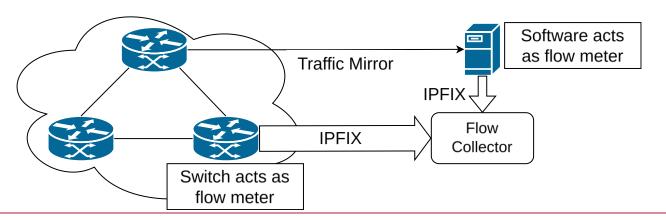


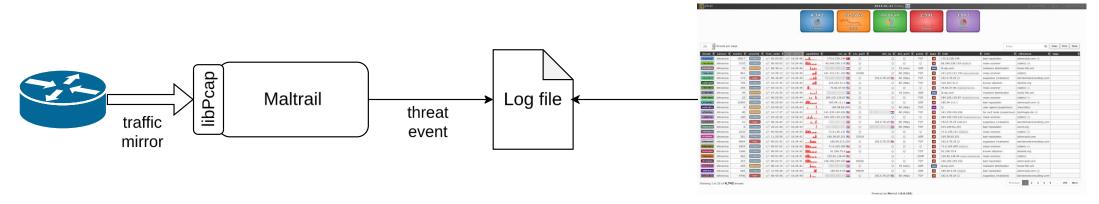
MaIFIX: Using IPFIX for Scaling Threat Detection to High Data Rates

Gabriel Paradzik^{1,2}, Benjamin Steinert^{1,2}, Janik Steegmüller, Michael Menth¹ Chair of Communication Networks, ²Zentrum für Datenverarbeitung University of Tübingen

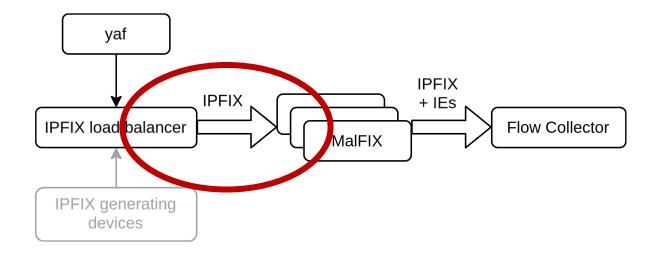
- ▶ Motivation
- ► Technical Background
- ► MalFIX Architecture and Implementation
- ► Performance Evaluation
- ► Conclusion



- ► Threat intelligence (TI) feeds provide information about indicators of compromise (IoC)
 - IoCs can be IP addresses, hostnames, signatures, etc.
 - Maintained by private companies, other network operators, or open-source projects
 - Examples: abuse.ch, AbuseIPDB
- ▶ Blocking all malicious IP addresses is unfeasible because of the large amount
 - Firewalls have limited amount of rules
- ► TI information can be used to identify bad actors on the network
- For networks with high volume, scanning every packet is not possible
 - Switching to flow-based scanning with IPFIX


- ► IPFIX protocol aggregates packets into flows
 - Flow represents communication between two endpoints
- ► IPFIX flow record consists of multiple Information Elements (IEs)
 - IE represents certain type data point
 - Packet payload is usually discarded
- ► IPFIX standard allows including arbitrary data via custom IEs
 - E.g., OS/application fingerprinting, observed TCP flags

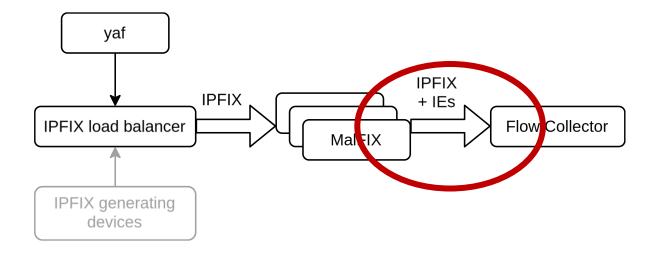
Example flow record	
flowStart	2025-03-10 14:33:25.133
flowEnd	2025-03-10 14:33:29.021
sourceIP	1.2.3.4
destIP	6.7.8.9
srcPort	44276
destPort	443
protocol	TCP
octetCount	6345
packetCount	7
tcpFlagsUnion	SYN,ACK,FIN
flowEndReason	FIN
appLabel	HTTPS


- ► Maltrail is an open-source all-in-one threat detection system written in Python
 - Actively maintained on GitHub
 - Utilizes a large number of TI feeds and static threat indicators

- → Perfectly suited for small networks, but not performant enough for large networks with high traffic volumes
- ► Can we leverage Maltrail's up-to-date threat detection engine and use it for monitoring high traffic volumes?

