Institut für Physikalische und Theoretische Chemie

Publication List


90. Beitlberger, J.; Martin, M.; Scheele, M.; Schmidt, P.; Ströbele, M.; Meyer, H.-J. The Family of tetranuclear Nb4OI12-x Clusters (x = 1, 2): From the molecular Nb4OI12 cluster to extended chains and layers. Dalton Trans. 2025, accepted. https://doi.org/10.1039/D5DT001

 

89. Yang, Q.; Failla, A.; Turunen, P.; Mateos-Maroto, A.; Gai, M.; Zuschratter, W.; Westendorf, S.; Gelléri, M.; Chen, Q.; Goudappagouda, G.; Zhao, H.; Zhu, X.; Morsbach, S.; Scheele, M.; Yan, W.; Landfester, K.; Kabe, R.; Bonn, M.; Narita, A.;  and Liu, X. Reactivatable stimulated emission depletion microscopy using fluorescence-recoverable nanographene. Nat. Commun. 2025, 16, 1341. https://doi.org/10.1038/s41467-025-56

 

88. Schöntag, J.; Hettiger, T.; Roberts, W.; Scheele, M.; Ströbele, M.; Bettinger, H. Rearrangement Cascade Initiated by Nucleophilic Benzyne Attack on 3,6-Di(2-pyridyl)-1,2-diazines. ACS Organic & Inorganic Au 2025, accepted. https://doi.org/10.1021/acsorginorgau.4c0

 

87. Westendorf, S.; Li, S.; Michel, P.; Hu, B.; Scheele, M. Spectroelectrochemistry with Hydrogen-Doped Indium Oxide Electrodes Monitors Electron and Hole Injection into PbS Quantum Dots. Nanoscale 2025, accepted. https://doi.org/10.1039/D4NR053

 

86.  Zeng, Z.; Wang, Y.; Michel, P.; Strauß, F.; Wang, X.; Braun, K.; Scheele, M. Ultrafast Hot Carrier Cooling Enables van der Waals Photodetectors at Telecom Wavelengths. Nano Lett. 2025, 25, 3497-3504. https://doi.org/10.1021/acs.nanolett.4c0595

 

85. Grahlow, F.; Strauß, F.; Schmidt, P.; Valenta, J.; Ströbele, M.; Scheele, M.; Romao, C.P.; Meyer, H.-J. Ta4SBr11: A Cluster Mott Insulator with a Corrugated, Van der Waals Layered Structure. Inorg. Chem. 2024, 63, 19717–19727. https://doi.org/10.1021/acs.inorgchem.4c02896

 

84. Beitlberger, J.; Ströbele, M.; Strauß, S.; Scheele, M.; Romao, C.; Meyer, H.-J. The Rectangular Niobium Oxyiodide Cluster Nb4OI10 – A Narrow Band-Gap Semiconductor. Eur. J. Inorg. Chem. 2024, 27, e202400329. https://doi.org/10.1002/ejic.202400329

 

83. Medvedko, S.; Ströbele, M.; Fechter, M.; Fischer, A.; Hettiger, T.; Idzko, P.; Scheele, M.; Wagner, J. P. Synthesis of Thiourea and Thioamide S-Oxides via SO Transfer from a Thiirane S-Oxide Onto N-Heterocyclic Carbenes. Org. Lett. 2024, 26, 5868-5872. https://doi.org/10.1021/acs.orglett.4c02253

 

82. Zeng, Z.; Tian, Z.; Wang, Y.; Ge, C.; Strauß, F.; Braun, K.; Michel, P.; Huang, L.; Liu, G.; Li, D.; Scheele, M.; Chen, M.; Pan, A.; Wang, X. Dual polarization-enabled ultrafast bulk photovoltaic response in van der Waals heterostructures. Nat. Commun. 2024, 15, 5355. https://doi.org/10.1038/s41467-024-49760-6

 

81. Fröhlich, M.; Kögel, M.; Hiller, J.; Kahlmeyer, L.; Meixner, A. J.; Scheele, M.; Meyer, J.; Lauth, J. Colloidal 2D Mo1-xWxS2 Nanosheets: An atomic- to ensemble-level spectroscopic study. Phys. Chem. Chem. Phys. 2024, 26, 13271. https://doi.org/10.1039/D4CP00530A

 

