Advanced Mathematical Methods WS 2025/26

1 Linear Algebra

Dr. Julie Schnaitmann

Department of Statistics, Econometrics and Empirical Economics

WIRTSCHAFTS- UND SOZIALWISSENSCHAFTLICHE FAKULTÄT

Outline: Linear Algebra

- 1.8 Eigenvalues and eigenvectors
- 1.9 Quadratic forms and sign definitness

Readings

 Knut Sydsaeter, Peter Hammond, Atle Seierstad, and Arne Strøm. Further Mathematics for Economic Analysis.
 Prentice Hall, 2008 Chapter 1

Online Resources

MIT course on Linear Algebra (by Gilbert Strang)

- Lecture 21: Eigenvalues and Eigenvectors https://www.youtube.com/watch?v=IXNXrLcoerU
- Lecture 22: Powers of a square matrix and Diagonalization https://www.youtube.com/watch?v=13r9QY6cmjc
- Lecture 26: Symmetric matrices and positive definiteness https://www.youtube.com/watch?v=umt6BB1nJ4w
- Lecture 27: Positive definite matrices and minima Quadratic forms https://www.youtube.com/watch?v=vF7eyJ2g3kU

Assume a scalar λ exists such that

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

 λ : eigenvalue

x: eigenvector

Find λ via the homogenous linear equation system

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0$$

The properties of a quadratic homogenous linear equation system imply that:

- in any case a solution does exist;
- if $det(\mathbf{A} \lambda \mathbf{I}) \neq 0$, then $\bar{\mathbf{x}} = 0$ is the trivial solution;
- only if $\det(\mathbf{A} \lambda \mathbf{I}) = 0$ there is a non-trivial solution.

Determination of the eigenvalues via the characteristic equation:

$$|\mathbf{A} - \lambda \mathbf{I}| = 0 \iff (-1)^n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \ldots + \alpha_1 \lambda + \alpha_0 = 0$$

for every (real or complex) eigenvalue λ_i of the $(n \times n)$ -Matrix **A** we can calculate the respective eigenvector $\mathbf{x}_i \neq 0$ solving the homogenous linear equation system

$$(\mathbf{A} - \lambda_i \mathbf{I}) \mathbf{x}_i = 0. \tag{1}$$

The properties of homogenous linear equation systems imply that the solution of eq. (1) is not unambiguous, i.e. for the eigenvalue λ_i we can find infinitely many eigenvectors x_i .

Determination of the eigenvalues via the characteristic equation:

$$|\mathbf{A} - \lambda \mathbf{I}| = 0 \iff (-1)^n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \ldots + \alpha_1 \lambda + \alpha_0 = 0$$

for every (real or complex) eigenvalue λ_i of the $(n \times n)$ -Matrix ${\bf A}$ we can calculate the respective eigenvector ${\bf x}_i \neq 0$ solving the homogenous linear equation system

$$(\mathbf{A} - \lambda_i \mathbf{I}) \mathbf{x}_i = 0. \tag{1}$$

The properties of homogenous linear equation systems imply that the solution of eq. (1) is not unambiguous, i.e. for the eigenvalue λ_i we can find infinitely many eigenvectors x_i .

Determination of the eigenvalues via the characteristic equation:

$$|\mathbf{A} - \lambda \mathbf{I}| = 0 \iff (-1)^n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \ldots + \alpha_1 \lambda + \alpha_0 = 0$$

for every (real or complex) eigenvalue λ_i of the $(n \times n)$ -Matrix **A** we can calculate the respective eigenvector $\mathbf{x}_i \neq 0$ solving the homogenous linear equation system

$$(\mathbf{A} - \lambda_i \mathbf{I}) \mathbf{x}_i = 0. \tag{1}$$

The properties of homogenous linear equation systems imply that the solution of eq. (1) is not unambiguous, i.e. for the eigenvalue λ_i we can find infinitely many eigenvectors x_i .

A und **B** (quadratic matrices of order n) are similar if a regular $(n \times n)$ - matrix **C** exists, such that

$$\boldsymbol{B} = \boldsymbol{C}^{-1} \boldsymbol{A} \, \boldsymbol{C}$$
.

Special case: symmetric matrices

For a symmetric $(n \times n)$ -matrix \boldsymbol{A} it holds that the normalized eigenvectors $\tilde{\boldsymbol{x}}_i$ with $j=1,\ldots,n$ have the property

- 2 $\tilde{\mathbf{x}}_i'\tilde{\mathbf{x}}_i = 0$ for all $i \neq j$.