MalFIX Architecture

- ► Maltrail was modified ("MalFIX") to allow high-performance threat monitoring
 - Changes are minimally invasive to allow easy merging with upstream
 - Input/Output capabilities were modified

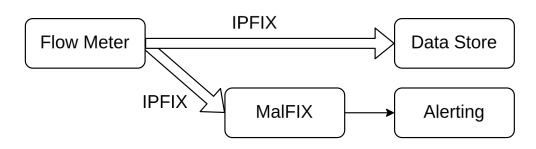


- ▶ Input Adaptations
 - Instead of raw packet captures, IPFIX is accepted
 - Yaf generates IPFIX from traffic on an interface
 - High performance capturing library PF_RING™
 - Run multiple instances of MalFIX by employing IPFIX load balancer

MalFIX Architecture

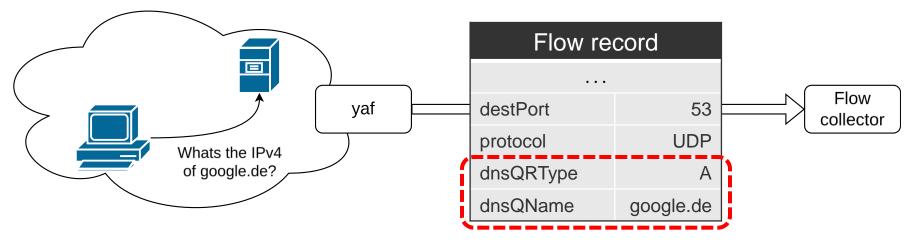
- Output Adaptations
 - Use IPFIX custom IEs
 - Detected threat information are attached via custom IEs
 - Allows for subsequent processing with IPFIX-compatible tools

- ► MalFIX fully IPFIX standard compatible
 - Can be integrated into IPFIX pipelines



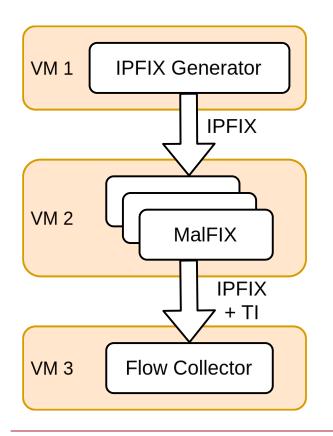
MalFIX: Modes of Operation

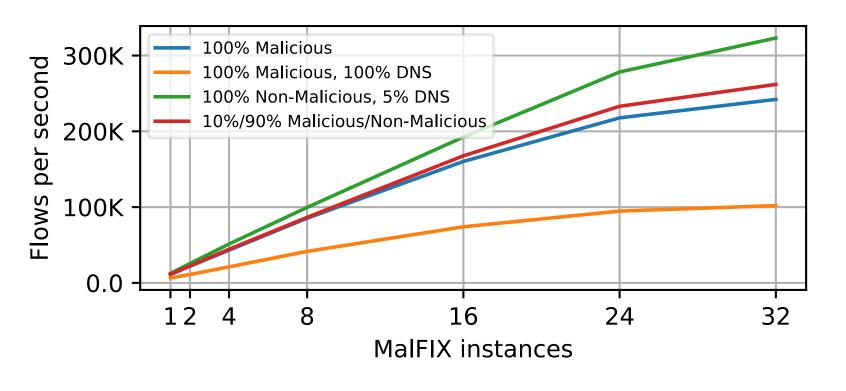
- ► Pipeline Mode
 - All incoming flows to MalFIX are exported
 - Custom IEs are attached to malicious flows
 - Useful for data enrichment scenarios



- ► Alert-Only Mode
 - Only malicious flows are exported
 - Non malicious flows are dropped
 - Useful for alerting

- ▶ By switching from packets to flows, we lose payload information
 - Payload information is lost in typical IPFIX setup
- ► Yaf has Deep Packet Inspection (DPI) capabilities
 - Search for payload information (DNS, HTTP, FTP, etc.)
 - Include results in custom IEs




- ► MalFIX also reads yaf's DNS DPI information
 - Domain names are checked with Maltrails internal threat detection engine

- ► Maximum flow processing speed was evaluated for Alert Only Mode
- ► Number of running MalFIX instances was varied
- ▶ Different traffic patterns were used

- ► Open-Source tool Maltrail was modified to fit a high-performance threat detection pipeline
 - By using standard conform IPFIX, MaIFIX can be integrated with other data sources/sinks
 - MalFIX is Open-source: https://github.com/uni-tue-kn/MalFIX

- ► Up to 300,000 flows/second on 32 CPU cores can be scanned for threats
 - MalFIX can also be deployed across multiple machines

► MalFIX is deployed at the computation center of the University of Tübingen (ZDV)

Gabriel Paradzik^{1,2}, Benjamin Steinert^{1,2}, Janik Steegmüller, Michael Menth¹
¹Chair of Communication Networks, ²Zentrum für Datenverarbeitung
University of Tübingen

gabriel.paradzik@uni-tuebingen.de

THANK YOU!

QUESTIONS?

This work was supported by the bwNET2.0 project funded by the MWK