80. Strauß, F.; Zeng, Z.; Braun, K.; Scheele, M. Toward GHz-Photodetection with Transition Metal Dichalcogenides. Acc. Chem. Res. 2024, 57, 1488. https://doi.org/10.1021/acs.accounts.4c00088

 

79. Geladari, O.; Haizmann, P.; Maier, A.; Strienz, M.; Eberle, M.; Scheele, M.; Schnepf, A.; Chassé, T.; Braun, K.; and Meixner, A. J. Direct laser induced writing of high precision gold nanosphere SERS patterns. Nanoscale Adv. 2024, 6, 1213. https://doi.org/10.1039/D3NA00855J

 

78. Grahlow, F.; Strauß, F.; Scheele, M.; Ströbele, M.; Carta, A.; Weber, S. F.; Kroeker, S.M Romao, C. P.; Meyer, H.-J. Electronic Structure and Transport in the Potential Luttinger Liquids CsNb3Br7S and RbNb3Br7S. Phys. Chem. Chem. Phys. 2024, 26, 11789. https://doi.org/10.1039/D4CP00293H

 

77. Haizmann, P.; Juriatti, E.; Klein, M; Greulich, K.; Ovsyannikov, R.; Giangrisostomi, E.; Chassé, T.; Peisert, H.; Scheele, M. Tuning the Interfacial Electronic Structure of MoS2 by Adsorption of Cobalt Phthalocyanine Derivatives. ACS Appl. Electron. Mater. 2024, 6, 2467. https://doi.org/10.1021/acsaelm.4c00094

 

76. Bassler, M.*; Hiller, J.*; Wackenhut, F.; zur Oven-Krockhaus, S.; Frech, P.; Schmidt, F.; Kertzscher, C.; Rammler, T.; Ritz, R.; Braun, K.; Scheele, M.; Meixner, A. J.; Brecht, M. Fluorescence lifetime imaging unravels the pathway of glioma cell death upon hypericin-induced photodynamic therapy. RSC Chem. Biol. 2024, 5, 1219-1231. https://doi.org/10.1039/D4CB00107A

 

75. Haizmann, P.; Juriatti, E.; Klein, M.; Greulich, K.; Nagel, P.; Merz, M.; Schuppler, S.; Ghiami, A.; Ovsyannikov, R.; Giangrisostomi, E.; Chassé, T.; Scheele, M.; Peisert, H. Orientation of Cobalt-Phthalocyanines on Molybdenum disulfide: Distinguishing between Single Crystals and Small Flakes. J. Phys. Chem. C 2024, 128, 2107. https://doi.org/10.1021/acs.jpcc.3c06707

 

74. Strauß, F.*; Kohlschreiber, P.*; Keck, J.; Michel, P.; Hiller, J.; Meixner, A. J.; Scheele, M. A simple 230 MHz Photodetector Based on Exfoliated WSe2 Multilayers. RSC Applied Interfaces 2024, 1, 728 - 733. https://doi.org/10.1039/D4LF00019F

 

73. Slynchuk, V.; Schedel, C.; Scheele, M.; Schnepf, A. Stabilization of Colloidal Germanium Nanoparticles: From the Study to the Prospects of the Application in Thin-Film Technology. Int. J. Mol. Sci. 2023, 24, 15948. https://doi.org/10.3390/ijms242115948

 

72. Hoffmann, M.; Schedel, C. A.; Mayer, M.; Rossner, C.; Scheele, M.*; and Fery, A.* Heading Toward Miniature Sensors: Electrical Conductance of Linearly Assembled Gold Nanorods. Nanomaterials 2023, 13, 1466. https://doi.org/10.3390/nano13091466

 

71. Kirsch, C.; Naujoks, T.; Haizmann, P.; Frech, P.; Peisert, H.; Chassé, T.; Brütting, W.*; and Scheele, M.* Zwitterionic Carbazole Ligands Enhance the Stability and Performance of Perovskite Nanocrystals in Light Emitting Diodes. ACS Appl. Mater. Interfaces 2023, 15, 32744-32752. https://doi.org/10.1021/acsami.3c05756

 

70. Geladari, O.; Eberle, M.; Maier, A.; Fetzer, F.; Chassé, T.; Meixner, A. J.; Scheele, M.; Schnepf, A.; Braun, K. Nanometer Sized Direct Laser‐Induced Gold Printing for Precise 2D‐Electronic Device Fabrication. Small Methods 2023, 7, 2201221. https://doi.org/10.1002/smtd.202201221