A und **B** (quadratic matrices of order n) are similar if a regular $(n \times n)$ - matrix **C** exists, such that

$$\boldsymbol{B} = \boldsymbol{C}^{-1} \boldsymbol{A} \, \boldsymbol{C}$$
.

Special case: symmetric matrices

For a symmetric $(n \times n)$ -matrix \boldsymbol{A} it holds that the normalized eigenvectors $\tilde{\boldsymbol{x}}_i$ with $j=1,\ldots,n$ have the property

- $\mathbf{0} \ \tilde{\mathbf{x}}_i' \tilde{\mathbf{x}}_i = 1 \ \text{for all } j \ \text{and}$
- 2 $\tilde{\mathbf{x}}_i'\tilde{\mathbf{x}}_i = 0$ for all $i \neq j$.

Principle axis theorem

collecting the normalized eigenvectors $\tilde{\mathbf{x}}_j$ $(j=1,\ldots,n)$ in a new matrix $\mathbf{T}=[\tilde{\mathbf{x}}_1\cdots\tilde{\mathbf{x}}_n]$ with the property $\mathbf{T}^{-1}=\mathbf{T}'$ yields the diagonalization of \mathbf{A} as follows:

$$m{D} = m{T}'m{A}m{T} = m{T}^{-1}m{A}m{T} = egin{bmatrix} \lambda_1 & 0 & \dots & 0 \ 0 & \lambda_2 & \dots & \ \vdots & & & 0 \ 0 & \dots & 0 & \lambda_n \end{bmatrix}.$$

Properties of eigenvalues

- 1) The product of the eigenvalues of a $n \times n$ matrix yields its determinant: $|\mathbf{A}| = \prod_{i=1}^{n} \lambda_i$.
- 2) From 1.) it follows that a singular matrix must have at least one eigenvalue $\lambda_i = 0$.
- 3) The matrices \boldsymbol{A} and \boldsymbol{A}' have the same eigenvalues
- 4) For a non-singular matrix \boldsymbol{A} with eigenvalues λ we have: $|\boldsymbol{A}^{-1} \frac{1}{\lambda}\boldsymbol{I}| = 0$.
- Symmetric matrices have only real eigenvalues and orthogonal eigenvectors.

Properties of eigenvalues

- 1) The product of the eigenvalues of a $n \times n$ matrix yields its determinant: $|\mathbf{A}| = \prod_{i=1}^{n} \lambda_i$.
- 2) From 1.) it follows that a singular matrix must have at least one eigenvalue $\lambda_i = 0$.
- 3) The matrices \boldsymbol{A} and \boldsymbol{A}' have the same eigenvalues.
- 4) For a non-singular matrix \boldsymbol{A} with eigenvalues λ we have: $|\boldsymbol{A}^{-1} \frac{1}{\lambda}\boldsymbol{I}| = 0$.
- Symmetric matrices have only real eigenvalues and orthogonal eigenvectors.

Properties of eigenvalues

- 1) The product of the eigenvalues of a $n \times n$ matrix yields its determinant: $|\mathbf{A}| = \prod_{i=1}^{n} \lambda_i$.
- 2) From 1.) it follows that a singular matrix must have at least one eigenvalue $\lambda_i=0$.
- 3) The matrices \boldsymbol{A} and \boldsymbol{A}' have the same eigenvalues.
- 4) For a non-singular matrix ${\bf A}$ with eigenvalues λ we have: $|{\bf A}^{-1} \frac{1}{\lambda} {\bf I}| = 0$.
- Symmetric matrices have only real eigenvalues and orthogonal eigenvectors.

Properties of eigenvalues

- 1) The product of the eigenvalues of a $n \times n$ matrix yields its determinant: $|\mathbf{A}| = \prod_{i=1}^{n} \lambda_i$.
- 2) From 1.) it follows that a singular matrix must have at least one eigenvalue $\lambda_i = 0$.
- 3) The matrices \boldsymbol{A} and \boldsymbol{A}' have the same eigenvalues.
- 4) For a non-singular matrix ${\bf A}$ with eigenvalues λ we have: $|{\bf A}^{-1} \frac{1}{\lambda}{\bf I}| = 0$.
- Symmetric matrices have only real eigenvalues and orthogonal eigenvectors.

