Distributed Intelligence

iCEM

Sample-efficient Cross-Entropy Method for Real-time Planning

Trajectory optimizers for model-based reinforcement learning, such as the Cross-Entropy Method (CEM), can yield compelling results even in high-dimensional control tasks and sparse-reward environments. However, their sampling inefficiency prevents them from being used for real-time planning and control. We propose an improved version of the CEM algorithm for fast planning, with novel additions including temporally-correlated actions and memory, requiring 2.7-22x less samples and yielding a performance increase of 1.2-10x in high-dimensional control problems.

Publication:
Pinneri, C., Sawant, S., Blaes, S., Achterhold, J., Stueckler, J., Rolinek, M., Martius, G. Sample-efficient Cross-Entropy Method for Real-time Planning In Conference on Robot Learning 2020, 2020

Privacy settings

Our website uses cookies. Some of them are mandatory, while others allow us to improve your user experience on our website. The settings you have made can be edited at any time.

or

Essential

in2code

Videos

in2code
YouTube
Google