Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A. and Brendel, W. (2019). ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. International Conference on Learning Representations (ICLR), 2019.
Meding, K., Janzing, D., Schölkopf, B. and Wichmann, F. A. (2019). Perceiving the arrow of time in autoregressive motion. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E. and Garnett, R., editors, Advances in Neural Information Processing Systems (NeurIPS) 32.
Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A.S., Bethge, M. and Brendel, W. (2019). Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming. NeurIPS Workshop on Machine Learning for Autonomous Driving.
Özdenizci, O., Meyer, T., Wichmann, F. A., Peters, J., Schölkopf, B., Cetin, M., Grosse-Wentrup, M. (2019). Neural Signatures of Motor Skill in the Resting Brain. IEEE International Conference on Systems, Man and Cybernetics (SMC) (pp. 4387-4394 ). [get PDF via e-mail].
Rothkegel, L., Schütt, H. H., Trukenbrod, H. A., Wichmann, F. A. and Engbert, R. (2019). Searchers adjust their eye-movement dynamics to target characteristics in natural scenes. Scientific Reports, 9:1635.
Schütt, H. H., Rothkegel, L. O. M., Trukenbrod, H. A., Engbert, R. and Wichmann, F. A. (2019). Disentangling bottom-up vs. top-down and low-level vs. high-level influences on eye movements over time. Journal of Vision, 19(3):1, 1-23.
Trukenbrod, H. A., Barthelmé, S., Wichmann, F. A. and Engbert, R. (2019). Spatial statistics for gaze patterns in scene viewing: Effects of repeated viewing. Journal of Vision, 19(6):5, 1-19.
Wallis, T. S. A., Funke, C. M., Ecker, A. S., Gatys, L. A., Wichmann, F. A. and Bethge, M. (2019). Image content is more important than Bouma’s Law for scene metamers. eLife, 8:e42512, 1-43.