Properties of eigenvalues

- 1) The product of the eigenvalues of a $n \times n$ matrix yields its determinant: $|\mathbf{A}| = \prod_{i=1}^{n} \lambda_{i}$.
- 2) From 1.) it follows that a singular matrix must have at least one eigenvalue $\lambda_i = 0$.
- 3) The matrices \boldsymbol{A} and \boldsymbol{A}' have the same eigenvalues.
- 4) For a non-singular matrix ${\bf A}$ with eigenvalues λ we have: $|{\bf A}^{-1} \frac{1}{\lambda}{\bf I}| = 0$.
- 5) Symmetric matrices have only real eigenvalues and orthogonal eigenvectors.

Properties of eigenvalues

- 6) The rank of a symmetric matrix **A** is equal to the number of eigenvalues different from zero.
- 7) The sum of the eigenvalues is equal to the trace $\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} \lambda_{i}$.
- 8) It holds that the eigenvalues of \mathbf{A}^k are λ_i^k for all $i=1,\ldots,n$ as $\mathbf{A}^k=\mathbf{T}\mathbf{\Lambda}^k\mathbf{T}^{-1}$
- 9) **A** has n independent eigenvectors and is diagonalizable if all eigenvalues λ_i are distinct.

Properties of eigenvalues

- 6) The rank of a symmetric matrix **A** is equal to the number of eigenvalues different from zero.
- 7) The sum of the eigenvalues is equal to the trace: $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_{i}$.
- 8) It holds that the eigenvalues of \mathbf{A}^k are λ_i^k for all $i=1,\ldots,n$ as $\mathbf{A}^k = \mathbf{T} \mathbf{\Lambda}^k \mathbf{T}^{-1}$
- 9) **A** has n independent eigenvectors and is diagonalizable if all eigenvalues λ_i are distinct.

Properties of eigenvalues

- 6) The rank of a symmetric matrix **A** is equal to the number of eigenvalues different from zero.
- 7) The sum of the eigenvalues is equal to the trace: $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_{i}$.
- 8) It holds that the eigenvalues of \mathbf{A}^k are λ_i^k for all $i=1,\ldots,n$ as $\mathbf{A}^k = \mathbf{T} \mathbf{\Lambda}^k \mathbf{T}^{-1}$
- 9) **A** has n independent eigenvectors and is diagonalizable if all eigenvalues λ_i are distinct.

Properties of eigenvalues

- 6) The rank of a symmetric matrix **A** is equal to the number of eigenvalues different from zero.
- 7) The sum of the eigenvalues is equal to the trace: $\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} \lambda_{i}$.
- 8) It holds that the eigenvalues of \mathbf{A}^k are λ_i^k for all $i=1,\ldots,n$ as $\mathbf{A}^k = \mathbf{T} \mathbf{\Lambda}^k \mathbf{T}^{-1}$.
- 9) **A** has n independent eigenvectors and is diagonalizable if all eigenvalues λ_i are distinct.

Properties of eigenvalues

- 6) The rank of a symmetric matrix **A** is equal to the number of eigenvalues different from zero.
- 7) The sum of the eigenvalues is equal to the trace: $\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} \lambda_{i}$.
- 8) It holds that the eigenvalues of \mathbf{A}^k are λ_i^k for all $i=1,\ldots,n$ as $\mathbf{A}^k = \mathbf{T} \mathbf{\Lambda}^k \mathbf{T}^{-1}$.
- 9) **A** has n independent eigenvectors and is diagonalizable if all eigenvalues λ_i are distinct.

1.9 Quadratic forms and sign definitness Definitions

- Degree of a polynomial
- Form of *n*th degree
- special case: quadratic form

$$Q(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$

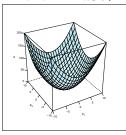
A quadratic form $Q(x_1, x_2)$ for two variables x_1 and x_2 is defined as

$$Q(x_1, x_2) = x' A x = \sum_{i=1}^{2} \sum_{j=1}^{2} a_{ij} x_i x_j$$

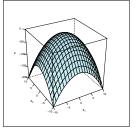
where $a_{ij} = a_{ji}$ and, thus,

with the symmetric coefficient matrix
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}$$
.

