the computational uncertainty of the solver (cf. Definition 3.2), we also
define

pPNT+num. �xk�1 ¶ xk,θ� � N �xk�1; rxk�1, γI� diag �sδx
2
k		 . (3.11)

The transition models introduced in Definition 3.6 indirectly account for the uncer-
tainty about parameters, as higher values of γ lead to a lower confidence in the solution
of the integration steps. Since these models are non-linear Gaussian and the observation
model defined by Eq. (3.5) is linear Gaussian, the EKF can be applied again to perform
approximate inference in the SSM. As in Section 3.1, we use a square-root form to in-
crease numerical stability. This becomes even more important here with the usage of the
EKF update step because Eq. (2.41) harbors the risk that the covariance matrix becomes
indefinite after the subtraction of matrices.

Overall, the predict step is the same as shown in Algorithm 3, except for the different
process noise matrix, dependent on the used transition model. Computing the data
likelihood covariance matrix square root S1©2

k is analogous to the prediction covariance
matrix square root rPk. Since S1©2

k is upper-triangular after QR decomposition, the Kalman
gain Kk can be determined efficiently using forward and backward substitution. Last,
for the computation of the filtering covariance matrix square root P1©2

k , we observe
that Eq. (2.41) can be rewritten as

Pk � rPk �KkSkK
�

k

(2.38)
� rPk �Kk �HrPkH

�

�R	K
�

k

� rPk �KkHrPkH
�

K
�

k �KRK
�

� �I�KkH� rPk �I�KkH�� �KRK
�

,

(3.12)

where we already inserted Jh�smk� � H. This factorization is also known as Joseph
form (Bucy & Joseph, 2005). With the square roots of both summands being easily obtain-
able, Eq. (3.12) then enables computing P1©2

k by means of another QR decomposition. All
computational steps are also listed in Algorithm 4.
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Algorithm 4: Extended Kalman filter (square-root form)

Input:
Ξδ Numerical ODE solver with local error estimator
fθ Vector field
sT Equidistant time discretization
h Step size
p�xk ¶ xk�1,θ� Transition model
x0 Initial value
y1�K Observations
H Observation matrix
R1©2 Observation noise covariance matrix square root

Output:

rsmkxK
k�1 Prediction means

rrP1©2
k xK

k�1 Prediction covariance matrix square rootsrmkxK
k�1 Filtering means

rP1©2
k xK

k�1 Filtering covariance matrix square rootsrrykxK
k�1 Data likelihood means

rS1©2
k xK

k�1 Data likelihood covariance matrix square roots

m0 � x0

P1©2
0 � 0

for k � 1, 2, . . . , K do V Qk�1 � Cov�p�xk ¶ xk�1,θ��
�smk sδxk�� � Ξδ �fθ, tk�1, mk�1, h�
rP1©2

k � qrr �P1©2
k�1 �Jmk�1

�Ξδ �fθ, tk�1, mk�1, h��1�� , Q1©2
k�1


ryk � Hsmk

S1©2
k � qrr �rP1©2

k H
�

, R1©2	
Kk � rPkH

�

S�1
k

mk � smk �Kk �yk � ryk�
P1©2

k � qrr �rP1©2
k �I�KkH�� , R1©2K

�

k	
end

Prediction step

Update step
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Proposition 3.2. The conditional distribution p�yk ¶ θ� is approximately2 equal to the data
likelihood N �yk; ryk, Sk� computed in the update step of the EKF.

Proof. We exploit the Markov independence structure of the SSM and apply basic rules
of probability theory. Under Assumption 2.5, the prediction distribution can be ap-
proximately replaced by a Gaussian that is specified by the EKF’s prediction mean and
prediction covariance. Applying rules for the product of two Gaussians and the marginal-
ization of a Gaussian (cf. Särkkä and Svensson (2023)), we ultimately show approximate
equality to the data likelihood computed in the EKF.

p �yk · θ� � p �yk · y1�k�1,θ�
� E p �yk, xk · y1�k�1,θ�dxk

� E p �yk · xk, y1�k�1,θ� p �xk · y1�k�1,θ�dxk

� E p �yk · xk� p �xk · y1�k�1,θ�dxk

� E N �yk; Hxk, R�N �xk; smk, rPk�dxk

� N �yk; Hsmk, HrPkHT
�R�

(2.38)
� N �yk; ryk, Sk�

With Proposition 3.2 and the Markov independence structure of the SSM, we therefore
obtain a tractable approximation to the likelihood function L�θ; y1�K� that can incorporate
various magnitudes of uncertainty about the parameters θ, controlled by the value of γ

in the transition model (cf. Definition 3.6).

Definition 3.7. Let fθ be a vector field parametrized by θ " R
W , let sT be an equidistant

time discretization with corresponding step size h, and let Ξ be a numerical ODE solver.
Moreover, let x0 be an initial value, let y1, . . . , yK denote a collection of partially observed,
noisy measurements of the true states x1, . . . , xK, according to Assumption 3.1, and let
p�xk ¶ xk�1,θ� denote a transition model between consecutive states, whose covariance is
scaled by the process noise temperature γ. Finally, let rrykxK

k�1 and rSkxK
k�1 denote the data

likelihood means and covariance matrices obtained when applying the EKF as presented
in Algorithm 4 to the above configuration. Then, a tractable approximation LPNT to the

2Up to linearization of the transition model.
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exact likelihood function L is defined by

L�θ; y1�K� � LPNT�θ; y1�K, γ� � K

5
k�1

N �yk; ryk, Sk� . (3.13)

Process noise tempering starts with an initial parametrization θ0, e.g., an educated
guess or just a random initialization. For a fixed number of iterations m " N, in
every iteration i, first a process noise temperature γi is obtained through a pre-defined
temperature schedule Γ � N � R

�

0 . An optimization algorithm OPT then optimizes the
process noise-tempered likelihood LPNT stated in Eq. (3.13) w.r.t. parameters θ for γi

and the current parameter values θi. Finally, the parameters θm determined in the last
iteration are returned as estimate θ̂PNT. This procedure is related to Beck et al. (2024) and
summarized in Algorithm 5.

Algorithm 5: Process noise tempering

Input:
θ0 Initial parameters
y1�K Observations
Γ Tempering schedule
LPNT�θ; y1�K, γ� Process-noise-tempered likelihood
OPT Optimization algorithm
m Number of iterations

Output:
θ̂PNT Estimated parameters

for i � 1, 2, . . . , m do

γi � Γ�i�
θi � OPT �LPNT� � ; y1�K, γi�,θi�1�

end

θ̂PNT � θm

The effect of different tempering schedules Γ on efficiency and quality of the results
will be examined in Chapter 4. Moreover, we will investigate how well PNT works for
increasingly complex ODEs and a growing number of parameters to be optimized.
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In this chapter, the methods presented in Chapter 3 are evaluated experimentally. The
experiments are designed and conducted with the aim to answer the following research
questions:

Q1.1. How well are probabilistic solutions created with the model pnum. calibrated,
i.e., reflect the numerical error appropriately, for different ODE solvers with local error
estimator Ξδ, compared to a manually calibrated baseline provided by Conrad et al.
(2017)?

Q1.2. Does inference using the extended Kalman filter yield similar probabilistic solu-
tions as with sequential sampling, and how does the coarseness of time discretizations sT
affect these solutions?

Q2.1. How reliable and efficient is the estimation of ODE parameters using process
noise tempering for different tempering schedules Γ and with/without addition of local
error estimates, compared to the baseline of non-linear least-squares-regression and the
method by Beck et al. (2024)?

Q2.2. For how complex and highly parametrized ODEs does process noise tempering
still reliably provide correct parameter estimates?

The remainder of this chapter is structured as follows: First, Section 4.1 contains the
experiments regarding black box probabilistic ODE solvers, addressing Q1.1 and Q1.2.
Subsequently, Section 4.2 deals with experiments on ODE parameter estimation that
approach Q2.1 and Q2.2. For details on the implementation and computing environment
used to conduct them, see Appendix A.
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4.1 Black Box Probabilistic ODE Solvers

We conduct the following three experiments on black box probabilistic ODE solvers:

Experiment 1.1. Quantitative assessment of uncertainty calibration, addressing Q1.1.

Experiment 1.2. Qualitative assessment of uncertainty calibration, addressing Q1.1
and Q1.2.

Experiment 1.3. Effects of overly coarse time discretizations, addressing Q1.2.

4.1.1 Experiment 1.1: Quantitative Assessment of Uncertainty Calibration

In the first experiment, the calibration of probabilistic ODEs solutions is compared
quantitatively by evaluating the marginal likelihood p�y1�K�. More specifically, we
consider the NLL, which is minimal for an optimal model fit to observations y1�K. It is
again approximated by the data likelihood of the EKF, here without conditioning on
parameters θ (cf. Section 3.2). We use the probabilistic model pConrad defined by Eq. (3.1)
as a baseline for comparison with this work’s model pnum. (cf. Eq. (3.3)). The NLL is
computed for a single simulation using pnum. and for 500 simulations using pConrad,
where the model parameter σ varies with a logarithmically equidistant spacing between
1 � 10�16 and 1. These simulations are repeated for various IVPs and corresponding
vector fields fθ, different ODE solvers Ξ as well as several time discretizations sT, being
specified below.

