Proseminar: Robotics and Deep Learning

 

Instructors Jonas Tebbe, Yapeng Gao
Preliminary Meeting Mo. 09.11.2020, 16:00 Uhr
Credits 3 LP (new PO), 4 LP (old PO)
Weekly Meetings Mo 16:00 (might change depending on the first meeting)
Room Online (Link provided in Ilias)
Language English
Max. Participants 12

Description

Deep learning is a subfield of machine learning that has achieved significant state-of-the-art results in many areas of artificial intelligence, including computer vision and robotics, and has been advancing very quickly in recent years. This seminar focuses on the application in the field of robotics. It takes shape as a paper reading and discussion. A collection of papers from selected journals and conferences is provided for the students to choose from. In each meeting, one topic is presented by the students. 

Students are graded based on: a) their presentation, b) a short report that they write on the subject, and c) their participation in post-presentation discussions. So, attendance is required to pass the course.

The date for the first meeting can be seen from the table above. In the session, each student chooses one topic and the presentations will start after two weeks; one presentation in each meeting. Participation in the preliminary meeting is required. If you are unable to attend this session, please write to email to jonas.tebbespam prevention@uni-tuebingen.de.

Important note: Since there is a maximum number of 12 participants in this course, please register in ILIAS as soon as possible if you are interesting in taking the seminar.

Requirements

This is a BSc Seminar (after 5th semester). Interested MSc students are welcome as well. 
There are no formal requirements. However, it is helpful to have a good background in mathematics (linear algebra, statistics).

Registration

Important note: Since there is a maximum number of 12 participants in this course, please register in ILIAS as soon as possible if you are interesting in taking the seminar.

ILIAS

Vorlesungsverzeichnis

Topics

This premilinary list provides an overview of the topics covered in the seminar. Note that this list is not final and will be extended.

Topic 1: First CNN Architectures
Topic 2: Advanced CNN Architectures
Topic 3: CNN Applications in Autonomous Driving
Topic 4: CNN Applications in Robotic Grasping
Topic 5: Deep Reinforcement Learning I
Topic 6: Deep Reinforcement Learning II
Topic 7: OpenAi Gym (Especially Robotic Simulations) and Baselines Library
Topic 8: Reinforcement Learning Applications in Manipulation
Topic 9: Reinforcement Learning Applications for Autonomous Driving
Topic 10: Imitation Learning
Topic 11: Sim2Real Transfer
Topic 12: Open Problems in Deep Learning for Robotics

You can get access to the most resources with an online-search from the university network (computer science pools, ZDV pools, VPN-client, etc.). For the literature search, it is recommended to use Google Scholar, Citeseer, arXiv. For very recent submissions on arXiv, click here. If a paper is published in CVPR or ICCV, you can find it on CVF open access. NIPS proceedings can be reached here. Also, you can download the PDFs from authors' webpages.

Useful Documents