[1] | Hallgarten, M., Stoll, M., & Zell, A. (2023, September). From prediction to planning with goal conditioned lane graph traversals. In 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC) (pp. 951-958). IEEE [arxiv] |
[2] | Hallgarten, M., Kisa, I., Stoll, M., & Zell, A. (2024, June). Stay on track: A frenet wrapper to overcome off-road trajectories in vehicle motion prediction. In 2024 IEEE Intelligent Vehicles Symposium (IV) (pp. 795-802). IEEE. [ arxiv] |
[3] | Hallgarten, M., Zapata, J., Stoll, M., Renz, K., & Zell, A. (2024, October). Can vehicle motion planning generalize to realistic long-tail scenarios?. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5388-5395). IEEE. [ arxiv] |
[4] | Hagedorn, S., Hallgarten, M., Stoll, M., & Condurache, A. P. (2024). The integration of prediction and planning in deep learning automated driving systems: A review. IEEE Transactions on Intelligent Vehicles. [ arxiv] |
[5] | Dauner, D., Hallgarten, M., Geiger, A., & Chitta, K. (2023, December). Parting with misconceptions about learning-based vehicle motion planning. In Conference on Robot Learning (pp. 1268-1281). PMLR. [arxiv] |
[6] | Janjoš, F., Hallgarten, M., Knittel, A., Dolgov, M., Zell, A., & Zöllner, J. M. (2023). Conditional Unscented Autoencoders for Trajectory Prediction. arXiv preprint arXiv:2310.19944. [arxiv] |
[7] | Dauner, D., Hallgarten, M., Li, T., Weng, X., Huang, Z., Yang, Z., ... & Chitta, K. (2024). Navsim: Data-driven non-reactive autonomous vehicle simulation and benchmarking. Advances in Neural Information Processing Systems, 37, 28706-28719. [ arxiv] |