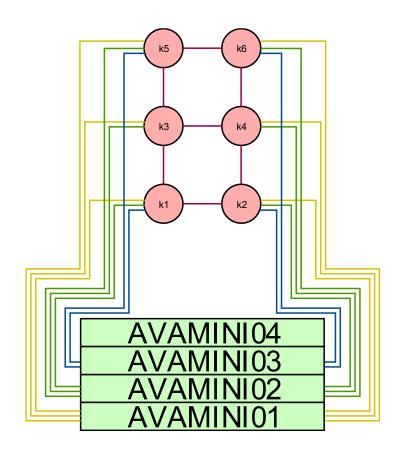
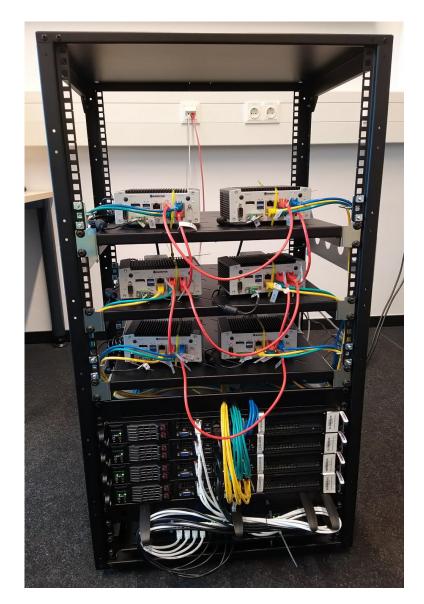




# On Hard Realtime Traffic in Converged Time-Sensitive Networks


Willi Brekenfelder, Helge Parzyjegla, Peter Danielis Gero Mühl, Fabian Kummer, Eike Schweissguth, Frank Golatowski

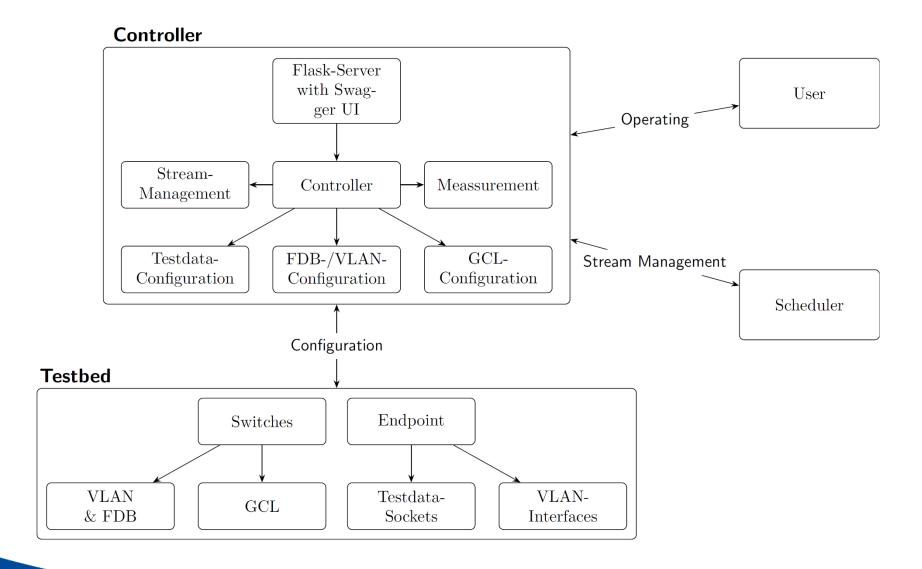
Architecture of Application Systems Institute of Computer Science University of Rostock


#### **Motivation**

- > Multiple different TSN-switches from different vendors
  - > Advantech, Cisco, FibroLAN, Hirschmann, InnoRoute, Kontron, Marvell...
- In theory those switches should work according IEEE 802.1Q
- > Practice
  - > Time synchronization between different hardware
  - > Accuracy of planned and actual sending time at source
  - > Practical function of theoretical planned schedules
  - Standard compliance of consumer of the shelf switches
- > Agenda
  - 1. Testbed Hardware
  - Software
  - 3. Case Study
  - 4. Results

