Glaciology and Geophysics - Publications

Publications

In review or revision

  • S. Franke, (incl. A. M. Zuhr) et al.,2024, “Age-depth distribution in western Dronning Maud Land, East Antarctica, from three decades of radar surveys”, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2349.
  • R. G. Bingham, (incl. R. Drews, A.C.J. Henry, F. S. L. Oraschewski, R. Schlegel, A. M. Zuhr) et al.,2024, “Review Article: Antarctica’s internal architecture: Towards a radiostratigraphically-informed age–depth model of the Antarctic ice sheets”, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2593.
  • F.M. Oraschewski, (incl. M.R. Ershadi, I. Koch, R. Drews) et al., 2023, “Layer‑optimized SAR processing with a mobile phase‑sensitive radar for detecting the deep englacial stratigraphy of Colle Gnifetti, Switzerland/Italy”, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-2731.
  • M.R. Ershadi, (incl. R. Drews, A.C.J. Henry, F.M. Oraschewski, I. Koch) et al., 2024, “Investigating the dynamic history of a promontory ice rise using radar data”, Journal of Glaciology [preprint], https://doi.org/10.31223/X5CH7N.
  • G. Moss, (incl. V. Višnjević, F. Oraschewski, R. Drews) et al., 2023, "Simulation-Based Inference of Surface Accumulation and Basal Melt Rates of an Antarctic Ice Shelf from Isochronal Layers", under review at Journal of Geophysical Research: Earth Surfacehttps://arxiv.org/abs/2312.02997.
  • C.T. Wild, et al., “A Tale of Two Ice Shelves: Competing Glacial Dynamics During the Unpinning of the Dotson-Crosson Ice Shelf System, West Antarctica”. Journal of Geophysical Research: Earth Surface.
  • C.T. Wild, et al., “Variability in Antarctic Ice Shelf Basal Melting Due to Finescale Topography, Tides, and Meltwater Plume Regulation”. Science Advances.
  • D. Price, (incl. C.T. Wild) et al., “Basal Reflectance and Melt Rates Across the Ross Ice Shelf, Antarctica, From Grounding Line to Ice Shelf Front”. Journal of Glaciology.
  • T.A. Scambos, (incl. C.T. Wild) et al., “AMIGOS-3 Multi-Sensor Stations at Thwaites Eastern Ice Shelf, and the Climate, Ice, and Ocean Conditions There in 2020–2022”. Journal of Glaciology.
  • V. Višnjević, (incl. G. Moss, C.T. Wild, R. Drews) et al., “Mapping the Composition of Antarctic Ice Shelves as a Metric for Their Susceptibility to Future Climate Change”. Geophysical Research Letters.
  • G. Collao-Barrios, (incl. C.T. Wild) et al., “Tidal Influence on Flow Dynamics of Dotson Ice Shelf, West Antarctica”. The Cryosphere. DOI: 10.5194/egusphere-2024-1895.

Peer-reviewed

2024

  • C.T. Wild, et al., 2024, “Rift propagation signals the last act of the Thwaites Eastern Ice Shelf despite low basal melt rates”, Journal of Glaciology, doi:10.1017/jog.2024.64.
  • M.R. Ershadi, (incl. R. Drews, I. Koch) et al., 2024, "Autonomous Rover Enables Radar Profiling of Ice-Fabric Properties in Antarctica," in IEEE Transactions on Geoscience and Remote Sensing, https://ieeexplore.ieee.org/document/10516336.
  • K.E. Alley, (incl. C.T. Wild) et al., 2024, “Evolution of sub-ice-shelf channels reveals changes in ocean-driven melt in West Antarctica”, Journal of Glaciology, pp.1-15, https://doi.org/10.1017/jog.2024.20.
  • The Firn Symposium team (incl. F.M. Oraschewski and R. Drews), 2024,Firn on ice sheets”, Nat Rev Earth Environ 5, 79–99, https://doi.org/10.1038/s43017-023-00507-9.
  • I. Koch, (incl. R. Drews, F. Oraschewski, V. Višnjević, L.S. Muhle) et al., 2023, “Radar internal reflection horizons from multisystem data re‑flect ice dynamic and surface accumulation history along the Princess Ragnhild Coast, Dronning Maud Land, East Antarctica”, Journal of Glaciology, 1-19, https://doi.org/10.1017/jog.2023.93.

