Visual information processing begins in the retina, a thin neuronal tissue lining the back of the eyeball. As a part of the brain, the retina does not only convert the incoming stream of photons into electrical signals, it also performs a detailed and highly specific analysis of the observed scene. Therefore, the retina can be considered a highly specialized and sophisticated image processor.
All visual information sent from the retina to the brain travels along the optic nerve, a major bottleneck of the visual system. Therefore, prior to transmission to the brain, important aspects of the observed scene must be extracted and encoded as spike patterns. These features include simple ones such as contrast, brightness and “colour”, but also more complex ones, such as information about objects moving relative to the background. Thus, the retina sends in parallel many representations of the visual scene to the brain; each of these representations encodes different features and is represented by one of the roughly 40 retinal ganglion cell types whose axon form the optic nerve. The importance of retinal signal processing is highlighted by the fact that important decisions – what visual information is relevant, and what can be safely discarded – is made already in the retina.
The computational capabilities of this intricate neuronal network rely on nearly 100 types of retinal neurons organized in complex microcircuits. Our work aims at unravelling function and organization of retinal microcircuits towards a better understanding of the underlying computational principles. Furthermore, we are interested in how these circuits are altered during degeneration.
We established a comprehensive method catalogue for optical measurements of light-driven population activity along the retina’s entire vertical pathway based on synthetic and genetically encoded fluorescent activity sensors.
Our key technique is two-photon microscopy, which enables us to excite fluorescent probes in the intact living retinal tissue using infrared laser light, with minimal effects on the light-sensitive photoreceptor pigment. Therefore, we can simultaneously record activity in neurons at both population and subcellular levels while presenting sophisticated light stimuli. This approach is complemented by single-cell electrophysiology and immunocytochemistry, as well as large-scale data analysis in close collaboration with the groups of Philipp Berens, Matthias Bethge, and Katrin Franke at Tübingen University.
Our website uses cookies. Some of them are mandatory, while others allow us to improve your user experience on our website. The settings you have made can be edited at any time.
or
Essential
in2cookiemodal-selection
Required to save the user selection of the cookie settings.
3 months
be_lastLoginProvider
Required for the TYPO3 backend login to determine the time of the last login.
3 months
be_typo_user
This cookie tells the website whether a visitor is logged into the TYPO3 backend and has the rights to manage it.
Browser session
ROUTEID
These cookies are set to always direct the user to the same server.
Browser session
fe_typo_user
Enables frontend login.
Browser session
Videos
iframeswitch
Used to show all third-party contents.
3 months
yt-player-bandaid-host
Is used to display YouTube videos.
Persistent
yt-player-bandwidth
Is used to determine the optimal video quality based on the visitor's device and network settings.
Persistent
yt-remote-connected-devices
Saves the settings of the user's video player using embedded YouTube video.
Persistent
yt-remote-device-id
Saves the settings of the user's video player using embedded YouTube video.
Persistent
yt-player-headers-readable
Collects data about visitors' interaction with the site's video content - This data is used to make the site's video content more relevant to the visitor.
Persistent
yt-player-volume
Is used to save volume preferences for YouTube videos.
Persistent
yt-player-quality
Is used to save the quality settings for YouTube videos.
Persistent
yt-remote-session-name
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-session-app
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-fast-check-period
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-cast-installed
Saves the user settings when retrieving a YouTube video integrated on other web pages
Browser session
yt-remote-cast-available
Saves user settings when retrieving integrated YouTube videos.
Browser session
ANID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
2 years
SNID
Google Maps - Google uses these cookies to store user preferences and information when you view pages with Google Maps.
1 month
SSID
Used to store information about how you use the site and what advertisements you saw before visiting this site, and to customize advertising on Google resources by remembering your recent searches, your previous interactions with an advertiser's ads or search results, and your visits to an advertiser's site.
6 months
1P_JAR
This cookie is used to support Google's advertising services.
1 month
SAPISID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
2 years
APISID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
6 months
HSID
Includes encrypted entries of your Google account and last login time to protect against attacks and data theft from form entries.
2 years
SID
Used for security purposes to store digitally signed and encrypted records of a user's Google Account ID and last login time, enabling Google to authenticate users, prevent fraudulent use of login credentials, and protect user data from unauthorized parties. This may also be used for targeting purposes to display relevant and personalized advertising content.
6 months
SIDCC
This cookie stores information about user settings and information for Google Maps.
3 months
NID
The NID cookie contains a unique ID that Google uses to store your preferences and other information.
6 months
CONSENT
This cookie tracks how you use a website to show you advertisements that may be of interest to you.
18 years
__Secure-3PAPISID
This cookie is used to support Google's advertising services.
2 years
__Secure-3PSID
This cookie is used to support Google's advertising services.
6 months
__Secure-3PSIDCC
This cookie is used to support Google's advertising services.
6 months