### **Hardware**



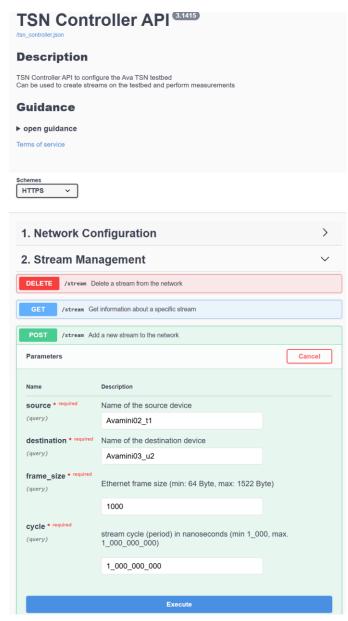

- > 6 switches (Kontron KBox A-230-LS)
- > 4 servers (Supermicro SYS-1019C-FHTN8 with Intel I210)



#### **Hardware**

- Controller on server AVAMINI01
- Sending and receiving servers AVAMINI02 & AVAMINI03
- > Spare server AVAMINI04
- > Advantages of this topology
  - > Sending and receiving with same or different devices
  - Easy setup for different topologies (subset of ring with intersection)
  - > Redundant devices
  - > Physical separation of different traffic generators possible
  - > Paths with multiple hops over TSN-devices

### **Software**



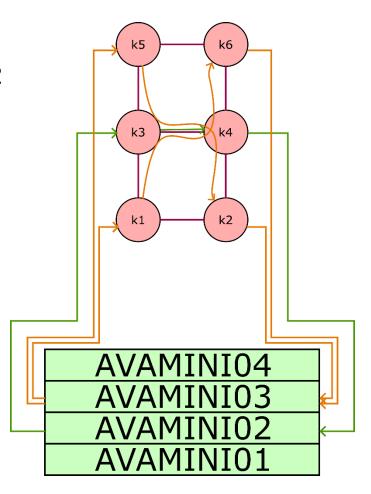

W. Brekenfelder April 3, 2025

5

## Software – Swagger UI

- Network Configuration
  - > Get / Set Topology
  - > Mode of switches
  - > Reservation mode
  - > Guard bands
- > Stream Management
  - > Add / delete streams
- > Controller Configuration
  - > Get active scheduler
  - Mode of switches
- > GCL Monitoring
- > Measurement
  - Start / delete / download measurements




6

### **Software – Main Difficulties**

- Sending TT-Traffic on pre-planned time
  - > Earliest TxTime First support of Intel I210
- > Accurate timestamps for measuring delays
  - > From hardwareclock of NIC when sending or receiving frame
- > Time Synchronization
  - > AVAMINI01 as grandmaster
  - > Synchronization:
    - > To Kontron switches via control links
    - > To servers via backbone
    - > Device internal via phc2sys

## **Case Study**

- > TT-Stream
  - > AVAMINI02  $\rightarrow$  k3  $\rightarrow$  k4  $\rightarrow$  AVAMINI02
  - > 1500 Byte Payload
  - > 500 µs cycletime
- > BE-Traffic
  - > 500 Mbit/s AVAMINI03 → k5 → k3 → k4 → k2 → AVAMINI03
  - > 500 Mbit/s
    AVAMINI03 → k1 → k3 → k4
    → k6 → AVAMINI03
- Different switch configurations
  - > PCP
  - > GCL
  - > GCL + GB
  - > Full Path