2023

  • T.A. Gerber, (incl. R. Drews) et al., 2023, “Crystal orientation fabric anisotropy causes directional hardening of the Northeast Greenland Ice Stream”, Nat Commun 14, 2653, https://doi.org/10.1038/s41467-023-38139-8.
  • D. A. Lilien, (incl. M.R. Ershadi, R. Drews) et al., 2023, “Simulating higher-order fabric structure in a coupled, anisotropic ice-flow model: application to Dome C”, Journal of Glaciology, pp. 1–20, https://doi.org/10.1017/jog.2023.78.
  • A.C. Frémand, (incl. R. Drews) et al.2023, “Antarctic Bedmap data: Findable, Accessible, Interoperable, and Reusable (FAIR) sharing of 60 years of ice bed, surface, and thickness data”, Earth System Science Data, https://doi.org/10.5194/essd-15-2695-2023.

2022

  • V. Visnjevic, et al., 2022, “Predicting the steady-state isochronal stratigraphy of ice shelves using observations and modeling”,  The Cryosphere, https://doi.org/10.5194/tc-16-4763-2022.
  • F.M. Oraschewski, and A. Grinsted, 2022, “Modeling enhanced firn densification due to strain softening”, The Cryosphere  16, 2683–2700, https://doi.org/10.5194/tc-16-2683-2022.
  • A.C.J. Henry, R. Drews, C. Schannwell, and V. Višnjević, 2022, “Hysteretic evolution of ice rises and ice rumples in response to variations in sea level”, The Cryosphere, 16, 3889–3905, https://doi.org/10.5194/tc-16-3889-2022.
  • A. Oetting, (incl. R. Drews) et al., 2022,“Geomorphology and shallow sub-sea-floor structures underneath the Ekström Ice Shelf, Antarctica”, The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022.
  • O. Zeising, (incl. M.R. Ershadi) et al., 2023, “Improved estimation of the bulk ice crystal fabric asymmetry from polarimetric phase co-registration”, The Cryosphere, 17, 1097–1105, https://tc.copernicus.org/articles/17/1097/2023/.
  • M.R. Ershadi, (incl. R. Drews) et al., 2022, “Polarimetric radar reveals the spatial distribution of ice fabric at domes and divides in East Antarctic”, The Cryosphere, 16, https://doi.org/10.5194/tc-16-1719-2022.

2021

2020

  • M. Schaller, (incl. R. Drews) et al., 2020, “Comparison of soil characteristics from geophysical and geochemical techniques along a climate and ecological gradient, Chilean Coastal Cordillera (26° to 38° S)”,  SOIL, 6, 629–647, https://doi.org/10.5194/soil-6-629-2020.
  • C. Schannwell, (incl. R. Drews) et al., 2020, “Quantifying the effect of ocean bed properties on ice sheet geometry over 40 000 years with a full-Stokes model”, The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020.
  • R. Drews, et al., 2020, “Atmospheric and oceanographic signatures in the ice-shelf channel morphology of Antarctic ice shelves”, Journal of Geophysical Research-Earth Surface, https://doi.org/10.1029/2020JF005587.
  • D. Dunmir, (incl. R. Drews) et al., 2020, “Observations of buried lake drainage on the Antarctic Ice Sheet”, Geophys. Res. Lett, https://doi.org/10.1029/2020GL087970.
  • E. Smith, (incl. R. Drews) et al., 2020, “Detailed seismic bathymetry beneath Ekstroem Ice Shelf, Antarctica: Implications for glacial history and ice-ocean interaction”, Gephysical Research Letters, https://doi.org/10.1029/2019GL086187.
  • B. Hubbard, (incl. R. Drews) et al., 2020, “High resolution vertical strain and velocity from repeat borehole logging by optical televiewer: Derwael Ice Rise, Antarctica”, Journal of Glaciology, https://doi.org/10.1017/jog.2020.18.
  • S. Mohadjer, (incl. R. Drews) et al., 2020, “Temporal variations in rockfall and rockwall retreat rates in a deglaciated valley over the last 11 ka”, Geology, https://doi.org/10.1130/G47092.1.

2019

2018

  • S. Berger, (incl. R. Drews) et al., 2017, “Detecting high spatial variability of ice-shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica”, The Cryosphere, 11, 2675–2690, https://doi.org/10.5194/tc-11-2675-2017.

2017 and before