DTU Biosustain, Lyngby
"Mining soils for drugs (and more…) -
Integrating Informatics and Metabolic Engineering for the discovery of novel Natural Products"
Genome analyses of many microorganisms but also higher organisms indicate that the genetic potential to synthesize specialized metabolites is far beyond the number of molecules observed in traditional screenings. With the availability of cheap and easy-to-obtain whole genome sequences, in silico genome mining has become an indispensable tool to complement the classical chemistry-centered approach to identify and characterize novel secondary / specialized metabolites. Since the initial release in 2011, the open source genome mining pipeline antiSMASH(1) (https://antismash.secondarymetabolites.org), which we develop in collaboration with the group of M. Medema (U. Wageningen, Netherlands) and many international contributors, has become one of the most widely used tools. We are currently working on version 7 of antiSMASH, including the detection of novel BGC families, new visualizations and further improvement. Specialist and non-specialist users can easily analyze genomic sequences for the presence of secondary metabolite biosynthetic gene clusters with antiSMASH.
To provide extensive analysis options of the data generated with antiSMASH, we have extended the framework with several databases (2-4). The antiSMASH database, (https://antismash-db.secondarymetabolites.org/)(2), contains 147,517 high quality BGC regions from 388 archaeal, 25,236 bacterial and 177 fungal “high-quality” genomes.
These genome mining technologies build the foundation of further in silico studies towards a more comprehensive “Genome Analytics” platform, which we use to streamline our natural product discovery and characterization efforts.
Albeit streptomycetes are studied for many decades as proficient producers of bioactive compounds, there are still severe limitations concerning efficiency of mutagenesis protocols that often hamper systems metabolic engineering and Synthetic Biology approaches. We have therefore developed an extensive CRISPR/Cas9-based toolkit (5-8) for streptomycetes that now also includes tools that utilize multiplexing and DSB-free base editing technology to highly effectively engineer actinomycetes.