## **Case Study – PCP**

- > Different priority code point (PCP) values
  - > TT-Stream  $\rightarrow$  PCP = 7
  - > BE-Traffic  $\rightarrow$  PCP = 0

| GCL k3 → k4 |         |           |     | GCL k4 →AVA | MINI02    |
|-------------|---------|-----------|-----|-------------|-----------|
|             | Gates   | Time      |     | Gates       | Time      |
| T01         | 0000000 | 500 000ns | T01 | 00000000    | 500 000ns |

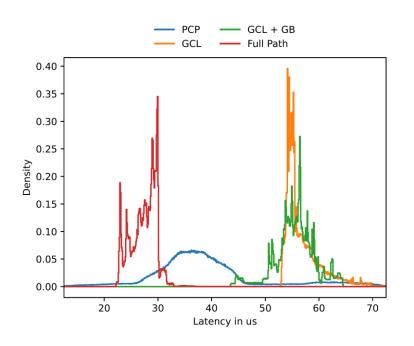
## Case Study – GCL

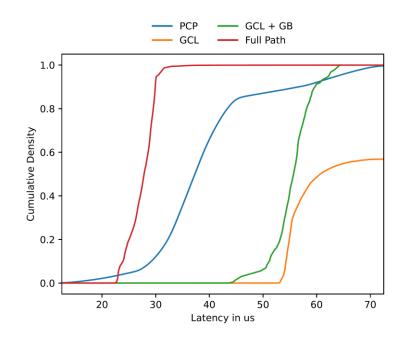
- Different priority code point (PCP) values
  - > TT-Stream  $\rightarrow$  PCP = 7
  - $\rightarrow$  BE-Traffic  $\rightarrow$  PCP = 0
- > Timeslot for Current Part of Path where only Queue 7 is open

| GCL k3 → k4 |          |           | GCL k4 →AVAMINI02 |          |           |
|-------------|----------|-----------|-------------------|----------|-----------|
|             | Gates    | Time      |                   | Gates    | Time      |
| T01         | CCCCCOOO | 27 160ns  | T01               | CCCCCOOO | 54 320ns  |
| T02         | OCCCCCC  | 12 160ns  | T02               | OCCCCCC  | 12 160ns  |
| T03         | CCCCCOOO | 460 680ns | T03               | CCCCCOOO | 433 520ns |

## Case Study - GCL + GB

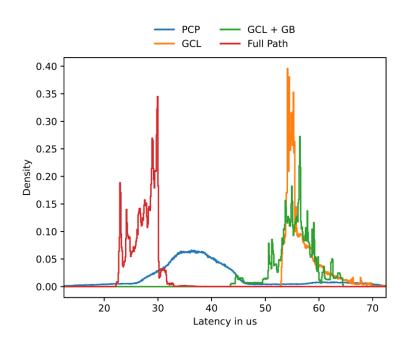
- > Different priority code point (PCP) values
  - > TT-Stream  $\rightarrow$  PCP = 7
  - $\rightarrow$  BE-Traffic  $\rightarrow$  PCP = 0
- > Timeslot for Current Part of Path where only Queue 7 is open
- Suard-Bands are activated

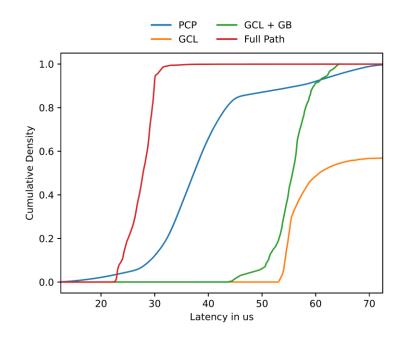

| GCL k3 → k4 |          |           | GCL k4 →AVAMINI02 |          |           |
|-------------|----------|-----------|-------------------|----------|-----------|
|             | Gates    | Time      |                   | Gates    | Time      |
| T01         | CCCCCOOO | 27 160ns  | T01               | CCCCCOOO | 41 984ns  |
| T02         | CCCCCCC  | 12 336ns  | T02               | CCCCCCC  | 12 336ns  |
| T03         | OCCCCCC  | 12 160ns  | T03               | OCCCCCC  | 12 160ns  |
| T04         | CCCCCOOO | 460 680ns | T04               | CCCCCOOO | 433 520ns |


