Institut für Organische Chemie


Die NMR-Abteilung des Instituts für organische Chemie verfügt über die nachfolgend aufgeführten Geräte:

Abkürzungen in Bruker-Pulsprogrammen

In den (Datei-)Namen der Pulsprogramme aus der Standard-Bruker-Datenbank werden die folgenden, meist aus zwei Buchstaben bestehenden Abkürzungen verwendet:

ac     accordion type experiment
ad     using adiabatic spinlock
ar     experiment for aromatic residues
at     adiabatic TOCSY
bi     with bird pulse for homonuclear J-decoupling
bp     using bipolar gradients
cc     cross correlation experiment
cn     13C and 15N dependent information in different indirect dimensions
co     with COSY transfer
cp     with composite pulse
ct     constant time
cv     convection compensated
cw     decoupling using cw command
cx     using CLEANEX_PM
db     diffusion based
dc     decoupling using cpd command
df     double quantum filter
di     with DIPSI mixing sequence
dh     homonuclear decoupling in indirect dimension
dw     decoupling using cpd command only during wet sequence
dq     double quantum coherence
ea     phase sensitive using Echo/Antiecho method
ec     with E.COSY transfer
ed     with multiplicity editing
es     excitation sculpting
et     phase sensitive using Echo/Antiecho-TPPI method
fb     using f2 - and f3 - channel
fd     using f1 - and f3 - channel (for presaturation)
fr     with presaturation using a frequency list
ft     using f1 -, f2 - and f3 - channel (for presaturation)
fh     19F observed with 1H decoupling
fp     using a flip-back pulse
fl     for 19F ecoupler
fw     forward directed type experiment
f2     using f2 - channel (for presaturation)
f3     using f3 - instead of f2 - channel
f4     using f4 - instead of f2 - channel
gd     gated decoupling using cpd command
ge     gradient echo experiment
gp     using gradients with ":gp" syntax
gr     using gradients
gs     using shaped gradients
hb     hydrogen bond experiment
hc     homodecoupling of a region using a cpd-sequence
hd     homodecoupling
hf     1H observe with 19F decoupling
hs     with homospoil pulse
ia     InPhase-AntiPhase (IPAP) experiment
id     IDIS - isotopically discriminated spectroscopy
ig     inverse gated
ii     using inverse (invi/HSQC) sequence
im     with incremented mixing time
in     with INEPT transfer
ip     in phase
i4     using inverse (inv4/HMQC) sequence
jc     for determination of J coupling constant
jd     homonuclear J-decoupled
jr     with jump-return pulse
js     jump symmetrized (roesy)
ld     low power cpd decoupling
lp     with low-pass J-filter
lq     with Q-switching (low Q)
lr     for long-range couplings
l2     with two-fold low-pass J-filter
l3     with three-fold low-pass J-filter
mf     multiple quantum filter
ml     with MLEV mixing sequence
mq     using multiple quantum
nc     15N and 13C dependent information in different indirect dimensions
nd     no decoupling
no     with NOESY mixing sequence
pc     with presaturation and composite pulse
pe     using perfect echo
pg     power-gated
ph     phase sensitive using States-TPPI, TPPI, States or QSEQ
pl     preparing a frequency list
pn     with presaturation using a 1D NOESY sequence
pp     using purge pulses
pr     with presaturation
ps     with presaturation using a shaped pulse
qf     absolute value mode
qn     for QNP-operation
qs     phase sensitive using qseq-mode
rc     for determination of residual dipolar couplings (RDC)/ J couplings
rd     refocussed
re     relaxation optimised (H-flip)
rl     with relay transfer
ro     with ROESY mixing sequence
rs     with radiation damping suppression using gradients
rt     real time
ru     using radiation damping compensation unit
rv     with random variation
r2     with 2 step relay transfer
r3     with 3 step relay transfer
se     spin echo experiment
sf     using sierra filter
sh     phase sensitive using States et al. method
si     sensitivity improved
sl     slice selective
sm     simultaneous evolution of X and Y chemical shift
so     using SOGGY element
sp     using a shaped pulse
sq     using single quantum
ss     spin-state selective experiment
st     phase sensitive using States-TPPI method
sy     symmetric sequence
s3     S3E experiment
tc     temperature compensation
tf     triple quantum filter
tp     phase sensitive using TPPI
tr     using TROSY sequence
tz     zeroquantum (ZQ) TROSY
ul     using a frequency list
us     updating shapes
wg     watergate using a soft-hard-soft sequence
wt     with WET watersuppression
w5     watergate using W5 pulse
xe     x-edited
xf     x-filter experiments
xy     with XY CPMG sequence
x1     x-filter in F1
x2     x-filter in F2
x3     x-filter in F3
zf     with z-filter
zq     zero quantum coherence
zr     z-restored
zs     using a gradient/rf spoil pulse
1d     1D version
1s     using 1 spoil gradients
11     using 1-1 pulse
19     using 3-9-19 pulse
19f    for 19F
2h     using 2H lockswitch unit
2s     using 2 spoil gradients
3d     3D sequence
3n     for E.COSY (3 spins, negative correlation)
3p     for E.COSY (3 spins, positive correlation)
3s     using 3 spoil gradients
30     using a 30 degree flip angle
45     using a 45 degree flip angle
90     using a 90 degree flip angle
135    using a 135 degree flip angle
180    using a 180 degree pulse