Seminar für Sprachwissenschaft

Im folgenden findet sich Software die in unserer Arbeitsgruppe entwickelt wurde und der Allgemeinheit zur Verfügung gestellt wird. Es handelt sich in erster Linie um R und Python Softwarepakete.


AcousticNDLCodeR

Coding Sound Files for Use with NDL

Homepage: https://cran.r-project.org/package=AcousticNDLCodeR
Betreuer: Denis Arnold
Autoren: Denis Arnold, Elnaz Shafaei Bajestan

Beschreibung

Make acoustic cues to use with the R packages 'ndl' or 'ndl2' or Python package 'pyndl'. The package implements functions used in the PLoS ONE paper: Denis Arnold, Fabian Tomaschek, Konstantin Sering, Florence Lopez, and R. Harald Baayen (2017). Words from spontaneous conversational speech can be recognized with human-like accuracy by an error-driven learning algorithm that discriminates between meanings straight from smart acoustic features, bypassing the phoneme as recognition unit. PLoS ONE 12(4):e0174623 <doi:10.1371/journal.pone.0174623> More details can be found in the paper and the supplement.


ITSADUG

Interpreting Time Series and Autocorrelated Data Using GAMMs

Homepage: https://CRAN.R-project.org/package=itsadug
Betreuerin: Jacolien van Rij
Autoren: Jacolien van Rij, Martijn Wieling, R. Harald Baayen, Hedderik van Rijn

Beschreibung

GAMM (Generalized Additive Mixed Modeling; Lin & Zhang, 1999) as implemented in the R package 'mgcv' (Wood, S.N., 2006; 2011) is a nonlinear regression analysis which is particularly useful for time course data such as EEG, pupil dilation, gaze data (eye tracking), and articulography recordings, but also for behavioral data such as reaction times and response data. As time course measures are sensitive to autocorrelation problems, GAMMs implements methods to reduce the autocorrelation problems. This package includes functions for the evaluation of GAMM models (e.g., model comparisons, determining regions of significance, inspection of autocorrelational structure in residuals) and interpreting of GAMMs (e.g., visualization of complex interactions, and contrasts).


pyndl

An efficient implementation of Naive Discriminative Learning in Python

Homepage: https://pyndl.readthedocs.io/en/latest/
Betreuer: Konstantin Sering, Marc Weitz
Autoren: Konstantin Sering, Marc Weitz, David-Elias Künstle, Lennart Schneider

Beschreibung

pyndl is an implementation of Naive Discriminative Learning in Python. It was created to analyse huge amounts of text file corpora. Especially, it allows to efficiently apply the Rescorla-Wagner learning rule to these corpora.


ndl

Naive Discriminative Learning

Homepage: https://CRAN.R-project.org/package=ndl
Betreuer: Konstantin Sering
Autoren: Antti Arppe, Peter Hendrix, Petar Milin, R. Harald Baayen, Konstantin Sering, Cyrus Shaoul

Beschreibung

Naive discriminative learning implements learning and classification models based on the Rescorla-Wagner equations and their equilibrium equations.


TreeBUGS

Introduction to Hierarchical MPT Modeling

Homepage: https://cran.r-project.org/web/packages/TreeBUGS/vignettes/TreeBUGS_1_intro.html
Autoren:  Daniel W. Heck, Nina R. Arnold, Denis Arnold