## **Case Study – Full Path**

- Different priority code point (PCP) values
  - > TT-Stream  $\rightarrow$  PCP = 7
  - $\rightarrow$  BE-Traffic  $\rightarrow$  PCP = 0
- > Timeslot for Full Path where only Queue 7 is open
- Suard-Bands are activated

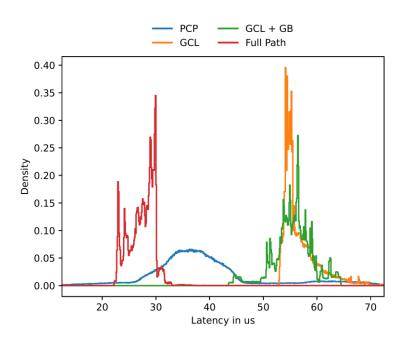
| GCL k3 → k4 |          |           | GCL k4 →AVAMINI02 |          |           |
|-------------|----------|-----------|-------------------|----------|-----------|
|             | Gates    | Time      |                   | Gates    | Time      |
| T01         | OCCCCCC  | 66 480ns  | T01               | OCCCCCC  | 66 480ns  |
| T02         | CCCCCOOO | 421 184ns | T02               | CCCCCOOO | 421 184ns |
| T03         | CCCCCCC  | 12 336ns  | T03               | CCCCCCC  | 12 336ns  |

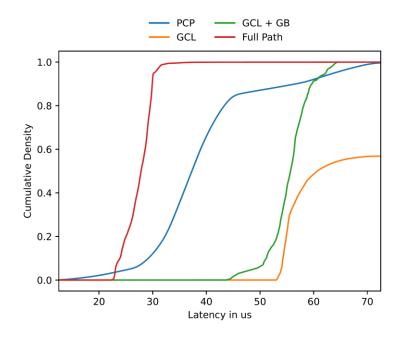

#### Results






- Meets expectations
- Sending and receiving works under full network utilization