Initial value problems. We consider four different ODEs, each defining an IVP:
First, the Lotka-Volterra equations (Lotka, 1925; Volterra, 1928) are a system of two

first-order ODEs

dz1�t�
dt

� θ1z1�t�� θ2z1�t�z2�t�, (4.1a)

dz2�t�
dt

� �θ3z1�t�� θ4z1�t�z2�t�, (4.1b)

describing the interaction of two biological populations, one as a pray and the other
as a predator. We specify an IVP with initial value z1�0� � z2�0� � 1 and parameters

θ � �1.5 1 3 1�� for the time interval T � �0, 20�.
Second, the van der Pol equation (Guckenheimer, 1980) is a second-order ODE

d2z�t�
dt2 � θ �1� z2�t�� dz�t�

dt
� z�t�,
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corresponding to an oscillating system with non-linear damping. We specify an IVP with
initial conditions z�10� � 2, dz

dt �10� � 10 and the parameter θ � 5 for the time interval
T � �10, 80�.

Third, the Lorenz’63 system (Lorenz, 1963) consists of three first-order ODEs

dz1�t�
dt

� θ1�z2�t�� z1�t��,
dz2�t�

dt
� z1�t��θ2 � z3�t��� z2�t�,

dz3�t�
dt

� z1�t�z2�t�� θ3z3�t�,
representing a model for atmospheric convection. We specify an IVP with initial value

z1�0� � z2�0� � z3�0� � 1 and canonical parameters θ � �10, 28, 8
3�� for the time interval

T � �0, 50�.
Finally, the dynamics of two linearly coupled anharmonic oscillators (Steeb et al., 1987)

suffice the following system of second-order ODEs

dz1�t�
dt

� �θ1z1�t�� θ2z3
1�t�� θ3z2�t�,

dz2�t�
dt

� �θ1z2�t�� θ2z3
2�t�� θ3z1�t�.

We consider the parametrization θ � �1, 2, 0.5��, and specify an IVP with initial condi-
tions z1�0� � 1, z2�0� � �2, dz1

dt �0� � �1, dz2
dt �0� � 0.5 for the time interval T � �0, 80�.

Numerical ODE solvers. We use two different explicit embedded RK methods:
First, the Runge-Kutta-Fehlberg-4(5) (RKF4(5)) method (Fehlberg, 1970) is an explicit

embedded RK method of order four with a local error estimator of order five. It has six
stages.

Second, the Dormand-Prince-6(5) (DOPRI6(5)) method (Prince & Dormand, 1981) is
an explicit embedded RK method of order six with a local error estimator of order
five. It comes with eight stages and, opposite to the RKF4(5) method, performs local
extrapolation.

Time discretizations. We use three different constant step sizes h for simulations, being
h � 0.01, h � 0.05, and h � 0.1. Together with the time intervals specified for the
above IVPs, they give rise to equidistant time discretizations sT. In order to make the
NLL comparable between time discretizations of varying granularity, it is rescaled by
multiplication with h.

42



4. Evaluation 4.1. Black Box Probabilistic ODE Solvers

0

2

4

lo
g

N
LL

+
C

h = 0.01 h = 0.05

R
K

F4
(5

)

h = 0.1

10−12 10−7 10−2

σ

0

2

4

lo
g

N
LL

+
C

10−12 10−7 10−2

σ

10−12 10−7 10−2

σ

D
O

PR
I6

(5
)

pConrad pnum.

(a) Lotka-Volterra.
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(b) Van der Pol.
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(c) Lorenz’63.
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(d) Linearly coupled anharmonic oscillators.

Figure 4.1: Quantitative evaluation of uncertainty calibration for transition models pnum.
and pConrad. Plots show the log NLL over scaling factors σ of pConrad for different ODEs
(4.1a-4.1d), numerical ODE solvers (rows), and step sizes h (columns). Log NLL curves
are shifted to positive values by the same value C, allowing their comparison with each
other. A more detailed, zoomed-in view is provided in case of indiscernible intersection
between the two curves.
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Last, observations y1�K are produced with a reduced step size h � 1� 10�4 and the
higher-order DOPRI6(5) solver, ensuring that they are close to the exact solutions of the
given IVPs. To this end, the measurements are considered fully observable as well as
noise-free, i.e., H � I and R � 0.

Results Figures 4.1a to 4.1d show the results for ODEs Lotka-Volterra, van der Pol,
Lorenz’63, and linearly coupled anharmonic oscillators, respectively. As reported by the
authors (Conrad et al., 2017), the model pConrad is best calibrated for a single value of σ,
indicated by sharp minima of the NLL. For larger step sizes h, the minima are located at
larger values of σ, supporting the intuition that a coarser time discretization requires an
increased uncertainty about numerical integration steps. In most cases, this work’s model
pnum. induces values of the NLL that are larger than pConrad at its minima, suggesting
that the manual calibration of the latter is better. A recurrent pattern across different
ODE, however, is that pnum. produces comparable or lower NLL values than pConrad for
RKF4(5) and h � 0.01. According to the NLL, the calibration of pnum. is sometimes better
with RKF4(5) (e.g., Fig. 4.1b) and sometimes with DOPRI6(5) (e.g., Fig. 4.1d). In general,
it becomes worse for increased step sizes h.

4.1.2 Experiment 1.2: Qualitative Assessment of Uncertainty Calibration

The second experiment deals with the qualitative evaluation of probabilistic ODE solu-
tions and how well they are calibrated. Analogous to Section 4.1.1, we compare pnum.

with pConrad as a baseline. But this time, we set the scalar variance σ of the latter to the
corresponding minimum of the NLL found in Section 4.1.1. To this end, simulations are
conducted for the same IVPs, ODE solvers and time discretizations as in Section 4.1.1.
Here, however, we assume the more practical situation that observations of the exact
solution are not available during simulation, and therefore consider a pure prediction
task. We apply both sequential sampling and the EKF to infer probabilistic solutions
for the trajectory of states x1�K. With sequential sampling, m � 100 sample trajectories
are created. In the end, we compare solutions from the two algorithms both with each
other and with the almost-exact trajectory of withheld observations y1�K. Observations
are produced under the same conditions as in Section 4.1.1.

Results Figures 4.2 to 4.5 depict again the results for ODEs Lotka-Volterra, van der Pol,
Lorenz’63, and linearly coupled anharmonic oscillators, respectively. There, Figs. 4.2a
to 4.5a arise from EKF-based inference and Figs. 4.2b to 4.5b are produced using sequen-

45



4. Evaluation 4.1. Black Box Probabilistic ODE Solvers

−2.5

0.0

2.5

x
−

x̂

×10−7 h = 0.01

−0.00025

0.00000

0.00025

h = 0.05

−0.005

0.000

0.005

R
K

F4
(5

)

h = 0.1

0 10 20

t

−2

0

2

x
−

x̂

×10−11

0 10 20

t

−2.5

0.0

2.5

×10−7

0 10 20

t

−2.5

0.0

2.5

D
O

PR
I6

(5
)

×10−5

Pred. mean Pred. std. (pConrad) Pred. std. (pnum.)

(a) EKF.

−2.5

0.0

2.5

x
−

x̂

×10−7 h = 0.01

−0.00025

0.00000

0.00025

h = 0.05

−0.005

0.000

0.005

R
K

F4
(5

)

h = 0.1

0 10 20

t

−2

0

2

x
−

x̂

×10−11

0 10 20

t

−2.5

0.0

2.5

×10−7

0 10 20

t

−2.5

0.0

2.5

D
O

PR
I6

(5
)

×10−5

Numerical solution Samples (pConrad) Samples (pnum.)

(b) Sequential sampling.

Figure 4.2: Qualitative evaluation of uncertainty calibration for the Lotka-Volterra ODE
and transition models pnum. and pConrad. Plots show the residuals between predicted and
true solutions of the first state component for the EKF (4.2a) and sequential sampling
(4.2b) over different numerical solvers (rows) and step sizes h (columns). Single standard
deviations (EKF) are indicated by zero-centered error bands, sample trajectories (sequen-
tial sampling) are plotted in difference to the unperturbed numerical solution, enabling
direct comparison with the former.
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Figure 4.3: Qualitative evaluation of uncertainty calibration for the van der Pol ODE and
transition models pnum. and pConrad. Plots show the residuals between predicted and
true solutions of the first state component for the EKF (4.2a) and sequential sampling
(4.2b) over different numerical solvers (rows) and step sizes h (columns). Single standard
deviations (EKF) are indicated by zero-centered error bands, sample trajectories (sequen-
tial sampling) are plotted in difference to the unperturbed numerical solution, enabling
direct comparison with the former.
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Figure 4.4: Qualitative evaluation of uncertainty calibration for the Lorenz’63 ODE and
transition models pnum. and pConrad. Plots show the residuals between predicted and
true solutions of the first state component for the EKF (4.2a) and sequential sampling
(4.2b) over different numerical solvers (rows) and step sizes h (columns). Single standard
deviations (EKF) are indicated by zero-centered error bands, sample trajectories (sequen-
tial sampling) are plotted in difference to the unperturbed numerical solution, enabling
direct comparison with the former.
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Figure 4.5: Qualitative evaluation of uncertainty calibration for the linearly coupled
anharmonic oscillator ODE and transition models pnum. and pConrad. Plots show the
residuals between predicted and true solutions of the first state component for the EKF
(4.2a) and sequential sampling (4.2b) over different numerical solvers (rows) and step
sizes h (columns). Single standard deviations (EKF) are indicated by zero-centered
error bands, sample trajectories (sequential sampling) are plotted in difference to the
unperturbed numerical solution, enabling direct comparison with the former.

49



4. Evaluation 4.1. Black Box Probabilistic ODE Solvers

tial sampling. Due to mostly invisibly small errors, in particular for the smallest tested
step size h � 0.01, the residuals between the predicted and true solutions are displayed.

