

Myriam Höning
Leitung

Michael Seifert
Abteilung Presse, Forschungs-
berichterstattung, Information
Telefon +49 7071 29-76789
Telefax +49 7071 29-5566
Michael.seifert@uni-tuebingen.de
www.uni-tuebingen.de/aktuell

Halogen Bonding Helps Design New Drugs

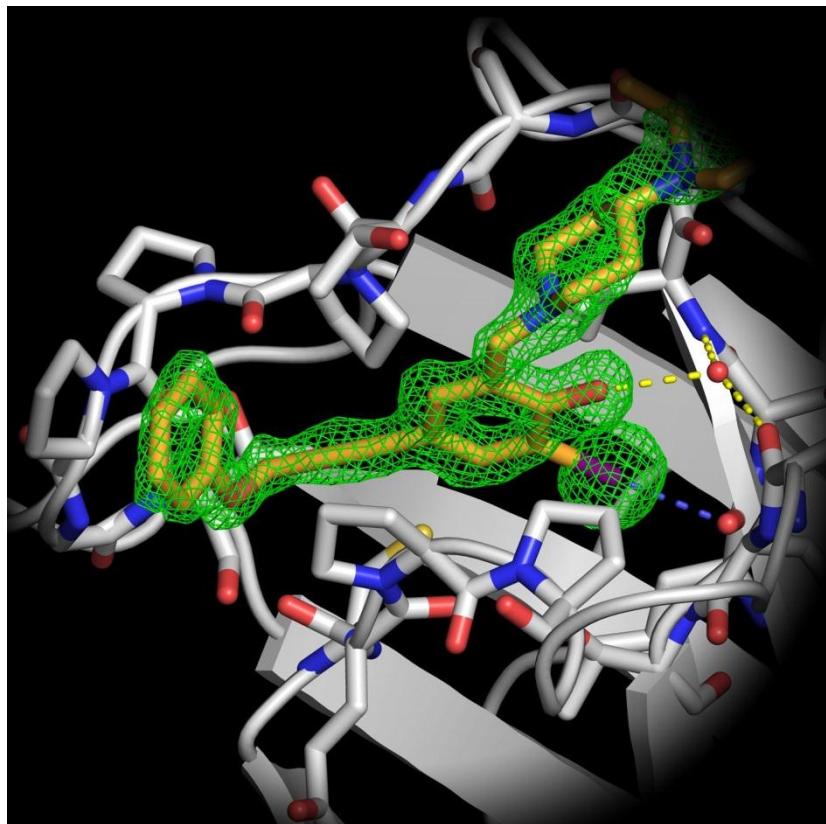
Pharmaceuticals researchers at the University of Tübingen present a new concept for the development of tumor treatments.

Tübingen, 31.05.2012

Wir bitten um Zusendung von
Belegexemplaren! Danke.

Halogens – particularly chlorine, bromine, and iodine – have a unique quality which allows them to positively influence the interaction between molecules. This “halogen bonding” has been used in the area of materials science for some time, but is only now finding applications in the life sciences. Yet halogen bonds make it possible to identify molecules which can be helpful in treating illness by influencing their biological target structure.

Scientists at the University of Tübingen have now demonstrated for the first time that halogen bonding can be used in cancer treatment. In doing so, Professor Frank Böckler and his team have presented a state-of-the-art method in pharmaceutical research: fragment-based development of leading compounds. The method uses fragment libraries to screen for biological target structures such as proteins or DNA, in order to form a basis for the development of new drugs.


To date, halogens – particularly the heavier bromine and iodine – have been underrepresented in such fragment libraries. Now, for the first time, scientists at the Pharmaceutical Institute at the University of Tübingen have described the design and application of halogen-enriched fragment libraries in the *Journal of the American Chemical Society* (DOI: [10.1021/ja301056a](https://doi.org/10.1021/ja301056a)).

Publication: Rainer Wilcken, Xiangrui Liu, Markus O. Zimmermann, Trevor J. Rutherford, Alan R. Fersht, Andreas C. Joerger* & Frank M. Böckler*: „Halogen-Enriched Fragment Libraries as Leads for Drug Rescue of Mutant p53“. *J. Am. Chem. Soc.*, 2012, 134 (15), pp 6810–6818 (DOI: [10.1021/ja301056a](https://doi.org/10.1021/ja301056a))

Contact:

Prof. Dr. Frank Böckler
University of Tübingen
Faculty of Science

Dept. of Pharmacy & Biochemistry
Phone + 49 7071 29-74567
Fax + 49 7071 29-5637
frank.boeckler[at]uni-tuebingen.de

Part of the crystal structure of the mutated tumor suppressor p53, interacting with the binding pocket via a halogen bond (purple dotted line). Compounds of the new class of substances reactivate p53 in affected cancer cells.

Graphic: Prof. Frank Böckler