Interfakultäres Institut für Mikrobiologie und Infektionsmedizin

Research focus

How do unicellular (cyano)bacteria sense their environment and respond to ambient changes? We address these fundamental questions by analyzing the response of unicellular (cyano)bacteria (Synechococcus, Synechocystis, and in one non-cyanobacterial project, using Bacillus subtilis) to changing nutrition. The cellular responses are highly coordinated and require a system, which integrates the central metabolic state of the organism. This is the task of the PII signal transduction family, which coordinate the balance of C/N metabolism with the energy status of the cells. How the PII proteins work and function at the molecular level is our primary research goal. Recently, we addressed the question how the cyanobacterial PII signaling system evolved during the endosymbiotic transformation into chloroplasts and thereby discovered the first glutamine sensory mechanism in the plant kingdom.

Furthermore, we are trying to apply the signalling and regulatory properties of PII proteins for the development of metabolite FRET sensors and metabolic pathway engineering.

A further focus is on the understanding of the acclimation to nitrogen starvation (chlorosis). We want to understand the principles underlying survival under non-growing conditions.