As indicated by the results in Section 4.1.1, there are many cases where manual
calibration of the model pConrad leads to better calibrated results than the automatic cali-
bration of pnum. using the local error estimator. For example, using pnum., the uncertainty
to solutions of ODEs Lotka-Volterra and the linearly coupled anharmonic oscillators is
slightly underestimated with RKF4(5) (cf. Fig. 4.2), while substantially overestimated
for the van der Pol ODE and DOPRI6(5) (cf. Fig. 4.3). Compared to RKF4(5), DOPRI6(5)
generally induces a larger uncertainty, which could be expected due to the lower-order
characteristic of the error estimator. Interestingly, this seems to compensate for the
otherwise too weak signal of the local error estimator for the Lotka-Volterra ODE and
larger step sizes, which is then better calibrated than with pConrad. Something similar
happens for the lineary coupled anharmonic oscillators (cf. Fig. 4.5). For smaller step
sizes and RKF4(5), probabilistic solutions to the van der Pol ODE are also slightly better
calibrated when using pnum., compared to pConrad.

Hence, the overall results are mixed. While there are cases where results produced by
pnum. are better calibrated, the majority of tested situations are in favor of pConrad. Still,
the probabilistic solutions produced by pnum. are in general well-structured and match
the occurred numerical errors on a qualitative level, i.e., the predicted uncertainty is
larger at points of large errors and smaller at points of small errors.

Last, Gaussian solutions computed with the EKF are overall close to the true, in
general non-Gaussian stochastic process that is approximated by sequential sampling.
Two exceptions are the van der Pol ODE for RKF4(5) and the largest tested step size h �
0.1 (cf. Fig. 4.3), as well as the Lorenz’63 system for all solvers and step sizes (cf. Fig. 4.4).
The former is clearly caused by too large global errors, while the latter can be attributed
to the chaotic characteristics of the Lorenz’63 system. Both exhibit non-symmetric sample
trajectories, which can not be captured well by the Gaussian approximation of the
EKF. While the uncertainty here simply explodes over the remaining time horizon for
Lorenz’63, it does so first too in the case of van der Pol, but then becomes minimal, losing
any structure. Interestingly, this effect is less prominent with the manually calibrated
model pConrad, although still observable.

4.1.3 Experiment 1.3: Effects of Overly Coarse Time Discretizations

The final experiment of this section investigates the effect of overly large step sizes
on probabilistic solutions created with this work’s model pnum.. In Section 4.1.2, we
noted that the step size h � 0.1 specified above is too small for the RKF4(5) method to
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solve the IVP specified for the van der Pol ODE. In order to inspect in depth how the
probabilistic solutions are affected by such misconfiguration, we compare probabilistic
state predictions rxk visually at specific points in time tk. At these times, the Gaussian
approximation N �rxk; smk, rPk� provided by the EKF is contrasted with a kernel density

estimation (KDE) of the sample states xx�1�
k , . . . , xx�m�

k obtained in sequential sampling, and
the Dirac measure of the exact state xk, being approximated by the numerically computed
observation yk. For the KDE, we use a Gaussian kernel and a diagonal smoothing matrix
1

10 I, i.e., we approximate the probability density function p�rxk� that underlies samples

xx�1�
k , . . . , xx�m�

k by an equally-weighted mixture of Gaussians

p �rxk� � 1
m

m

=
i�1

N �rxk; xx�i�
k ,

1
10

I
 .

In this experiment, we consider the IVP on the van der Pol ODE being specified in Sec-
tion 4.1.2. Moreover, we compare probabilistic solutions created with RKF4(5) and h � 0.1
as well as DOPRI6(5) and h � 0.15, respectively. These probabilistic solutions are then
inspected as described above at times t � 10.3, t � 12.5, t � 48.7, and t � 55.0.

Results The results of this experiment are displayed in Fig. 4.6. At the start of simu-
lations (t � 10.3), both RKF4(5) and DOPRI6(5) give rise to sharp distributions around
the exact solution. Only two time units later, however, the Gaussian of the EKF is overly
wide and the KDE of the sample trajectories exhibits a bimodal structure for RKF4(5).
However, the results are unchanged with DOPRI6(5). At t � 48.7, the KDEs of both
simulations show similar bimodal distributions, although DOPRI6(5) leads to more prob-
ability mass in between the two modes, where the exact solution is located. On the
contrary, the Gaussian distributions produced by the EKF are collapsed at one mode
for RKF4(5) and roughly correcly located and scaled for DOPRI6(5). Last, at t � 55.0,
the unchanged bimodal KDEs of RKF4(5) captures the exact solution at one mode, but
the Gaussian approximation is collapsed at the other, wrong mode. With DOPRI6(5), by
contrast, unimodality around the exact solution is restored both for solutions provided
by the EKF and sequential sampling.

In summary, the results indicate that overly coarse time discretizations in cases of
multimodality can lead to failure modes such as mode collapses, which may not be
recoverable in subsequent prediction steps.
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Figure 4.6: Effects of overly coarse time discretizations using the example of the van der
Pol ODE. Plots show the estimated probability density function of the predicted state’s
first component for the EKF and sequential sampling as well as for different numerical
ODE solvers (rows) at different points in time (rows). The distribution for sequential
sampling is computed from samples using kernel density estimation with a Gaussian
kernel.

4.2 ODE Parameter Estimation

In the context of ODE parameter estimation, the following three experiments are carried
out:

Experiment 2.1. Influence of the error estimator and tempering schedule on process
noise tempering, addressing Q2.1.

Experiment 2.2. Applying process noise tempering to the Hodgkin-Huxley model, ad-
dressing Q2.2.

Experiment 2.3. Improving process noise tempering using prior knowledge, address-
ing Q2.2.

4.2.1 Experiment 2.1: Influence of the Error Estimator and Tempering
Schedule on Process Noise Tempering

In the first experiment on ODE parameter estimation, reliability and efficiency are com-
pared between the two transition models pPNT and pPNT+num. in conjunction with differ-
ent tempering schedules Γ for PNT. As a baseline, we also perform NLSR.

Definition 4.1. Let θ̂,θ� " R
W denote estimated and true parameters of an ODE, respec-

tively. Then, the relative parameter root mean square error (rpRMSE) between θ̂ and θ
� is
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defined as

rpRMSE �

ÙÛÛÛÛÛÛÚ 1
W

W

=
i�1

ÂÂÂÂÂÂÂÂÂ
�θ̂�i � �θ��i�θ̂�i

ÂÂÂÂÂÂÂÂÂ
2

2

. (4.2)

Furthermore,let rxk, rx�k " R
ND denote numerically integrated states at the same point in

time tk, arising from the estimated and true parameters θ̂ and θ
�, respectively. Then, the

trajectory root mean square error (tRMSE) between trajectories of states rxk and rx�k is defined
as

tRMSE �

ÙÛÛÛÛÛÛÚ 1
K

K

=
k�1

¾rxk � rx�k ¾2
2. (4.3)

In general, the experimental setup closely follows Beck et al. (2024). The reliability is
measured in terms of the convergence success rate. It is defined as the fraction of differently
initialized optimization runs producing an estimate θ̂ whose rpRMSE (cf. Eq. (4.2)) is
below 0.05. Additionally, we also consider the deviation between state trajectories that
originate from different parametrizations, measured by the tRMSE according to Eq. (4.3).
The efficiency, on the other hand, is rated by the number of iterations the optimization
algorithm needs until convergence. In case of PNT, the total number of optimization
iterations accumulated over tempering iterations is considered. We use the algorithm
limited-memory Broyden-Fletcher-Goldfarb-Shanno with bounds (L-BFGS-B) (Byrd et al., 1995;
Zhu et al., 1997) for gradient-based optimization with box constraints on individual
parameters. In the following, the considered parameter estimation problems and used
tempering schedules Γ are specified.

Parameter estimation problems. We perform parameter estimation for two problems,
both based on the Lotka-Volterra equations given by Eqs. (4.1a) and (4.1b), and use the
identical parametrization, time interval, and initial values as in Section 4.1.1. For the first
problem LV-2, we assume that only the subset of parameters θ1, θ2 is unknown and the
remaining θ3, θ4 are known. The second problem LV-4 then considers all four parameters
to be unknown. During parameter estimation, all parameters are bounded by the interval
�1� 10�3, 5.0�.

In both problems, measurements of the trajectory corresponding to the true parame-
ters are only partly observed through the first component of the state, referring to the
prey population. Moreover, they are subject to zero-mean Gaussian noise of variance 0.1,
i.e., H � �1 0� and R � �0.1�. Observations are again created using DOPRI6(5) and a

step size of h � 1� 10�4. Simulations being run in the context of parameter estimation to
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Table 4.1: Comparison of different Lotka-Volterra-type problems and methods for param-
eter estimation. CONV: Convergence success rate. OptIter: Total number of iterations
needed by the optimization algorithm.

