Marcel Hallgarten

Background

2021 - 2025
PhD student at the Department of Cognitive Systems, University of Tübingen
2019 - 2021
MSc in Mechanical Engineering, Karlsruhe Institute of Technology
2015 - 2019
BSc in Mechanical Engineering, Karlsruhe Institute of Technology

Research Interests

  • Machine Learning
  • Behavior Planning for Autonomous Driving
  • Motion Planning for Autonomous Driving
  • Deep Neural Networks

Teaching

 

Publications

[1]Hallgarten, M., Stoll, M., & Zell, A. (2023, September). From prediction to planning with goal conditioned lane graph traversals. In 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC) (pp. 951-958). IEEE [arxiv]
[2]
Hallgarten, M., Kisa, I., Stoll, M., & Zell, A. (2024, June). Stay on track: A frenet wrapper to overcome off-road trajectories in vehicle motion prediction. In 2024 IEEE Intelligent Vehicles Symposium (IV) (pp. 795-802). IEEE. [arxiv]
[3]
Hallgarten, M., Zapata, J., Stoll, M., Renz, K., & Zell, A. (2024, October). Can vehicle motion planning generalize to realistic long-tail scenarios?. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5388-5395). IEEE. [arxiv]
[4]
Hagedorn, S., Hallgarten, M., Stoll, M., & Condurache, A. P. (2024). The integration of prediction and planning in deep learning automated driving systems: A review. IEEE Transactions on Intelligent Vehicles. [arxiv]
[5]Dauner, D., Hallgarten, M., Geiger, A., & Chitta, K. (2023, December). Parting with misconceptions about learning-based vehicle motion planning. In Conference on Robot Learning (pp. 1268-1281). PMLR. [arxiv]
[6]Janjoš, F., Hallgarten, M., Knittel, A., Dolgov, M., Zell, A., & Zöllner, J. M. (2023). Conditional Unscented Autoencoders for Trajectory Prediction. arXiv preprint arXiv:2310.19944. [arxiv]
[7]
Dauner, D., Hallgarten, M., Li, T., Weng, X., Huang, Z., Yang, Z., ... & Chitta, K. (2024). Navsim: Data-driven non-reactive autonomous vehicle simulation and benchmarking. Advances in Neural Information Processing Systems, 37, 28706-28719. [arxiv]

Privacy settings

Our website uses cookies. Some of them are mandatory, while others allow us to improve your user experience on our website. The settings you have made can be edited at any time.

or

Essential

in2code

Videos

in2code
YouTube
Google