 

69. Maulbetsch, T.; Frech, P.; Scheele, M.; Törnroos, K. W.; and Kunz, D. A saddle-shaped expanded porphyrinoid fitting C60. Chem. Eur. J. 2023, 29, 202302104. https://doi.org/10.1002/chem.202302104

 

68. Pachel, F.; Frech, P.; Ströbele, M.; Enseling, D.; Romao, C. P.; Jüstel, T.; Scheele, M.; and Meyer, H.-J. Preparation, photoluminescence and excited state properties of the homoleptic cluster cation [(W6I8)(CH3CN)6]4+. Dalton Trans. 2023, 52, 3777 - 3785. https://doi.org/10.1039/D2DT04063H

 

67. Niebur, A.; Söll, A.; Haizmann, P.; Strolka, O.; Rudolph, D.; Tran, K.; Renz, F.; Frauendorf, A. P.; Hübner, J.; Peisert, H.; Scheele, M.; Lauth, J. Untangling the Intertwined: Metallic to Semiconducting Phase Transition in Colloidal MoS2 Nanoplatelets and Nanosheets. Nanoscale 2023, 15, 5679 - 5688 . https://doi.org/10.1039/D3NR00096F

 

66. Wurst, K.; Strolka, O.; Lauth, J.; Scheele, M. Electronic structure of colloidal 2H-MoS2 mono- and bilayers determined by spectroelectrochemistry. Small 2023, 19, 2207101. https://doi.org/10.1002/smll.202207101

 

65. Strauß, F.; Schedel, C.; Scheele, M. Edge Contacts accelerate the Response of MoS2 Photodetectors. Nanoscale Advances 2023, 5, 3494 - 3499. http://doi.org/10.1039/d3na00223c

 

64. Schedel*, C.; Strauß*, F.; Scheele, M. Pitfalls in Determining the Electrical Bandwidth of Nonideal Nanomaterials for Photodetection. J. Phys. Chem. C 2022, 126, 14011–14016. https://doi.org/10.1021/acs.jpcc.2c04584

 

63. Schedel, C.; Strauß, F.; Kohlschreiber, P.; Geladari, O.; Meixner, A. J.; Scheele, M. Substrate Effects on the Speed Limiting Factor of WSe2 Photodetectors. Phys. Chem. Chem. Phys. 2022, 24, 25383 - 25390. https://pubs.rsc.org/en/content/articlehtml/2022/CP/D2CP03364J

 

62. Sugi, K. S.; Maier, A.; Scheele, M. Emergent properties in supercrystals of atomically precise nanoclusters and colloidal nanocrystals. Chem. Commun. 2022, 58, 6998-7017. https://doi.org/10.1039/D2CC00778A

 

61. Theurer, C.; Weber, A.; Richter, M; Bender, M.; Michel, P.; Rana, D.; Kumar, K.; Scheele, M.; Bunz, U.; Tegeder, P.; Schreiber, F.; and Broch, K. Short-range organization and photophysical properties of CdSe quantum dots coupled with aryleneethynylenes. Nanotechnology 2022, 33, 230001. https://iopscience.iop.org/article/10.1088/1361-6528/ac52bd

 

60. Naujoks, T.; Jayabalan, R.; Kirsch, C.; Zu, F.; Mandal, M.; Wahl, J.; Waibel, M.; Opitz, A.; Koch, N.; Andrienko, D.; Scheele, M.; Brütting, W. Quantum Efficiency Enhancement of Lead-Halide Perovskite Nanocrystal LEDs by Organic Lithium Salt Treatment. ACS Appl. Mater. Interfaces 2022, 14, 28985–28996. https://doi.org/10.1021/acsami.2c04018

 

59. Maier, A.; Strauß, F.; Kohlschreiber, P.; Schedel, C.; Braun, K.; Scheele, M. Sub-ns intrinsic response time of PbS nanocrystal IR-photodetectors. Nano Lett. 2022, 22, 2809−2816. https://pubs.acs.org/doi/full/10.1021/acs.nanolett.1c04938

 

58. Wahl, J.*; Haizmann, P.*; Kirsch, C.; Frecot, R.; Mukharamova, N.; Assalauova, D.; Kim, Y. Y.; Zaluzhnyy, I.; Chassé, T.; Vartanyants, I. A.; Peisert, H.; and Scheele, M. Mitigating the Photodegradation of All-Inorganic Mixed-Halide Perovskite Nanocrystals by Ligand Exchange. Phys. Chem. Chem. Phys. 2022, 24, 10944 - 10951. https://pubs.rsc.org/en/Content/ArticleLanding/2022/CP/D2CP00546H