PROB. METHOD RPRMSE � CONV � TRMSE � OPTITER �

LV-2 NLSR 1.43 � 1.10 0.20 2.49 � 1.25 11.37 � 4.09
LV-2 FENRIR+DT 0.35 � 0.77 0.79 0.43 � 1.03 132.43 � 31.01
LV-2 PNT (Γhigh+coarse) 0.01 � 0.00 1.00 0.03 � 0.00 44.61 � 5.01
LV-2 PNT (Γhigh+coarse + sδx) 0.01 � 0.00 1.00 0.03 � 0.00 44.61 � 5.01
LV-2 PNT (Γlow+coarse) 0.01 � 0.00 1.00 0.03 � 0.00 33.45 � 1.82
LV-2 PNT (Γlow+coarse + sδx) 0.01 � 0.00 1.00 0.03 � 0.00 33.45 � 1.82
LV-2 PNT (Γhigh+fine) 0.01 � 0.00 1.00 0.03 � 0.00 84.61 � 5.01
LV-2 PNT (Γhigh+fine + sδx) 0.01 � 0.00 1.00 0.03 � 0.00 84.61 � 5.01
LV-2 PNT (Γlow+fine) 0.01 � 0.00 1.00 0.03 � 0.00 54.45 � 1.82
LV-2 PNT (Γlow+fine + sδx) 0.01 � 0.00 1.00 0.03 � 0.00 54.45 � 1.82

LV-4 NLSR 0.95 � 0.58 0.17 13.30 � 56.91 42.35 � 23.90
LV-4 FENRIR+DT 0.74 � 0.82 0.44 13.77 � 79.08 292.05 � 139.98
LV-4 PNT (Γhigh+coarse) 0.77 � 0.32 0.15 2.64 � 1.10 33.03 � 29.27
LV-4 PNT (Γhigh+coarse + sδx) 0.77 � 0.32 0.15 2.64 � 1.10 33.02 � 29.27
LV-4 PNT (Γlow+coarse) 0.01 � 0.00 1.00 0.03 � 0.00 83.45 � 7.53
LV-4 PNT (Γlow+coarse + sδx) 0.01 � 0.00 1.00 0.03 � 0.00 83.45 � 7.53
LV-4 PNT (Γhigh+fine) 0.02 � 0.09 0.99 0.06 � 0.31 169.31 � 15.97
LV-4 PNT (Γhigh+fine + sδx) 0.02 � 0.09 0.99 0.06 � 0.31 169.31 � 16.00
LV-4 PNT (Γlow+fine) 0.01 � 0.00 1.00 0.03 � 0.00 146.43 � 7.54
LV-4 PNT (Γlow+fine + sδx) 0.01 � 0.00 1.00 0.03 � 0.00 146.41 � 7.58

compute the NLL, by contrast, use RKF4(5) and a step size of h � 0.01, since the method’s
local error estimator is then interpretable as such.

Tempering schedules. We consider four different tempering schedules, defined by the
following relations:

Γhigh+coarse � t�1, 10.0�, �2, 1� 10�2�, �3, 1� 10�5�, �4, 1� 10�8�, �5, 0.0�z ,

Γlow+coarse � t�1, 1� 10�2�, �2, 1� 10�5�, �3, 1� 10�8�, �4, 0.0�z ,

Γhigh+fine � t�1, 10.0�, �2, 1.0�, �3, 1� 10�1�, . . . , �10, 1� 10�8�, �11, 0.0�z ,

Γlow+fine � t�1, 1� 10�2�, �2, 1� 10�3�, �3, 1� 10�4�, . . . , �7, 1� 10�8�, �8, 0.0�z .

When applying one of these, the number of tempering iterations m is automatically
determined by ¶Γ¶.

For each possible combination between transition models (pPNT, pPNT+num.), estima-
tion problems (LV-2, LV-4), and tempering schedules (Γhigh+coarse, Γlow+coarse, Γhigh+fine,
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Figure 4.7: LV-2 parameter estimation using PNT and NLSR. Plots show the NLL across
the two-dimensional space of optimized parameters in different tempering iterations.
PNT uses the optimization results of a tempering iteration as initial points for optimiza-
tion in the next tempering iteration. NLSR performs optimization only on the zero-noise
NLL function.

Γlow+fine), 100 differently initialized runs of the PNT algorithm are performed. In addition,
100 differently initialized runs are performed for every estimation problem, applying
NLSR. All these initializations are random but kept equal across different transition
models, tempering schedules as well as between PNT and NLSR. Besides NLSR, we
also compare our results to the method Fenrir with diffusion tempering (DT) by Beck et al.
(2024), which was the inspiration for PNT. However, we do not repeat their experiments
but simply compare to the results reported in the corresponding publication.

Results Table 4.1 lists the results obtained in the estimation of parameters for the Lotka-
Volterra ODE using different algorithms. Regarding problem LV-2, PNT reaches 100
percent convergence success rate and therefore surpasses both NLSR and Fenrir with
DT in terms of the correctness of estimated parameters. Moreover, the latter is also out-
performed with regard to the number of L-BFGS-B iterations needed until convergence.
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While NLSR requires the lowest number of iterations here, its efficiency can still be valu-
ated worse than that of PNT, considering the convergence success rate of only 20 percent.
For PNT, differences across different tempering schedules are only observable in the
number of optimization steps, where Γlow+coarse with the smallest number of tempering
iterations performs best, as expected. The addition of local error estimates, i.e., the usage
of the transition model pPNT+num. instead of pPNT, makes no difference at all. Figure 4.7
exemplarily illustrates the change of the NLL across tempering iterations and how NLSR
and PNT with Γlow+coarse converge to different minima.

Concerning the second problem LV-4, PNT is still able to achieve the maximum
convergence success rate, but not with an arbitrary choice of the tempering schedule Γ.
In fact, only tempering schedules that start with a lower initial process noise temperature
γ attain 100 percent. With a more fine-grained temperature scheduling, however, still 99
out of 100 randomly initialized runs converge to the global minimum. This is opposite to
the coarse-grained case, which only performs on a level comparable to NLSR. Last, there
is again no significant difference when adding the local error estimator.

4.2.2 Experiment 2.2: Applying Process Noise Tempering to the
Hodgkin-Huxley Model

The next experiment investigates how reliable PNT can estimate parameters correctly
for increasingly complex and highly parametrized ODEs. Here, the method is applied
to the Hodgkin-Huxley model (Hodgkin & Huxley, 1952), which describes the initiation
and propagation of action potentials in neurons by the dynamics of an electrical circuit
model with capacitive elements. Following Beck et al. (2024), we use the concrete model
formulation of Pospischil et al. (2008), defining a system of eight first-order ODEs with 15
parameters. It contains several exponential and polynomial terms and therefore exhibits
highly non-linear behavior. For the details of the model, see Appendix B.1.

As described in Appendix B.2, the Hodgkin-Huxley model can also be refined to a so-
called multi-compartment model. In essence, the Hodgkin-Huxley model is then replicated
there several times and these individual submodels are coupled to form a larger model
that approximates the characteristics of a neuron more accurately. In the following, the
single-compartment model and the multi-compartment model with c compartments are
referred to by HH and HH-Cc, respectively. Here, we consider only cases where the same
parameters are to be estimated in all compartments.

Similar to Section 4.2.1, we perform parameter estimation for varying numbers of
known and unknown parameters of the model and measure the rpRMSE and tRMSE
afterwards. Since individual parameters only contribute to specific components of the
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Table 4.2: Parameter estimation problems for the Hodgkin-Huxley model and corre-
sponding parameters to be estimated. As before, the last number in a problem’s name
indicates the number of optimized parameters. In multi-compartment models, the same
parameter types are estimated in every compartment. See Appendix B.1 for an explana-
tion of the parameters.

PROBLEM ESTIMATED PARAMETERS

HH-R4-1 gNa
HH-R4-2 gNa, gK
HH-R1-6 gNa, gK, gleak, gM, gL, VT
HH-7 gNa, gK, gleak, gM, gL, gT, VT
HH-R1-9 gNa, gK, gleak, gM, gL, ENa, EK, Eleak, VT
HH-11 gNa, gK, gleak, gM, gL, gT, ENa, EK, Eleak, ECa, VT
HH-C2-R4-4 gNa, gK
HH-C2-R4-6 gNa, gK, gleak
HH-C2-R1-12 gNa, gK, gleak, gM, gL, VT

state, we omit simulation of certain components of the state for which all parameters are
considered known in order to reduce the computational load, as done by Beck et al. (2024).
A therefore simplified Hodgkin-Huxley model that disregards the last r components of
the state is subsequently denoted by HH-Rr.

As parameters in the Hodgkin-Huxley model reside on substantially different scales,
leading to potentially ill-conditioned optimization problems, they are normalized before
optimization. With θlb,θub " R

W denoting the lower and upper bounds on parameters
θ, these are transformed to the �0, 1�W hypercube by

θ�θlb

θub �θlb
.

Parameter estimation problems. We perform parameter estimation for nine problems
based on the Hodgkin-Huxley model, being comprised in Table 4.2. Both the true pa-
rameters and parameter ranges are listed in Tables B.1 and B.2 of the appendix. These as
well as the considered time interval T � �0, 100� ms and the initial value are identical
for each problem. The initial value of the first state component corresponding to the
voltage is set to �70 mV, while the remaining components are computed as described
in Appendix B.1. Numerical integration is performed using the implicit Kvaerno3(2)
method (Kværnø, 2004) due to the stiffness of the ODE. As in Section 4.2.1, simula-
tions during parameter estimation are conducted with the step size h � 0.01, while
measurements are produced with a reduced step size of h � 1� 10�4. The latter are only
partly observed through the voltage and also perturbed by zero-mean Gaussian noise
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Table 4.3: Comparison of different Hodgkin-Huxley-type problems and methods for
parameter estimation. CONV: Convergence success rate. OptIter: Total number of
iterations needed by the optimization algorithm.