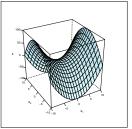
Graph of the positive definite form $Q(x_1, x_2) = x_1^2 + x_2^2$



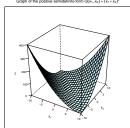
Graph of the negative definite form $Q(x_1, x_2) = -x_1^2 - x_2^2$



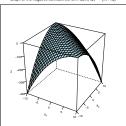
Graph of the indefinite form $Q(x_1, x_2) = x_1^2 - x_2^2$



Graph of the positive semidefinite form $Q(x_1, x_2) = (x_1 + x_2)^2$



Graph of the negative semidefinite form $Q(x_1, x_2) = -(x_1 + x_2)^2$



The quadratic form associated with the matrix A (and thus the matrix A itself) is said to be

```
\begin{array}{lll} \textbf{positive definite}, & \text{if } Q = x' \mathsf{A} x > 0 & \text{for all } x \neq 0 \\ \textbf{positive semi-definite}, & \text{if } Q = x' \mathsf{A} x \geq 0 & \text{for all } x \\ \textbf{negative definite}, & \text{if } Q = x' \mathsf{A} x < 0 & \text{for all } x \neq 0 \\ \textbf{negative semi-definite}, & \text{if } Q = x' \mathsf{A} x \leq 0 & \text{for all } x \end{array}
```

Otherwise the quadratic form is indefinite.

<u>Note:</u> For any quadratic matrix A it holds that x'Ax = x'Bx with $B = 0, 5 \cdot (A + A')$, a symmetric matrix.

The quadratic form associated with the matrix A (and thus the matrix A itself) is said to be

```
positive definite, if Q=x'Ax>0 for all x\neq 0 positive semi-definite, if Q=x'Ax\geq 0 for all x\neq 0 negative definite, if Q=x'Ax<0 for all x\neq 0 negative semi-definite, if Q=x'Ax\leq 0 for all x\neq 0
```

Otherwise the quadratic form is indefinite.

<u>Note:</u> For any quadratic matrix A it holds that x'Ax = x'Bx with $B = 0, 5 \cdot (A + A')$, a symmetric matrix.

The quadratic form Q(x) is

- positive (negative) definite, if **all** eigenvalues of the matrix A are positive (negative): $\lambda_i > 0$ ($\lambda_i < 0$) $\forall j = 1, 2, ..., n$;
- positive (negative) semi-definite, if all eigenvalues of the matrix A are non-negative (non-positive): $\lambda_j \geq 0$ $(\lambda_j \leq 0) \ \forall j=1,2,\ldots,n$ and at least one eigenvalue is equal to zero:
- indefinite, if two eigenvalues have different signs.

Properties of positive definite and positive semi-definite matrices

- 1) Diagonal elements of a positive definite matrix are strictly positive. Diagonal elements of a positive semi-definite matrix are nonnegative.
- 2) If A is positive definite, then A^{-1} exists and is positive definite.
- 3) If X is $n \times k$, then X'X and XX' are positive semi-definite.
- 4) If X is $n \times k$ and rk(X) = k, then X'X is positive definite (and therefore non-singular).

Properties of positive definite and positive semi-definite matrices

- 1) Diagonal elements of a positive definite matrix are strictly positive. Diagonal elements of a positive semi-definite matrix are nonnegative.
- 2) If A is positive definite, then A^{-1} exists and is positive definite.
- 3) If X is $n \times k$, then X'X and XX' are positive semi-definite.
- 4) If X is $n \times k$ and rk(X) = k, then X'X is positive definite (and therefore non-singular).

Properties of positive definite and positive semi-definite matrices

- 1) Diagonal elements of a positive definite matrix are strictly positive. Diagonal elements of a positive semi-definite matrix are nonnegative.
- 2) If A is positive definite, then A^{-1} exists and is positive definite.
- 3) If X is $n \times k$, then X'X and XX' are positive semi-definite.
- 4) If X is $n \times k$ and rk(X) = k, then X'X is positive definite (and therefore non-singular).

Properties of positive definite and positive semi-definite matrices

- 1) Diagonal elements of a positive definite matrix are strictly positive. Diagonal elements of a positive semi-definite matrix are nonnegative.
- 2) If A is positive definite, then A^{-1} exists and is positive definite.
- 3) If X is $n \times k$, then X'X and XX' are positive semi-definite.
- 4) If X is $n \times k$ and rk(X) = k, then X'X is positive definite (and therefore non-singular).