 

57. Lapkin, D.*; Kirsch, C.*; Hiller, J.*; Andrienko, D.; Assalauova, D.; Braun, K.; Carnis, J.; Kim, Y. Y.; Mandal, M.; Maier, A.; Meixner, A. J.; Mukharamova, N.; Scheele, M.; Schreiber, F.; Sprung, M.; Wahl, J.; Westendorf, S.; Zaluzhnyy, I. A.; Vartanyants, I. A. Spatially resolved fluorescence of caesium lead halide perovskite supercrystals reveals quasi-atomic behavior of nanocrystals. Nat. Commun. 2022, 13, 892. https://doi.org/10.1038/s41467-022-28486-3

 

56. Wahl, J.; Engelmayer, M.; Mandal, M.; Naujoks, T.; Haizmann, P.; Maier, A.; Peisert, H.; Andrienko, D.; Brütting, W.; Scheele, M. Porphyrin-functionalization of CsPbBrI2/SiO2 core-shell nanocrystals enhances the stability and efficiency in electroluminescent devices. Adv. Opt. Mater. 2021, 10, 2101945. https://onlinelibrary.wiley.com/doi/10.1002/adom.202101945

 

55. Schedel, C.; Strauß, F.; Kumar, K.; Maier, A.; Wurst, K. M.; Michel, P.; Scheele, M. Substrate Effects on the Bandwidth of CdSe Quantum Dot Photodetectors. ACS Appl. Mater. Interfaces 2021, 13, 47954−47961. https://pubs.acs.org/doi/full/10.1021/acsami.1c13581

 

54. Grassl, F.; Ullrich, A.; Mansour, A.; Abdalbaqi, S.; Koch, N.; Opitz, A.; Scheele, M.; Brütting, W. Coupled Organic-Inorganic Nanostructures with Mixed Organic Linker Molecules. ACS Appl. Mater. Interfaces 2021, 13, 37483–37493. https://doi.org/10.1021/acsami.1c08614

 

53. Fingerle, M; Dingerkus, J.; Schubert, H.; Wurst, K. M.; Scheele, M.; Bettinger, H. Heteroatom Cycloaddition At The (BN)2 Bay Region Of A Dibenzoperylene. Angew. Chem. Int. Ed. 2021, 60, 15798-15802. https://doi.org/10.1002/anie.202016699

 

52. Kumar, K.; Hiller, J.; Bender, M.; Nosrati, S.; Liu, Q.; Edelmann, M.; Maier, S.; Rammler, T.; Wackenhut, F.; Meixner, A. J.; Braun, K.; Bunz, U. H. F.; Scheele, M. Periodic Fluorescence Variations of CdSe Quantum Dots Coupled to Aryleneethynylenes with Aggregation Induced Emission. ACS Nano 2021, 15, 1, 480–488. https://pubs.acs.org/doi/full/10.1021/acsnano.0c05121

 

51. Steiner, A.M.; Lissel, F.; Fery, A.; Lauth, J.; Scheele, M.  Prospects of Coupled Organic-Inorganic Nanostructures for Charge and Energy Transfer Applications. Angew. Chem. Int. Ed. 2021, 60, 1152-1175. https://doi.org/10.1002/anie.201916402

 

50. Maier, A.; Löffler, R.; Scheele, M. Fabrication of nanocrystal superlattice microchannels by soft-lithography for electronic measurements of single‑crystalline domains. Nanotechnology 2020, 31, 405302. https://doi.org/10.1088/1361-6528/ab9c52

 

49. Scheele, M. For what it’s worth: Long-range order and orientation in nanocrystal superlattices. Bunsen Magazin 2020, 3, 57-61.

