Faranak Shamsafar, Timon Höfer, Nuri Benbarka
Project partners: Technical University of Munich, Knoke Beschlagtechnik GmbH, Gräff Robotics GmbH
Automatic bin picking is a major problem in robotics with the goal to pick objects from a bin by a robot arm. The iBinPick project is targeted to study the problem of bin picking for small identical objects, which are piled randomly in large quantities and thus, making the inherent challenges of bin picking more severe. Namely, the objects are more densely crowded and their individual recognition requires more insightful strategies. Moreover, the 6D poses of small instances demand more precision to be grasped by the robot.
Generally, bin picking consists of four main steps, (i) object detection, (ii) 6D pose estimation, (iii) motion planning and (iv) control. In this research, we focus on the first two phases, i.e. object detection and 6D pose estimation, which together establish the computer vision module of the project in order to understand the scene via sensor. We mainly use Microsoft Azure Kinect camera for capturing aligned RGB and depth images. In the experiments, the camera is mounted at two heights of 30 cm and 60 cm above the bin ground.
A Real Dataset for Object Recognition for Highly Cluttered Homogeneous Bin Picking
This dataset contains 600 samples (aligned RGB and depth images) for 6 object models. For this, we have mounted a Microsoft Azure Kinect camera at two different heights (30 cm and 60 cm) above the bin ground. Evaluating images at different heights is important to decide upon the placement of the camera (e.g. robot-carried or fixed-placed). These cluttered images are labeled for instance segmentation, which are conforming to the COCO dataset. We have used the RGB images and app.neuralmarker.ai for labeling.
Download the CAD models
Please cite our related paper if you use this dataset.
Our website uses cookies. Some of them are mandatory, while others allow us to improve your user experience on our website. The settings you have made can be edited at any time.
or
Essential
in2cookiemodal-selection
Required to save the user selection of the cookie settings.
3 months
be_lastLoginProvider
Required for the TYPO3 backend login to determine the time of the last login.
3 months
be_typo_user
This cookie tells the website whether a visitor is logged into the TYPO3 backend and has the rights to manage it.
Browser session
ROUTEID
These cookies are set to always direct the user to the same server.
Browser session
fe_typo_user
Enables frontend login.
Browser session
Videos
iframeswitch
Used to show all third-party contents.
3 months
yt-player-bandaid-host
Is used to display YouTube videos.
Persistent
yt-player-bandwidth
Is used to determine the optimal video quality based on the visitor's device and network settings.
Persistent
yt-remote-connected-devices
Saves the settings of the user's video player using embedded YouTube video.
Persistent
yt-remote-device-id
Saves the settings of the user's video player using embedded YouTube video.
Persistent
yt-player-headers-readable
Collects data about visitors' interaction with the site's video content - This data is used to make the site's video content more relevant to the visitor.
Persistent
yt-player-volume
Is used to save volume preferences for YouTube videos.
Persistent
yt-player-quality
Is used to save the quality settings for YouTube videos.
Persistent
yt-remote-session-name
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-session-app
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-fast-check-period
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-cast-installed
Saves the user settings when retrieving a YouTube video integrated on other web pages
Browser session
yt-remote-cast-available
Saves user settings when retrieving integrated YouTube videos.
Browser session
ANID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
2 years
SNID
Google Maps - Google uses these cookies to store user preferences and information when you view pages with Google Maps.
1 month
SSID
Used to store information about how you use the site and what advertisements you saw before visiting this site, and to customize advertising on Google resources by remembering your recent searches, your previous interactions with an advertiser's ads or search results, and your visits to an advertiser's site.
6 months
1P_JAR
This cookie is used to support Google's advertising services.
1 month
SAPISID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
2 years
APISID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
6 months
HSID
Includes encrypted entries of your Google account and last login time to protect against attacks and data theft from form entries.
2 years
SID
Used for security purposes to store digitally signed and encrypted records of a user's Google Account ID and last login time, enabling Google to authenticate users, prevent fraudulent use of login credentials, and protect user data from unauthorized parties. This may also be used for targeting purposes to display relevant and personalized advertising content.
6 months
SIDCC
This cookie stores information about user settings and information for Google Maps.
3 months
NID
The NID cookie contains a unique ID that Google uses to store your preferences and other information.
6 months
CONSENT
This cookie tracks how you use a website to show you advertisements that may be of interest to you.
18 years
__Secure-3PAPISID
This cookie is used to support Google's advertising services.
2 years
__Secure-3PSID
This cookie is used to support Google's advertising services.
6 months
__Secure-3PSIDCC
This cookie is used to support Google's advertising services.
6 months