Distributed Intelligence

Optimizing Rank-based Metrics

In search for practical application of the blackbox-differetiation theory, we turn to computer vision. Concretely, we show that applying blackbox-backprop to computer vision benchmarks in recall and Average Precision for retrieval and detection tasks consistently improves the underlying architectures’ performance. 

The main component that enables this is the blackbox formulation of the argsort operation used for ranking making the use of blackbox-differentiation theory possible. We made a blog post describing the method, which we call RaMBO (Rank Metric Blackbox Optimization). Further information about the paper (including a short and long oral presented at CVPR 2020) can be found here.

Privacy settings

Our website uses cookies. Some of them are mandatory, while others allow us to improve your user experience on our website. The settings you have made can be edited at any time.

or

Essential

in2code

Videos

in2code
YouTube
Google