 

48. Seydel, T.; Koza, M. M.; Matsarskaia, O.; André, A.; Maiti, S.; Weber, M.; Schweins, R.; Prévost, S.; Schreiber, F.; Scheele, M. A Neutron Scattering Perspective on the Structure, Softness and Dynamics of the Ligand Shell of PbS Nanocrystals in Solution. Chem. Sci. 2020, 11, 8875. https://doi.org/10.1039/D0SC02636K

 

47. Maier, A.; Lapkin, D.; Mukharamova, N.; Frech, P.; Assalauova, D.; Ignatenko, A.; Khubbutdinov, R.; Lazarev, S.; Sprung, M.; Laible, F.; Loeffler, R.; Previdi, N.; Bräuer, A.; Guenkel, T.; Fleischer, M.; Schreiber, F.; Vartanyants, I.A.; Scheele, M. Structure-transport correlation reveals anisotropic charge transport in coupled PbS nanocrystal superlattices. Adv. Mater. 2020, 32, 2002254. https://doi.org/10.1002/adma.202002254

Zur Pressemitteilung

See press release

 

46. Fetzer, F.*; Maier, A.*; Hodas, M.; Geladari, O.; Braun, K.; Meixner, A. J.; Schreiber, F.; Schnepf, A.; Scheele, M. Structural order enhances charge carrier transport in self-assembled Au-nanoclusters. Nat. Commun. 2020, 11, 6188. https://doi.org/10.1038/s41467-020-19461-x

 

45. Kumar, K.; Liu, Q.; Hiller, J.; Schedel, C.; Maier, A.; Meixner, A.; Braun, K.; Lauth, J.; Scheele, M. A Fast, Infrared-Active Optical Transistor Based on Dye-Sensitized CdSe Nanocrystals. ACS Applied Materials & Interfaces 2019, 11, 48271. https://pubs.acs.org/doi/10.1021/acsami.9b18236

 

44. Mukharamova, N.; Lapkin, D.; Zaluzhnyy, I.A.; André, A.; Lazarev, S.; Kim, Y.Y.; Sprung, M.; Kurta, R.P.; Schreiber, F.; Vartanyants, I.A.; Scheele, M. Revealing Grain Boundaries and Defect Formation in Nanocrystal Superlattices by Nanodiffraction. Small 2019, 15, 1904954. https://onlinelibrary.wiley.com/doi/full/10.1002/smll.201904954

 

43. Zaluzhnyy, I.A.; Kurta, R.P.; Scheele, M.; Schreiber, F.; Ostrovskii, B.I.; Vartanyants, I.A. Angular x-ray cross-correlation analysis (AXCCA): Basic concepts and recent applications to soft matter and nanomaterials. Materials 2019, 12, 3464. https://www.mdpi.com/1996-1944/12/21/3464

 

42. Märker, B.; Hiller, J.; Wackenhut, F.; Braun, K.; Meixner, A.; Scheele, M. Simultaneous Positive and Negative Optical Patterning with Dye-Sensitized CdSe Quantum Dots. J. Chem. Phys. 2019, 151, 141102. https://aip.scitation.org/doi/10.1063/1.5124232

 

41. Maiti, S.; André, A.; Maiti, S.; Hodas, M.; Jankowski, M; Scheele, M.; Schreiber, F. Revealing Structure and Crystallographic Orientation of Soft Epitaxial Assembly of Nanocrystals by Grazing Incidence X-ray Scattering. J. Phys. Chem. Lett. 2019, 10, 20, 6324-6330. https://pubs.acs.org/doi/10.1021/acs.jpclett.9b02373

 

40. Maiti, S.; Maiti, S.; Maier, A.; Banerjee, R.; Chen, S.; Murphy, B. M.; Scheele, M.; Schreiber, F. In-situ Formation of Electronically Coupled Superlattice of Cu1.1S Nanodiscs at the Liquid/Air Interface. Chem. Commun. 2019, 55, 4805-4808 . https://pubs.rsc.org/en/content/articlehtml/2019/CC/C9CC01758E

 

39. Maiti, S.; Maiti, S.; Khan, A. H.; Wolf, A.; Dorfs, D.; Moreels, I.; Schreiber, F.; Scheele, M. Dye-Sensitized Ternary Copper Chalcogenide Nanocrystals: Optoelectronic Properties, Air Stability and Photosensitivity. Chem. Mater. 2019, 31, 2443–2449. https://pubs.acs.org/doi/10.1021/acs.chemmater.8b05108

 

38. Weber, M.; Westendorf, S.; Märker, B.; Braun, K.; Scheele, M. Opportunities and challenges for electrochemistry in studying electronic structure of nanocrystals. Phys. Chem. Chem. Phys. 2019, 21, 8992-9001. https://pubs.rsc.org/en/content/articlehtml/2019/cp/c9cp00301k

 