PROBLEM METHOD RPRMSE � CONV � TRMSE � OPTITER �

HH-R4-1 NLSR 0.77 � 0.40 0.21 13.47 � 6.92 1.81 � 1.61
HH-R4-1 FENRIR+DT 0.00 � 0.00 1.00 0.43 � 0.02 382.08 � 32.19
HH-R4-1 PNT 0.00 � 0.00 1.00 0.11 � 0.00 21.25 � 1.62

HH-R4-2 NLSR 1.00 � 0.20 0.00 13.41 � 7.60 4.15 � 5.50
HH-R4-2 FENRIR+DT 0.00 � 0.00 1.00 0.42 � 0.04 696.22 � 78.10
HH-R4-2 PNT 0.00 � 0.00 1.00 0.12 � 0.00 30.86 � 4.38

HH-R1-6 NLSR 13.91 � 9.66 0.09 13.96 � 5.08 66.85 � 106.72
HH-R1-6 FENRIR+DT 10.36 � 7.72 0.00 15.20 � 5.41 2159.60 � 532.55
HH-R1-6 PNT 0.28 � 2.41 0.99 0.27 � 1.53 130.23 � 19.88

HH-7 NLSR 22.96 � 8.41 0.06 13.81 � 4.88 78.07 � 119.76
HH-7 PNT 0.02 � 0.0 1.00 0.12 � 0.00 137.24 � 40.17

HH-R1-9 NLSR 16.96 � 7.29 0.00 13.03 � 5.61 124.16 � 143.04
HH-R1-9 PNT 0.54 � 3.62 0.98 0.41 � 2.06 260.19 � 47.73

HH-11 NLSR 21.68 � 7.13 0.00 13.35 � 4.61 123.95 � 129.96
HH-11 PNT 0.57 � 3.14 0.01 0.43 � 2.15 265.80 � 53.00

HH-C2-R4-4 NLSR 0.70 � 0.40 0.24 24.47 � 13.73 21.11 � 24.05
HH-C2-R4-4 FENRIR+DT 0.00 � 0.00 1.00 0.60 � 0.01 1492.03 � 335.17
HH-C2-R4-4 PNT 0.00 � 0.00 1.00 0.24 � 0.00 72.01 � 7.66

HH-C2-R4-6 NLSR 1.38 � 0.51 0.11 26.11 � 9.64 61.95 � 51.25
HH-C2-R4-6 FENRIR+DT 0.12 � 0.32 0.88 3.01 � 6.70 1525.57 � 448.56
HH-C2-R4-6 PNT 0.00 � 0.00 1.00 0.24 � 0.00 123.92 � 18.67

HH-C2-R1-12 NLSR 10.58 � 6.37 0.00 27.30 � 9.72 160.83 � 148.74
HH-C2-R1-12 PNT 0.80 � 4.13 0.94 2.33 � 8.30 412.92 � 85.17

of variance 0.1, i.e., H � �1 0 0 0 0 0 0 0� and R � �0.1�.1 For all problems, we
perform PNT with the transition model pPNT and the tempering schedule

Γ � t�1, 1� 10�2�, �2, 1� 10�5�, �3, 1� 10�8�, �4, 0.0�z ,

which achieved the best results in experiment 2.1. Furthermore, as in experiment 2.1, we
compare to a baseline provided by NLSR. Finally, both algorithms are run with the same
100 random initializations of the parameters. The described setting is again comparable
to Beck et al. (2024), whose results are also taken from their manuscript for comparison.

1For reduced models HH-Rr and multi-compartment models HH-Cc, the observation matrix H is
accordingly reduced or extended (cf. Appendix B.2), respectively.
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Results The measurements taken in this experiment are summarized in Table 4.3.
Overall, PNT surpasses both Fenrir with DT and NLSR in every considered problem,
often by a wide margin. For the less complex problems HH-R4-1, HH-R4-2, and HH-C2-
R4-4, PNT achieves 100 percent convergence success rate just like the method of Beck
et al. (2024), but reaches lower values with regard to tRMSE and the needed number of
optimization steps. NLSR, by comparison, is below 25 percent. Figures 4.8a and 4.8b
show the change of the NLL as well as the results of optimization across tempering
iterations for problems HH-R4-1 and HH-R4-2, respectively.

In the more complex problems HH-R1-6 and HH-C2-R4-6, PNT still reaches the
maximum convergence success rate, while Fenrir with DT is only able to converge to the
global minimum for the multi-compartment problem. When increasing the complexity
of the model and the number of parameters to be optimized even further, PNT shows
the ability to estimate parameters with high reliability up to problems HH-R1-9 in the
single-compartment case and HH-C2-R1-12 for two compartments. Concerning problem
HH-11, the convergence success rate is only 1 percent, but the small values of the rpRMSE
and tRMSE, being only slightly worse than for problem HH-R1-9, indicate that parameter
estimates are still close to optimum.

Although efficiency was not the focus of this experiment, as opposed to accuracy of
estimations, PNT needs considerably fewer iterations of the optimization algorithm than
Fenrir with DT. As in experiment 2.1, NLSR performs best in this regard, but does not
estimate the correct parameter values reliably and might require impracticably many
restarts.

4.2.3 Experiment 2.3: Improving Process Noise Tempering using Prior
Knowledge

In the last experiment of this work, we attempt to improve the process noise tempering
algorithm and the results shown in the previous section by the use of prior knowledge.
In the basic form that was presented in Section 3.2.2, the transition model pPNT constructs
an isotropic Gaussian, implicitly assuming that the uncertainty about parameters has
the same impact on the uncertainty of every component of the state. This assumption,
however, might be violated in practice depending on the functional form of the ODE
whose parameters are to be estimated.

Here, we will alter the covariance matrix of the transition model pPNT by the use of
prior knowledge about the ODE of interest. More precisely, we exploit the simple binary
criterion of whether the time derivatives of state components, as provided by the ODE,
depend on at least one parameter that should be estimated. For components of the state
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Figure 4.8: Parameter estimation on problems HH-R4-1 (4.8a) and HH-R4-2 (4.8b) using
PNT and NLSR. Plots show the NLL across the one and two-dimensional space of
optimized parameters in different tempering iterations, respectively. PNT uses the
optimization results of a tempering iteration as initial points for optimization in the next
tempering iteration. NLSR performs optimization only on the zero-noise NLL function.
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Table 4.4: Comparison of different Hodgkin-Huxley-type problems and the PNT al-
gorithm with (PNT+)/without (PNT) the heuristic on parameter dependence. CONV:
Convergence success rate. OptIter: Total number of iterations needed by the optimization
algorithm.

PROBLEM METHOD RPRMSE � CONV � TRMSE � OPTITER �

HH-R4-1 PNT 0.00 � 0.00 1.00 0.11 � 0.00 21.25 � 1.62
HH-R4-1 PNT+ 0.00 � 0.00 1.00 0.11 � 0.00 13.17 � 0.70

HH-R4-2 PNT 0.00 � 0.00 1.00 0.12 � 0.00 30.86 � 4.38
HH-R4-2 PNT+ 0.00 � 0.00 1.00 0.12 � 0.00 22.21 � 1.13

HH-R1-6 PNT 0.28 � 2.41 0.99 0.27 � 1.53 130.23 � 19.88
HH-R1-6 PNT+ 0.04 � 0.00 1.00 0.12 � 0.00 160.88 � 21.99

HH-7 PNT 0.02 � 0.0 1.00 0.12 � 0.00 137.24 � 40.17
HH-7 PNT+ 0.01 � 0.0 1.00 0.12 � 0.00 163.04 � 28.27

HH-R1-9 PNT 0.54 � 3.62 0.98 0.41 � 2.06 260.19 � 47.73
HH-R1-9 PNT+ 0.03 � 0.00 1.00 0.12 � 0.00 314.68 � 53.98

HH-11 PNT 0.57 � 3.14 0.01 0.43 � 2.15 265.80 � 53.00
HH-11 PNT+ 0.28 � 1.78 0.00 0.26 � 1.33 349.04 � 57.17

HH-C2-R4-4 PNT 0.00 � 0.00 1.00 0.24 � 0.00 72.01 � 7.66
HH-C2-R4-4 PNT+ 0.00 � 0.00 1.00 0.24 � 0.00 42.31 � 1.12

HH-C2-R4-6 PNT 0.00 � 0.00 1.00 0.24 � 0.00 123.92 � 18.67
HH-C2-R4-6 PNT+ 0.00 � 0.00 1.00 0.24 � 0.00 96.30 � 2.81

HH-C2-R1-12 PNT 0.80 � 4.13 0.94 2.33 � 8.30 412.92 � 85.17
HH-C2-R1-12 PNT+ 1.12 � 0.45 0.01 26.65 � 11.14 380.74 � 70.12

whose time derivative does not depend on any optimized parameter, we set the corre-
sponding variance in the transition model to zero. With this simple heuristic, we repeat
parameter estimation for the Hodgkin-Huxley type problems specified in Section 4.2.2.

