Introducing the indicator dyes into the target neurons or neuron populations is not trivial and strongly depends on factors, such as animal age, tissue type as well as the signals to be measured (e.g. subcellular signals from dendrites of single cells vs. somatic signals from a cell population). As a consequence, labeling methods range from filling of single cells using microelectrodes to bulk loading with membrane permeable dyes. In the latter case, these dyes are injected into neuronal tissue using a micropipette. Once inside the tissue they pass the cell membrane of neurons and are accumulated within the cells. For brain slices or flat tissues, such as retina, electroporation or ballistic (“dyolistic”) methods are used as well. In addition, the full range of genetically encoded calcium-selective biosensors, expressed via a transgenic approach or using viral vectors, is also compatible with two-photon imaging.
To be able to detect calcium signals, the indicator dye needs to excited, which in a standard fluorescence microscope is usually done with visible light. In this case, one single high-energy photon is sufficient to excite one dye molecule and generate fluorescence (single photon excitation). Alternatively, the same dye molecule can also be excited using two lower energy photons (of approx. double the wavelength). Because such two-photon excitation requires the photons to arrive at the dye molecule almost simultaneously – which makes two-photon events much less likely than single-photon events – a high power, pulsed laser source is required.
The benefits, however, more than outweigh the increase in technical requirements:
While single (high energy) photons can excite the dye and generate fluorescence at any unspecified point of their trajectories through the tissue, the low energy photons can excite the dye and generate fluorescence exclusively in the focal volume. Therefore, by using pulsed laser light and focusing it by an objective lens one thus can very precisely determine at which spot inside the tissue excitation will happen and from which, thus, a measure of neuronal activation is taken.
Along the same lines, because with two-photon excitation fluorescence is restricted to a tiny volume, much less overall phototoxicity is generated than with single-photon excitation.
Two photon calcium imaging has been developed in anesthetized animals in vivo but is at the verge to be applied successfully in awake animals that have been trained. Important precondition for imaging in trained animals is the development of calcium dyes that are either non-toxic or are genetically programmed and transfected by virus, and thus allow repetitive imaging.
Another field where two-photon imaging has proven to be extremely valuable is retina research. With conventional single-photon microscopy, the wavelengths used for fluorescence excitation of currently available dyes range roughly from 350–700 nm. However, these wavelengths are also efficiently absorbed by retinal photopigments and, thus, strongly excite (and even bleach) photoreceptors. As a result, the light used to generate fluorescence also leads to a saturating light response in the photoreceptors and effectively blinds the retina to visual stimulation. One way out of this dilemma is to make use of the fact that two-photon microscopy employs long wavelengths – up into the infrared range (900 nm and longer) – for dye excitation. Because wavelengths > 900 nm are is very inefficiently absorbed by photoreceptors, it is possible to use two-photon imaging with fluorescence-based tools to study retinal neurons and their response to visual stimuli – presented by a separate visible light stimulator – in the functionally intact (isolated) retina.
Our website uses cookies. Some of them are mandatory, while others allow us to improve your user experience on our website. The settings you have made can be edited at any time.
or
Essential
in2cookiemodal-selection
Required to save the user selection of the cookie settings.
3 months
be_lastLoginProvider
Required for the TYPO3 backend login to determine the time of the last login.
3 months
be_typo_user
This cookie tells the website whether a visitor is logged into the TYPO3 backend and has the rights to manage it.
Browser session
ROUTEID
These cookies are set to always direct the user to the same server.
Browser session
fe_typo_user
Enables frontend login.
Browser session
Videos
iframeswitch
Used to show all third-party contents.
3 months
yt-player-bandaid-host
Is used to display YouTube videos.
Persistent
yt-player-bandwidth
Is used to determine the optimal video quality based on the visitor's device and network settings.
Persistent
yt-remote-connected-devices
Saves the settings of the user's video player using embedded YouTube video.
Persistent
yt-remote-device-id
Saves the settings of the user's video player using embedded YouTube video.
Persistent
yt-player-headers-readable
Collects data about visitors' interaction with the site's video content - This data is used to make the site's video content more relevant to the visitor.
Persistent
yt-player-volume
Is used to save volume preferences for YouTube videos.
Persistent
yt-player-quality
Is used to save the quality settings for YouTube videos.
Persistent
yt-remote-session-name
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-session-app
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-fast-check-period
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-cast-installed
Saves the user settings when retrieving a YouTube video integrated on other web pages
Browser session
yt-remote-cast-available
Saves user settings when retrieving integrated YouTube videos.
Browser session
ANID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
2 years
SNID
Google Maps - Google uses these cookies to store user preferences and information when you view pages with Google Maps.
1 month
SSID
Used to store information about how you use the site and what advertisements you saw before visiting this site, and to customize advertising on Google resources by remembering your recent searches, your previous interactions with an advertiser's ads or search results, and your visits to an advertiser's site.
6 months
1P_JAR
This cookie is used to support Google's advertising services.
1 month
SAPISID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
2 years
APISID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
6 months
HSID
Includes encrypted entries of your Google account and last login time to protect against attacks and data theft from form entries.
2 years
SID
Used for security purposes to store digitally signed and encrypted records of a user's Google Account ID and last login time, enabling Google to authenticate users, prevent fraudulent use of login credentials, and protect user data from unauthorized parties. This may also be used for targeting purposes to display relevant and personalized advertising content.
6 months
SIDCC
This cookie stores information about user settings and information for Google Maps.
3 months
NID
The NID cookie contains a unique ID that Google uses to store your preferences and other information.
6 months
CONSENT
This cookie tracks how you use a website to show you advertisements that may be of interest to you.
18 years
__Secure-3PAPISID
This cookie is used to support Google's advertising services.
2 years
__Secure-3PSID
This cookie is used to support Google's advertising services.
6 months
__Secure-3PSIDCC
This cookie is used to support Google's advertising services.
6 months