37. Krebs, K.; Hanselmann, D.; Schubert, H.; Wurst, K.; Scheele, M.; Wesemann,L. Phosphine-Stabilized Digermavinylidene, J. Am. Chem. Soc. 2019, 141, 3424-3429. https://pubs.acs.org/doi/10.1021/jacs.8b13645

 

36. Maiti, S.; Maiti, S.; Maier, A.; Hagenlocher, J.; Chumakov, A.; Schreiber, F.; Scheele, M. Understanding the Formation of Conductive Mesocrystalline Superlattices with Cubic PbS Nanocrystals at the Liquid/Air Interface. J. Phys. Chem. C 2019, 123, 1519-1526 . https://pubs.acs.org/doi/10.1021/acs.jpcc.8b11518

 

35. Samadi Khoshkhoo, M.; Rabe, S.; Scheele, M.; Joseph, Y. Chemiresistive Properties of a Novel Composite Comprised of ITO-Nanoparticles and 1,8-Diaminooctane. Proceedings 2018, 2, 1516. https://doi.org/10.3390/proceedings2131516

 

34. Maiti, S.; Maiti, S.; Joseph, Y.; Wolf, A.; Bruetting, W.; Dorfs, D.; Schreiber, F.; Scheele, M. Electronically Coupled, Two-Dimensional Assembly of Cu1.1S Nanodiscs for Selective Vapor Sensing Applications. J. Phys. Chem. C 2018, 122, 23720–23727. https://pubs.acs.org/doi/10.1021/acs.jpcc.8b05276

 

33. André, A.; Weber, M.; Wurst, K. M.; Maiti, S.; Schreiber, F.; Scheele, M. Electron-Conducting PbS Nanocrystal Superlattices with Long-Range Order Enabled by Terthiophene Molecular Linkers. ACS Applied Materials & Interfaces 2018, 10, 24708-24714. https://pubs.acs.org/doi/10.1021/acsami.8b06044

 

32. Wurst, K. M.; Bender, M.; Lauth, J. ; Maiti, S.; Chassé, T.; Meixner, A.; Siebbeles, L.D.A.; Bunz, U. H. F.; Braun, K.; Scheele, M. Correlated, Dual-Beam Optical Gating in Coupled Organic-Inorganic Nanostructures. Angew. Chem. Int. Ed. 2018, 57, 11559-11563. https://doi.org/10.1002/anie.201803452

 

31. Schedel, C.; Peisert, H.; Chassé, T.; Scheele, M. Evidence for photo-switchable carrier mobilities in blends of PbS nancrystals and photochromic dithienylcyclopentene derivatives. Z. Phys. Chem. 2018, 232, 1369-1381https://doi.org/10.1515/zpch-2018-1128

 

30. Samadi Khoshkhoo, M.; Joseph, Y.; Maiti, S.; Schreiber, F.; Chassé, T.; Scheele, M. Tunable Charge Transport in Hybrid Superlattices of Indium Tin Oxide Nanocrystals and Metal Phthalocyanines - Towards Sensing Applications. Adv. Mater. Interfaces 2018, 5, 1701623. http://onlinelibrary.wiley.com/doi/10.1002/admi.201701623/full

 

29. Maiti, S. ; André, A.; Banerjee, R.; Hagenlocher, J.; Konovalov, O.; Schreiber, F.; Scheele, M. Monitoring Self-Assembly and Ligand Exchange of PbS Nanocrystal Superlattices at the Liquid/Air Interface in Real Time. J. Phys. Chem. Lett. 2018, 9, 739−744. http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.7b03278

 

28. Zaluzhnyy, I.; Kurta, R; André, A.; Gorobotsov, O.Y.; Rose, M.; Skopintsev, P.; Besedin, I.; Zozulya, A. V.; Sprung, M.; Schreiber, F.; Vartanyants, I. A.; and Scheele, M. Long-range correlations in a tiny focus. Photon Science 2017. Highlights and Annual Report 2017, 26-27.