Results Table 4.4 lists the corresponding results. In general, the altered transition
model surpasses the regular one in all considered problems, either in terms of the ac-
curacy of parameter estimates or by fewer optimization steps, except for the problem
HH-C2-R1-12. More specifically, the number of iterations needed by the optimization
algorithm is reduced for “-R4” problems, whereas parameter estimates become more
accurate in the remaining problems. Figures 4.9a and 4.9b visualize the results of the
optimization procedure for problems HH-R4-1 and HH-R4-2, respectively. When com-
pared to Figs. 4.8a and 4.8b, which are based on the regular transition model, it becomes
apparent that the NLL function is, in particular initially, more well-behaved, with the
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Figure 4.9: Parameter estimation on problems HH-R4-1 (4.8a) and HH-R4-2 (4.8b) using
PNT with the heuristic on parameter dependence, and NLSR. Plots show the NLL across
the one and two-dimensional space of optimized parameters in different tempering itera-
tions, respectively. PNT uses the optimization results of a tempering iteration as initial
points for optimization in the next tempering iteration. NLSR performs optimization
only on the zero-noise NLL function.
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global minimum of the smoothed function visibly close to the true global minimum.
While this explains the lower optimization effort in those cases, it remains unknown how
exactly the results of the more complex problems arise. One can hypothesize that the
isotropic noise forces the optimization into the boundary regions of the parameter space,
as observable in Fig. 4.8b, and that the coarse tempering scheme subsequently leads to
local minima arising quickly in these regions. Figure 4.9b suggests that this is mitigated
by the heuristical choice of noise. Ultimately, however, it is unclear why the heuristic
fails for the problem HH-C2-R1-12.
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Discussion 5

In this chapter, the methods used in the present work are discussed in a broader con-
text. Their limitations are reviewed critically, and promising ideas for future work
in these directions are outlined. Section 5.1 is about the probabilistic models used in
this work. Subsequently, Section 5.2 deals with the aspects of scalability and efficiency,
and Section 5.3 concludes with a discussion on process noise tempering.

5.1 Probabilistic Models

In this work, we investigated how well probabilistic solutions created with the model
pnum. are calibrated in comparison to the manually calibrated pConrad by Conrad et al.
(2017). The primary goal of our approach was to circumvent the additional effort of
manual calibration and to provide a cheap method for ad-hoc uncertainty quantification
of black box simulators that have access to a local error estimator. Section 4.2 has
shown that the probabilistic solutions created with pnum. are reasonable if the step size
is sufficiently small, albeit often less well calibrated than with pConrad. Therefore, if one
seeks to obtain a better calibration irrespective of the additional tuning effort, a promising
next step would be to extend pnum. by tunable parameters, either globally or per state
dimension. Another option would be to change the way in which the error estimate goes
into the covariance. While some preliminary tests were done with an outer product of
the error estimate that performed worse than the diagonal covariance of pnum., there are
many other possible choices, e.g., a combination of the manually calibrated pConrad and
such an outer product.

The used probabilistic models pnum. and pPNT are all Gaussian, as is the model pConrad

they are based on. On one hand, this simplifies computations, enabling, e.g., approximate
inference using the EKF. But on the other hand, the symmetry of Gaussians might pose a
problem, in particular when modeling the numerical error of solutions. Since the error is
signed, the model pnum. assigns the same probability mass that covers the actual error
also to the opposite part of the state space. Therefore, and due to potentially long tails
of the distribution, sampling from the model could lead to states far off from the true
trajectory of states with non-zero probability, and eventually cause divergence. While
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this problem was not prominent in this work’s experiments on sequential sampling,
other types of distributions that are more informed about the dynamics of a particular
ODE, e.g., by limited support of the state space, could further improve the calibration
of uncertainty. However, this would prevent usage of the EKF, and limit inference to
sequential sampling for now.

In the context of parameter estimation using PNT, the Gaussian prior is less prob-
lematic and even necessary to apply the EKF. However, as indicated in Section 4.2.3,
incorporating prior knowledge into the model’s covariance has the potential to boost its
performance. Here, we have shown that a simple heuristic on the parameter dependence
improves the results in the vast majority of the considered estimation problems. Another
more sophisticated option would be to measure the sensitivity of individual state com-
ponents to changes in the parameters. While preliminary tests using the Jacobian of the
ODE or the numerical ODE solver with respect to parameters turned out less successful
than with the simple heuristic, there may be other ways to include more prior knowledge
into the model that ultimately improves performance further.

Since the transition model pPNT only indirectly accounts for the uncertainty about
parameters through the uncertainty about state predictions, a diametral option would
be to extend the whole probabilistic SSM. More precisely, one could directly model
parameters in a probabilistic fashion using a prior probability distribution on parameters.
This would not only allow to incorporate prior knowledge on parameters through specifi-
cation of the prior, but also facilitate the computation of probabilistic parameter estimates
represented by their posterior distribution, as opposed to the maximum likelihood es-
timates computed by the approach adopted here. This idea goes into the direction of
latent force inference, which was subject of a work by Schmidt et al. (2021). However, the
authors there used a fully probabilistic ODE solver, whereas the computational tractabil-
ity of the approach in case of non-probabilistic black box ODE solvers would have to be
investigated first.

Last, as outlined in 3.1, inequidistant time discretizations would in principle be
tolerated by the used probabilistic models, but render inference more difficult. With
sequential sampling, the parallelization of simulations and the subsequent computation
of meaningful statistics for the sample solutions are hindered. While pure prediction tasks
using the EKF are not influenced negatively, filtering also becomes more complicated, as
observations might not be available at the exact points in time. Hence, e.g., parameter
estimation with the PNT algorithm could potentially be made more efficient through
adaptive step size selection of the numerical ODE solver, but one would have to provide
observations on a more fine-grained time axis and/or deal with inaccuracies introduced
by observations and predictions not being time-coherent.
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5.2 Scalability and Efficiency

Although various ODEs are covered in this work, they can be considered fairly low-
dimensional. Even the largest Hodgkin-Huxley model with two compartments that was
used in Sections 4.2.2 and 4.2.3 only has a 14-dimensional state. By contrast, spatial
discretization of partial differential equations often leads to ODEs whose states contain
several thousands or even millions of dimensions. Since the complexity of the EKF is
cubic with respect to the state dimensionality, the methods presented in this work quickly
become computationally infeasible when applied to such problems. This does not hold for
sequential sampling, but its applicability is generally limited due to the need for massive
parallelization and the lack of a cheap approximation to the marginal likelihood of
observations. However, there are ways to approximate the EKF and make computations
tractable in high-dimensional state spaces, e.g., via low-rank approximation of covariance
matrices (Schmidt et al., 2023). Moreover, a recent work by Pförtner et al. (2024) presented
a novel PN-based approximation to the EKF. It appropriately accounts for the additional
uncertainty introduced by the approximation and provides a tunable trade-off between
computational cost and predictive uncertainty.

In the performance evaluation of PNT against other methods for parameter estimation
(cf. Section 4.2), the total number of optimization steps needed until convergence was
used to assess the efficiency of the methods. This was mainly done to compare directly
to the results of Beck et al. (2024), who also used the metric for that purpose. However,
in order to compare the methods’ efficiency in a truly fair manner, one would have to
perform detailed runtime benchmarks for each method. For reasons of time, extensive
benchmarking was not done in the scope of this work.

5.3 Process Noise Tempering

In this work’s experiments on ODE parameter estimation using PNT, several assump-
tions were made:

First, we assumed that the initial value is fully known, which is often not the case in
practical applications. As hinted in Remark 3.2, the initial value could in principle also
be considered part of the parameters to be estimated. The question of how reliably PNT
can estimate unknown initial values is, however, left open for future work.

Second, the results in Section 4.2.1 have shown that the addition of local error esti-
mates to the covariance of the transition model does not bring an advantage. By assuming
the rather small step size of h � 0.01, though, the numerical error introduced by the
RKF4(5) solver can be considered negligible (cf. Section 4.1.2). It would therefore be
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interesting to investigate whether the combined model pPNT+num. is beneficial in cases of
larger step sizes and larger numerical errors. But since the error estimator does not pro-
vide a more informative signal on the true location of parameters, one can hypothesize
that it would not improve maximum likelihood estimation.

Last, we assumed that observations are available at every point in time and that the
observation noise R is known beforehand. It can be hypothesized that only irregularly
available observations with an unknown magnitude of noise would worsen the reliability
of parameter estimation using PNT. To what extent, however, remains to be answered.

Concluding this section, there are other open research directions by which the per-
formance of the PNT algorithm could be increased further. Besides the usage of more
informed covariances in the transition model that was already mentioned in Section 5.1,
one could develop more advanced, problem-dependent tempering schedules. Finally,
another promising approach would be to simulate the ODE during parameter estimation
not in a single sweep, but partition the time horizon and simulate them separately, also
known as multiple shooting. The interested reader is referred to Peifer and Timmer (2007)
for a comprehensive introduction.
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Related Work 6

This chapter presents more recent research results in the fields of probabilistic ODE
solvers (Section 6.1) and ODE parameter estimation (Section 6.2). They are compared
with the approaches taken in this work, and the main similarities and differences are
briefly outlined.

6.1 Probabilistic ODE Solvers

First described by Diaconis (1988) and Skilling (1992), the idea of rephrasing the numerical
task of solving ODEs as a Bayesian inference problem gained increasing interest during
the last decade. Corresponding works fall into the broader field of PN (Hennig et al.,
2022) and aim for probability distributions over solution spaces rather than mere point
estimates provided by predominant numerical algorithms. While this new paradigm
enables, e.g., comprehensive uncertainty quantification using confidence intervals, it
typically also comes at the price of increased computational cost and potentially less
strict convergence rates (Hennig & Hauberg, 2014), two aspects classical algorithms like
RK solvers excel at.

An early work by Schober et al. (2014) tried to bridge the gap by designing a proba-
bilistic ODE solver that computes solutions as a Gaussian process whose posterior mean
is identical to the solution of RK methods of first, second, or third order. Thus, it automat-
ically inherits error bounds from the latter. Extending the approach to higher-order RK
methods, however, turned out difficult, limiting its practical applicability. From a result-
oriented perspective, the method is similar to this work when inference is conducted
using the EKF, as the resulting mean trajectory then corresponds to the deterministic
solution of the black box solver, which can be an RK method as well. The covariance,
however, differs in general. More conceptual differences are the restriction to low orders,
but also the more rigorous theoretical foundation in Schober et al. (2014). Their framing
of the problem as Gaussian process regression enables cheap, dense sampling from the
posterior after its one-time computation. This work, by contrast, requires a full ODE
solve per sample trajectory on a discretized time interval.