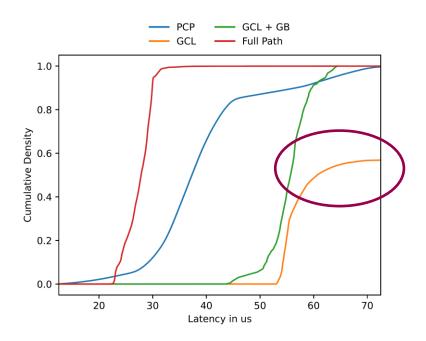

#### Results - PCP



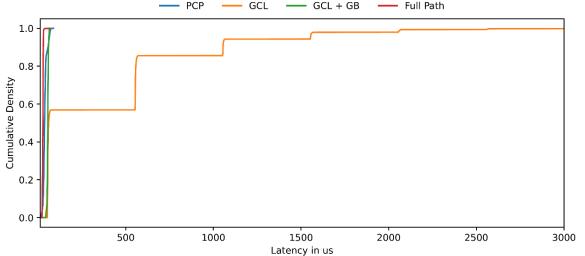



- > Widely distributed with most delays between 30µs and 45µs
- > High jitter

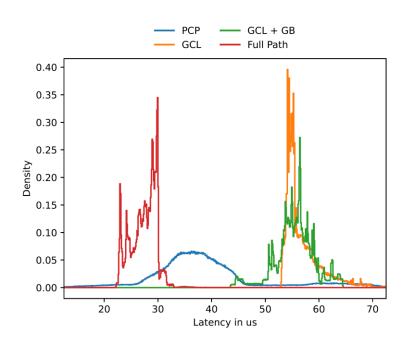
### Results - GCL

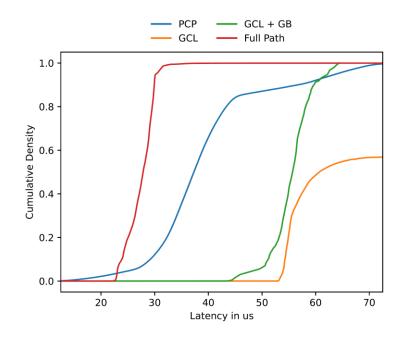






- > Lowest latency at 54µs
- > High peak
- > Similar to GCL + GB

#### Results - GCL

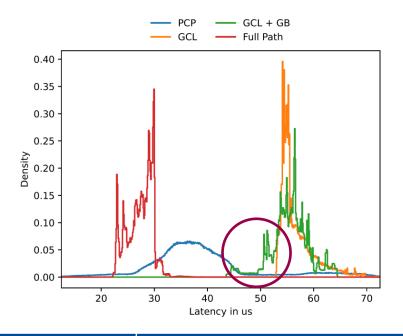

- > According to IEEE 802.1Q
  - > GCL should perform better then GCL + GB
  - > Definition of GB not necessary
- > Reality
  - > KBox switches do not deliver protected windows by their own
  - > Frames are not delivered within cycle time




16

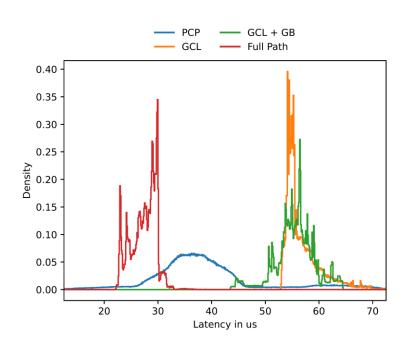


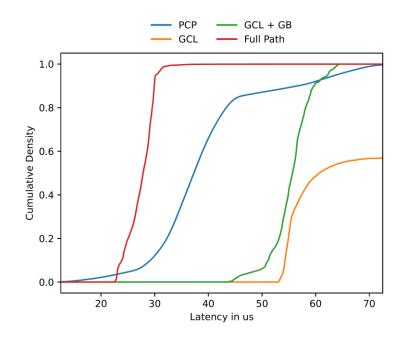
### Results - GCL + GB






- > Similar to GCL
- > All frames are received within 70µs


#### Results - GCL + GB


- last gate is opened at 54.2µs
- No frame should reach destination before
- > Reason:
  - > Poor time synchronization



| GCL k3 → k4 |          |           | GCL k4 →AVAMINI02 |          |           |
|-------------|----------|-----------|-------------------|----------|-----------|
|             | Gates    | Time      |                   | Gates    | Time      |
| T01         | CCCCCOOO | 27 160ns  | T01               | CCCCCOOO | 41 984ns  |
| T02         | CCCCCCC  | 12 336ns  | T02               | CCCCCCC  | 12 336ns  |
| T03         | OCCCCCC  | 12 160ns  | T03               | OCCCCCC  | 12 160ns  |
| T04         | CCCCCOOO | 460 680ns | T04               | ccccooo  | 433 520ns |

### Results - Full Path





- > Low latency
- > Lowest jitter
- > Almost all frames are received within 35µs

#### **Conclusions**

- > Testbed
  - > Hardware setup with 6 switches and 4 servers
  - Software for automatic network and endpoint configuration
  - Integrated scheduler for automatic traffic planning
- > Advantages
  - > Different topologies without physical changes
  - Multiple traffic classes at once via separated servers
- Leveraging practical knowledge at working with real TSN networks
  - > Manage cyclic topologies
  - > Time synchronization with gPTP
- > Challenges
  - Not all hardware works according the standard
    - > Testing different hardware necessary
  - > Poor time synchronization with ptp4l and phc2sys
    - > Synchronization via TSN network

W. Brekenfelder April 3, 2025

20

## Thank You for your attention!

#### Willi Brekenfelder

willi.brekenfelder@uni-rostock.de

https://www.ava.uni-rostock.de