 

27. Lauth, J. ; Grimaldi, G.; Kinge, S.; Houtepen, A.J.; Siebbeles, L.D.A.; Scheele, M. Ultrafast Charge Transfer and Upconversion in Zn β-Tetraaminophthalocyanine Functionalized PbS Nanostructures Probed by Transient Absorption Spectroscopy. Angew. Chem. Int. Ed. 2017, 56, 14061. http://onlinelibrary.wiley.com/doi/10.1002/ange.201707443/full

 

26. Samadi Khoshkhoo, M. ; Peisert, H.; Chassé, T.; Scheele, M. The role of the density of interface states in interfacial energy level alignment of PTCDA. Org. Electron. 2017, 49, 249-254. http://www.sciencedirect.com/science/article/pii/S1566119917303221

 

25. Zaluzhnyy, I.; Kurta, R; André, A.; Gorobotsov, O.Y.; Rose, M.; Skopintsev, P.; Besedin, I.; Zozulya, A. V.; Sprung, M.; Schreiber, F.; Vartanyants, I. A.; and Scheele, M. Quantifying Angular Correlations between the Atomic Lattice and the Superlattice of Nanocrystals Assembled with Directional Linking. Nano Lett 2017, 17, 3511–3517. http://pubs.acs.org/doi/full/10.1021/acs.nanolett.7b00584

 

24. Samadi Khoshkhoo, M. ; Maiti, S.; Schreiber, F.; Chassé, T.; Scheele, M. Surface Functionalization with Copper Tetraaminophthalocyanine Enables Efficient Charge Transport in Indium Tin Oxide Nanocrystal Thin Films. ACS Appl. Mater. Interfaces 2017, 9, 14197–14206.

http://pubs.acs.org/doi/abs/10.1021/acsami.7b00555

 

23. André, A.; Theurer, C.; Lauth, J.; Maiti, S.; Hodas, M.; Samadi Khoshkhoo, M. ; Kinge, S.; Meixner, M.; Schreiber, F.; Siebbeles, L.; Braun, K.; Scheele, M. Structure, transport and photoconductance of PbS quantum dot monolayers functionalized with a Copper Phthalocyanine derivative. Chem. Comm. 2017, 53, 1700-1703.

http://pubs.rsc.org/en/content/articlelanding/2017/cc/c6cc07878h

 

22. Schedel, C.; Thalwitzer, R.; Samadi Khoshkhoo, M; Scheele, M. Towards Photo-Switchable Transport in Quantum Dot Solids. Z. Phys. Chem. 2017, 231, 135–146. https://www.degruyter.com/view/j/zpch.2017.231.issue-1/zpch-2016-0863/zpch-2016-0863.xml

 

21. Novak, J.*; Rupak, B.*; Kornowski, A.; Jankowski, M.; André, A.; Weller, H.; Schreiber, F.; Scheele, M. Site-Specific Ligand Interactions Favor the Tetragonal Distortion of PbS Nanocrystal Superlattices. ACS Appl. Mater. Interfaces 2016, 8, 22526–22533.

http://pubs.acs.org/doi/abs/10.1021/acsami.6b06989

 

20. Lauth, J.; Gorris, F. E. S.; Samadi Khoshkhoo, M.; Chassé, T.; Friedrich, W.; Lebedeva, V.; Meyer, A.; Klinke, C.; Kornowski, A.; Scheele, M.; Weller, H. Solution-Processed Two-Dimensional Ultrathin InSe Nanosheets Chem Mater. 2016, 28, 1728–1736.

http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.5b04646

 

19. André, A.; Zherebetskyy, D.; Hanifi, D.; He, B.; Samadi Khoshkhoo, M. ; Jankowski, M.; Chasse, T.; Wang, L.-W.; Schreiber, F.; Salleo, A.; Liu, Y.; Scheele, M. Towards Conductive Mesocrystalline Assemblies: PbS Nanocrystals Cross-Linked with Tetrathiafulvalene Dicarboxylate. Chem Mater. 2015, 27, 8105–8115.

http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.5b03821

 

18. Scheele, M. To Be or not to Be - Bandlike Transport in Quantum Dot Solids. Zeitschrift fuer Physikalische Chemie 2015, 229(1–2): 167–178. 

https://doi.org/10.1515/zpch-2014-0587

 

17. Scheele, M. ; Brütting, W.; Schreiber, F. Coupled Organic-Inorganic Nanostructures. Phys. Chem. Chem. Phys. 2015, 17, 97-111.

http://pubs.rsc.org/en/content/articlehtml/2015/cp/c4cp03094j

 

16. Sunds


Privacy settings

Our website uses cookies. Some of them are mandatory, while others allow us to improve your user experience on our website. The settings you have made can be edited at any time.

or

Essential

in2code

Videos

in2code
YouTube
Google