Building upon the work of Schober et al. (2014), Kersting and Hennig (2016) improved
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the calibration of the posterior uncertainty by obtaining observations not through single,
but multiple evaluations of the vector field, which are then approximately integrated
using Bayesian quadrature. As a consequence, they lost the strict theoretical RK error
bounds but provided some empirical evidence for smaller derivations of the posterior
mean from the true trajectory. Last, their method exhibits increased computational cost
that is cubic w.r.t. the state dimensionality, a property shared with EKF-based inference
in this work.

In the following years, above methods were refined and generalized by Schober et al.
(2019) and Tronarp et al. (2019), who reframed them as stochastic filtering problems.
Thus, both allow usage of efficient Bayesian filtering techniques to perform Gaussian
process regression, similar to this work, where the EKF can be used for inference as well.
While the formulation of Schober et al. (2019) coupled the prior and likelihood, Tronarp
et al. (2019) came up with a decoupled likelihood model, being more rigorous with regard
to the Bayesian inference framework and defining the basis for most subsequent research
on so-called probabilistic ODE filters. For instance, Kersting, Sullivan, and Hennig (2020)
derived polynomial convergence rates of the local error, competitive to those of classic RK
solvers. More recently, works by Bosch et al. (2021) and Krämer et al. (2022) extended
probabilistic ODE filters by adaptive step size selection, further improved calibration
of the uncertainty, and scaled them to extremely high-dimensional state spaces under
additional approximative assumptions. While those properties are mostly not matched
by the current method presented in this work, ideas in some of the mentioned directions
have been outlined in Chapter 5.

Conceptionally most similar to this work’s approach is the method proposed by Con-
rad et al. (2017). They perturbed predictions of a classic RK solver step-wise using
zero-mean Gaussian noise, yielding a collection of sample trajectories that represents
a probabilistic ODE solution. For specific choices of the noise covariance, they proved
that the stochastic process that underlies the sample trajectories converges to the true
solution with a polynomial rate, in accordance with RK solvers. However, they had
to determine the magnitude of the noise covariance anew for every ODE (or different
parametrizations of the same ODE) by solving a non-linear optimization problem. This
work investigated whether the local error estimate provided by many ODE solvers, e.g.,
embedded RK methods, can be exploited to directly inform about the noise covariance,
circumventing manual calibration. Whereas above probabilistic ODE filters represent
a distinct class of probabilistic solvers with specific properties, an alternative has been
proposed for how any existing black box simulator that provides a suitable error estimate
can be equipped with ad hoc uncertainty quantification.
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6.2 ODE Parameter Estimation

The task of estimating unknown parameters of ODEs from noisy or partial measurements
of the state, also known as inverse problems, is notoriously difficult. Most relevant
dynamical systems exhibit highly non-linear dynamics, and closed-form solutions to
corresponding ODEs are usually not available. In consequence, one has to conduct
numerous numerical simulations to obtain state trajectories for different parameter
choices, making the estimation of the true parameters computationally demanding.
Moreover, NLSR (Bard, 1974) often does not converge to the global minimum, but only
to one of many local minima (Cao et al., 2011), requiring multiple restarts at different
initial parametrizations.

In order to overcome the computational burden of repeated simulations, Varah
(1982) fitted splines to the measured data and then minimized the least-squares deviation
between evaluations of the vector field and time derivatives of the fitted splines. This was
an early example of a collocation method (Ramsay et al., 2007), which attempts to construct
a differentiable surrogate model comprised of simple basis functions for the given data.
Works by Ramsay et al. (2007) and Cao et al. (2011) then developed the method further,
allowing also for partial state measurements and being more robust with respect to
outliers in the data. In general, the accuracy of the estimated parameters depends
strongly on the quality of the surrogate model. This work’s approach is fundamentally
different from such collocation methods, as it does not involve fitting a surrogate model,
but is based on regular simulations using a generic ODE solver.

Evolutionary algorithms are another class of methods regularly applied to solve the
problem of unknown parameters. For example, Nyarko and Scitovski (2004) and Ak-
man et al. (2018) used a genetic algorithm and particle swarm optimization (Kennedy
& Eberhart, 1995), respectively, in order to estimate the parameters of various ODEs.
Furthermore, Gonzalez et al. (2007) determined parameters of a common biochemical
model using simulated annealing (Kirkpatrick et al., 1983). All these algorithms operate
gradient-free but become typically less efficient for higher-dimensional problems. By
contrast, gradient information in the form of quasi-Newton optimization was used in
this work.

Closely related to simulated annealing are Markov chain Monte Carlo (MCMC) algo-
rithms, which can be used to compute a posterior distribution of the sought parameters,
given the measurements (Gelman et al., 1996). In a later work, Dass et al. (2017) ap-
proximated the posterior of the parameters by the Laplace approximation, reducing
the computational effort. However, while the prospect of a probability measure over
parameter estimations is appealing, these and related methods for approximate Bayesian
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computation have so far been shown to model the true posterior insufficiently in prac-
tice (Alahmadi et al., 2020). The method proposed in this work does not yield a full
posterior, but only maximum-likelihood estimates of parameters.

Last, several methods have been developed for parameter estimation using PN
ODE solvers (cf. Section 6.1). In this regard, Kersting, Krämer, et al. (2020) derived a
differentiable approximation to the parameter likelihood through linearization, enabling
both gradient-based and sampling-based optimization. A subsequent work by Tronarp
et al. (2022) built upon this, reducing the computational complexity from cubic-in-time to
linear-in-time by exploiting modern probabilistic ODE filters. Their method, called Fenrir
(physics-enhanced regression in initial value problems), was only recently improved
by Beck et al. (2024), who gradually decreased the diffusion parameter of the underlying
probabilistic model during optimization. The PNT algorithm presented in this work
has been inspired by the work of Beck et al. (2024). While it does not require a PN
ODE solver, but is applicable to black box simulators, a similar smoothing effect on
the objective function is achieved by successively lowering the process noise in the
probabilistic model.
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Conclusion 7

This work explored how Bayesian filtering methods, in particular the extended Kalman
filter (EKF), can be used to (a) create probabilistic solutions to ODEs and (b) reliably
estimate their parameters, given a black box simulator.

First, in Section 3.1, we specified a simple Gaussian model that is wrapped around
predictions of a black box ODE solver. Sequential sampling and the EKF were stated as
methods to perform inference in this model and therefore create probabilistic solutions
of an ODE. Furthermore, the model’s assumptions as well as requirements for the black
box solver were elaborated. Most importantly, the solver has to provide an estimator for
the numerical error and needs to be differentiable in order to apply the EKF.

Section 3.2 then introduced the process noise tempering (PNT) algorithm, being
developed to compute accurate maximum-likelihood estimates of ODEs parameters.
This is achieved by gradually smoothing the likelihood function, which is then optimized
using a gradient-based optimization method. PNT also applies the EKF to obtain a
tractable approximation of the likelihood and is based on a similar probabilistic model as
used to produce probabilistic ODE solutions.

Finally, we conducted an experimental evaluation on the proposed methods in Chap-
ter 4. Here, the probabilistic solutions that were created for various simulation problems
have been shown to capture the uncertainty about the numerical error qualitatively,
but not always ideally calibrated. Overly large step sizes, however, occasionally led to
catastrophic failure in the form of mode collapses. In the following, the PNT algorithm
proved to estimate the correct parameter values reliably and efficiently for a variety of
test problems, including the complex Hodgkin-Huxley model with over ten parameters.
It has been shown that the schedule by which smoothing is performed is crucial and that
the addition of the solver’s error estimator can be neglected.

To conclude, this work provides methods to produce probabilistic ODE solutions that
are not ideally calibrated, but ad-hoc computable, and to estimate unknown parameters
reliably, both of which are applicable to black box simulators. We hope that the presented
methods as well as the additional ideas outlined in Chapter 5 inspire further research in
this direction.
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Implementation and Computing A

Here, detailed information on the implementation and the computing environment used
for this work’s experiments (cf. Chapter 4) is provided.

A.1 Implementation Details

For all experiments, a self-developed Python codebase was used. It utilizes Jax (Bradbury
et al., 2018) for automatic differentiation, linear algebra, and numerical computations.
While the explicit embedded RK solvers RKF4(5) and DOPRI6(5) were self-implemented,
the implicit Kvaerno3(2) solver used for simulations of the Hodgkin-Huxley model was
provided by the Jax library Diffrax (Kidger, 2022). For gradient-based optimization in the
context of parameter estimation, the “ScipyBoundedMinimize” L-BFGS-B wrapper of Jax-
opt (Blondel et al., 2022) was used. Other essential components like the extended Kalman
filter in square-root form, sequential sampling, non-linear least-squares-regression, as
well as the process noise tempering algorithm were also self-implemented. The code is
publicly available at https://github.com/f-lair/ode-uncertainty.

