Date | Lecture Slides and Videos | Live Sessions (EDF | PyTorch) | TA Support |
| Recap: Math for Deep Learning | | |
16.10. | L01 - Introduction | Slides 1.1 Organization | Video 1.2 History of Deep Learning | Video 1.3 Machine Learning Basics | Video | L01 - Lecture Organization E01 - Exercise Introduction | Problems | Christian Reiser |
23.10. | L02 - Computation Graphs | Slides 2.1 Logistic Regression | Video 2.2 Computation Graphs | Video 2.3 Backpropagation | Video 2.4 Educational Framework | Video | L02 - Lecture Q&A E01 - Exercise Q&A | Christian Reiser |
30.10. | L03 - Deep Neural Networks | Slides 3.1 Backpropagation with Tensors | Video 3.2 The XOR Problem | Video 3.3 Multi-Layer Perceptrons | Video 3.4 Universal Approximation | Video | L03 - Lecture Q&A E01 - Exercise Q&A E02 - Exercise Introduction | Problems | Christian Reiser Takeru Miyato |
06.11. | L04 - Deep Neural Networks II | Slides 4.1 Output and Loss Functions | Video 4.2 Activation Functions | Video 4.3 Preprocessing and Initialization | Video | L04 - Lecture Q&A E02 - Exercise Q&A | Takeru Miyato |
13.11. | No Lecture | | |
20.11. | L05 - Regularization | Slides 5.1 Parameter Penalties | Video 5.2 Early Stopping | Video 5.3 Ensemble Methods | Video 5.4 Dropout | Video 5.5 Data Augmentation | Video | L05 - Lecture Q&A E02 - Exercise Q&A E03 - Exercise Introduction | Problems | Takeru Miyato Bozidar Antic |
27.11. | L06 - Optimization | Slides 6.1 Optimization Challenges | Video 6.2 Optimization Algorithms | Video 6.3 Optimization Strategies | Video 6.4 Debugging Strategies | Video | L06 - Lecture Q&A E03 - Exercise Q&A | Bozidar Antic |
04.12. | L07 - Convolutional Neural Networks | Slides 7.1 Convolution | Video 7.2 Downsampling | Video 7.3 Upsampling | Video 7.4 Architectures | Video 7.5 Visualization | Video | L07 - Lecture Q&A E03 - Exercise Q&A E04 - Exercise Introduction | Problems | Bozidar Antic Anpei Chen |
11.12. | L08 - Sequence Models | Slides 8.1 Recurrent Networks | Video 8.2 Recurrent Network Applications | Video 8.3 Gated Recurrent Networks | Video 8.4 Autoregressive Models | Video | L08 - Lecture Q&A E04 - Exercise Q&A | Anpei Chen |
18.12. | L09 - Natural Language Processing | Slides 9.1 Language Models | Video 9.2 Traditional Language Models | Video 9.3 Neural Language Models | Video 9.4 Neural Machine Translation | Video | L09 - Lecture Q&A E04 - Exercise Q&A E05 - Exercise Introduction | Problems | Anpei Chen Daniel Dauner |
08.01. | L10 - Graph Neural Networks | Slides 10.1 Machine Learning on Graphs | Video 10.2 Graph Convolution Filters | Video 10.3 Graph Convolution Networks | Video | L10 - Lecture Q&A E05 - Exercise Q&A | Daniel Dauner |
15.01. | No Lecture | | |
22.01. | L11 - Autoencoders | Slides 11.1 Latent Variable Models | Video | Video 11.2 Principal Component Analysis | Video 11.3 Autoencoders | Video 11.4 Variational Autoencoders | Video | L11 - Lecture Q&A E05 - Exercise Q&A E06 - Exercise Introduction | Problems | Daniel Dauner |
29.01. | L12 - Generative Adversarial Networks | Slides 12.1 Generative Adversarial Networks | Video 12.2 GAN Developments | Video 12.3 Research at AVG | Video | L12 - Lecture Q&A E06 - Exercise Q&A | Daniel Dauner |
| Research @ AVG 1. Learning Robust Policies for Self-Driving 2. Generating Images and 3D Shapes 3. Constraining 3D Fields for NVS and Reconstruction | | |