A.2 Computing Environment

Experiments 1.1 to 1.3 and 2.1 were conducted on a consumer-grade CPU with 16 GB
RAM. Due to the increased computational load of simulating the more complex Hodgkin-
Huxley model with an implicit ODE solver, experiments 2.2 and 2.3 were carried out on
a computing cluster with Intel Xeon Platinum 8380 CPU. In principle, however, they can
also be run on the aforementioned consumer-level hardware.
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The Hodgkin-Huxley Model B

In the following, the Hodgkin-Huxley model used in this work’s experiments about
ODE parameter estimation is presented. It describes the initiation and propagation of
action potentials in neurons by the dynamics of an electrical circuit. Here, we use the
formulation of Pospischil et al. (2008). Appendices B.1 and B.2 specify the basic single-
compartment model and the extension to a multi-compartment model, respectively.

B.1 Single-Compartment Model

The non-reduced single-compartment model illustrated by Fig. B.1 considers sodium,
potassium, and leak currents to generate spiking, an additional slow potassium current
for spike-frequency adaptation, as well as high- and low-threshold calcium currents to

gNa

INa

ENa

gK

IK

gM

IK-slow

EK

gleak

Ileak

Eleak

gL

ICa-high

gT

ICa-low

ECa

C
�

�
V

Iext

intracellular space

extracellular space

Figure B.1: Electrical circuit representing the used Hodgkin-Huxley model (cf. Pospischil
et al. (2008)). The lipid bilayer acts as a capacitor (C) and ion channels are represented
by resistors. Sodium, potassium and calcium conductances (gNa, gK, gM, gL, gT) are
voltage dependent, whereas the leak conductance (gNa) is constant. The electrochemical
gradients driving the flow of ions are modeled by voltage sources (ENa, EK, Eleak, ECa).
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generate bursting. It describes the change of voltage by the first-order ODE

dV�t�
dt
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(B.1)

where Iext�t� represents an external current, while h�t�, m�t�, n�t�, p�t�, q�t�, r�t�, and
u�t� denote the fraction of independent gates in the open state, following the convention
of Hodgkin and Huxley (1952). In this work’s experiments, the external current is
specified by

Iext�t� � ~��������
2.1� 10�4 10 & t & 90,

0 else,

in accordance with Beck et al. (2024). The dynamics of the gates are modeled by additional
ODEs

dh�t�
dt

� αh�V�t�; VT��1� h�t��� βh�V�t�; VT�h�t�, (B.2)

dm�t�
dt

� αm�V�t�; VT��1�m�t��� βm�V�t�; VT�m�t�, (B.3)

dn�t�
dt

� αn�V�t�; VT��1� n�t��� βn�V�t�; VT�n�t�, (B.4)

dp�t�
dt

�
p��V�t��� p�t�
τp�V�t�; τmax� , (B.5)

dq�t�
dt

� αq�V�t���1� q�t��� βq�V�t��q�t�, (B.6)

dr�t�
dt

� αr�V�t���1� r�t��� βr�V�t��r�t�, (B.7)

du�t�
dt

�
u��V�t�, VX�� u�t�

τu�V�t�; VX� . (B.8)
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Here, gating functions αv, βv and τw for v " rm, h, n, q, rx and w " rp, ux are given by

αh�V; VT� � 0.128 exp ��VT � 17�V�©18�,
αm�V; VT� � �0.32�V �VT � 13�

exp ��VT � 13�V�©4�� 1
,

αn�V; VT� � �0.032�V �VT � 15�
exp ��VT � 15�V�©5�� 1

,

αq�V� � 0.055��27�V�
exp ���27�V�©3.8�� 1

,

αr�V� � 0.000457 exp ���13�V�©50�,
βh�V; VT� � 4

1� exp ��VT � 40�V�©5� ,

βm�V; VT� � 0.28�V �VT � 40�
exp ��VT � 40�V�©5�� 1

,

βn�V; VT� � 0.5 exp ��VT � 10�V�©40�,
βq�V� � 0.94 exp ���75�V�©17�,
βr�V� � 0.0065

exp ���15�V�©28�� 1
,

τp�V; τmax� � τmax

3.3 exp ��V � 35�©20�� exp ���35�V�©20� ,

τu�V; VX� � 30.8�211.4� exp ��V �VX � 113.2�©5��
3.7�exp ��V �VX � 84�©3.2�� 1� .

Finally, gate activations at steady-state are computed by

h��V; VT� � �1�
βh�V; VT�
αh�V; VT�


�1

, (B.9)

m��V; VT� � �1�
βm�V; VT�
αm�V; VT�


�1

, (B.10)

n��V; VT� � �1�
βn�V; VT�
αn�V; VT�


�1

, (B.11)

p��V� � �1� exp�
V � 35

10

�1

, (B.12)

q��V� � �1�
βq�V�
αq�V��

�1

, (B.13)

r��V� � �1�
βr�V�
αr�V�


�1

, (B.14)

s��V; VX� � �1� exp�
V �VX � 57

6.2 
�1

, (B.15)
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Table B.1: Parameters of the Hodgkin-Huxley model and their interpretation, together
with bounds and true values used for experiments.

PARAMETER (UNIT) INTERPRETATION BOUNDS (LOW, HIGH) TRUE VALUE

C (µF cm�2) Membrane capatitance �0.4, 3.0� 1.0
A (cm2) Compartment area �1.9� 10�5, 3.2� 10�4

� 8.3� 10�5

gNa (mS) Na+ conductance �0.5, 80.0� 25.0
gK (mS) K+ conductance �1� 10�4, 15.0� 7.0
gleak (mS) Leak conductance �1� 10�4, 0.6� 0.1
gM (mS) Slow K+ conductance �1� 10�5, 0.6� 0.01
gL (mS) High-T Ca2+ conductance ��1� 10�4, 0.6� 0.01
gT (mS) Low-T Ca2+ conductance ��1� 10�4, 0.6� 0.01
ENa (mV) Na+ reversal potential �50.0, 100.0� 53.0
EK (mV) K+ reversal potential ��110.0,�70.0� -107.0
Eleak (mV) Leak reversal potential ��100.0,�35.0� -70.0
ECa (mV) Ca2+ reversal potential �100.0, 150.0� 120.0
τmax (s) Slow K+ time constant �50.0, 5� 103

� 4� 103

VT (mV) Threshold voltage ��90.0,�40.0� -60.0
VX (mV) Voltage dependence shift �0.0, 4.0� 2.0

u��V; VX� � �1� exp
V �VX � 81

4

�1

. (B.16)

With the definition of the state x�t� and parameters θ as

x�t� � �V�t� h�t� m�t� n�t� p�t� q�t� r�t� u�t���
and

θ � �C A gNa gK gleak gM gL gT ENa EK Eleak ECa τmax VT VX�� ,

Eqs. (B.1) to (B.8) give rise to a system of eight ODE with 15 parameters in the form
of Eq. (2.7). Its initial value x0 is provided by an initial voltage V0 and corresponding
gate activations at steady-state (cf. Eqs. (B.9) to (B.14) and (B.16)), i.e.,

x�0� �

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂\

V0

h��V0; VT�
m��V0; VT�
n��V0; VT�

p��V0�
q��V0�
r��V0�

u��V0; VX�

[____________________________________]

.
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Table B.1 gives a summary on the model’s parameters, together with the bounds and
true values used for experiments.

B.2 Multi-Compartment Model

In the above single-compartment model, a neuron is modeled by a single electrical
circuit. To model neurons with a complex morphological structure appropriately, a
multi-compartment model splits the neuron into N discrete compartments. If these are
small enough so that the variation of the membrane potential across compartments is
negligible, the continuous membrane potential V can be approximated by a sum of local
compartment potentials. In case of a non-branching cable, this can be expressed as

dVi�t�
dt

�
1
C
� 1

Ai
Iext, i�t�� Iionic, i � gi,i�1�Vi�1�t��Vi�t��� gi,i�1�Vi�1�t��Vi�t��
 ,

(B.17)
where i " r1, 2, . . . , Nx indexes the compartments, Iext, i and Iionic, i refer to the external
current to and the sum of ionic currents in the i-th compartment, respectively, and
gi,i�1 � gi�1,i denotes the coupling coefficients of adjacent compartments i and i� 1 (Beck
et al., 2024).

For this work’s experiments acting on Eq. (B.17), we again follow Beck et al. (2024)
and consider identical coupling coefficients of gi,i�1 � 1 and equally distributed compart-
ment areas of Ai �

A
N , leading to the same total area as with a single-compartment model.

Furthermore, the capacitance C is the same as in the single-compartment model. Obser-
vations are taken individually per compartment, such that the observation matrix H for
the multi-compartment model is composed as a block-diagonal matrix from observations
matrices Hi for the individual compartments, i.e.,

H �

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
\

H1 0 � 0
0 H2 � 0
� � � �

0 0 � HN

[________________]
.

Finally, parameters θi of individual compartments are stacked to form the parameter
vector θ of the multi-compartment model, i.e.,

θ �

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
\

θ1

θ2

�

θN

[________________]
.
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Table B.2: True parameter values used for experiments with a two-compartment
Hodgkin-Huxley model.

PARAMETER (UNIT) TRUE VALUE (1ST COMP.) TRUE VALUE (2ND COMP.)

gNa (mS) 25.0 20.0
gK (mS) 7.0 10.0
gleak (mS) 0.09 0.11
gM (mS) 0.01 0.1
gL (mS) 0.1 0.01
gT (mS) 0.01 0.01
ENa (mV) 53.0 53.0
EK (mV) -107.0 -107.0
Eleak (mV) -70.0 -70.0
ECa (mV) 120.0 120.0
τmax (s) 4� 103 4� 103

VT (mV) -70.0 -50.0
VX (mV) 2.0 2.0

Adapted true parameter values used for experiments with a two-compartment Hodgkin-
Huxley model are listed in Table B.2.
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