In den sogenannten MINT-Fächern – Mathematik, Informatik, Naturwissenschaften und Technik – brechen bis zu 40 Prozent der Studierenden ihr Studium bereits in der Eingangsphase ab. Ein Forschungsteam vom Methodenzentrum der Wirtschafts- und Sozialwissenschaftlichen Fakultät der Universität Tübingen hat nun ein statistisches Verfahren entwickelt, mit dem sich für Studierende im Durchschnitt acht Wochen im Voraus prognostizieren lässt, ob sie ihr Studium abbrechen werden.
Dem Team gelang mit dem neu entwickelten Algorithmus auch ein allgemeiner methodischer Fortschritt. Der Algorithmus ist in der Lage, im Zuge der Vorhersage die bereits zu Studienbeginn bestehenden Unterschiede zwischen den individuellen Studierenden – wie etwa die allgemeine kognitive Leistungsfähigkeit – zu berücksichtigen, und diese von der Befindlichkeit individueller Studierender über die Zeit zu trennen. So wird es möglich, die Wahrscheinlichkeit eines Studienabbruchs auch für prinzipiell geeignete Studierende vorherzusagen. Eine solche Trennung verschiedener Einflussebenen ist auch für zahlreiche Fragestellungen aus anderen Bereichen interessant. Zur Entwicklung der Methode veröffentlichte das Team einen Beitrag in der Fachzeitschrift Psychometrika.
Studierende der MINT-Fächer bringen zu Beginn unterschiedliche Voraussetzungen mit, die Einfluss auf die grundsätzliche Wahrscheinlichkeit eines Abbruchs haben. „Es liegt auf der Hand, dass zum Beispiel die Mathematikleistung in der schulischen Oberstufe und die allgemeine kognitive Leistungsfähigkeit bei individuellen Studierenden unterschiedlich sind. Geringere Leistungsfähigkeit führt zunächst häufiger zu einem Abbruch in der Eingangsphase“, sagt Professor Augustin Kelava vom Methodenzentrum. „Wir wollten uns jedoch der Frage annähern, wie sich unter den vergleichbar befähigten Erstsemestern jene erkennen lassen, die ihr Studium schnell abbrechen.“
Für die Studie wurden 122 Studierende der Universität Tübingen im ersten Mathematiksemester in einer großen Eingangsuntersuchung zu ihren Vorkenntnissen in der Mathematik, ihren Interessen, ihrer Schulkarriere und ihrem finanziellen Hintergrund befragt und Persönlichkeitsvariablen, unter anderem zur emotionalen Stabilität erhoben. „Die Ergebnisse der Eingangsuntersuchung gaben uns ein Bild der stabilen Eigenschaften jeder und jedes Studierenden“, sagt Kelava. Danach folgten dreimal in der Woche, insgesamt 50 Mal über 131 Semestertage, jeweils fünfminütige Befragungen, bei denen die Studierenden angaben, wie sie sich aktuell fühlen und ob sie nach eigener Einschätzung im Unterricht mitkommen. „Wir wussten zusätzlich aus Gründen der Überprüfung der gemachten Vorhersagen, wer bis zum Semesterende dabei war, und kannten die Note der Abschlussklausur. Die Akzeptanz unserer Befragung war ferner sehr hoch“, berichtet er.
Das Forschungsteam griff nicht gezielt in die individuellen Studienverläufe ein, „was aber auf Grundlage der im Fokus stehenden Verfahrensentwicklung eine künftige individuen-orientierte Anwendung wäre“, meint der Wissenschaftler. Die Vorhersagen wurden mit der neuentwickelten statistischen Methode berechnet, einem Algorithmus, der in Echtzeit, das heißt bis zu einem Zeitpunkt gesammelte Daten dazu verwendet, das künftige Verhalten und Erleben der oder des einzelnen Studierenden mit großer Wahrscheinlichkeit zu bestimmen – ein sogenannter Forward-Filtering-Backward-Sampling (FFBS)-Algorithmus. „Die Einflussebenen sind komplex. Sie greifen ineinander, eine Vielzahl von Variablen spielt eine Rolle bei der Entscheidung, durchzuhalten oder das Studium abzubrechen.“
Im Ergebnis konnte das Forschungsteam im Durchschnitt bereits acht Wochen vorher Studienabbruchsintentionen vorhersagen, also zu einem Zeitpunkt, wenn die Personen noch zu den Veranstaltungen kommen. „Häufig sind die Studierenden nach dem Start im Wintersemester nach Weihnachten nicht mehr da“, sagt Kelava. „Uns ist es gelungen, die beiden Einflussebenen einerseits der stabilen Eigenschaften der Studierenden von andererseits den Veränderungen ihrer Befindlichkeit über die Zeit bei der Vorhersage der verdeckten Intentionen zu trennen. Wir können sagen, wann sie eine latente, zum Zeitpunkt noch nicht direktbar beobachtbare, Abbruchsneigung entwickeln aufgrund ihrer eigenen Auskünfte, wie sie sich fühlen und wie sie im Studium zurechtkommen.“
In der Praxis biete die statistische Methode ein Instrument, um spezifisch auf individuelle Studierende etwa mit Beratungsangeboten zuzugehen, die für das Fach prinzipiell befähigt sind, aber Tendenzen zum Studienabbruch zeigen. Allgemein sei die Methode auch für bestimmte Forschungsfragen in anderen Bereichen geeignet, etwa der Trennung stabiler Einflussgrößen von situativen Entwicklungen bei Aktienkursen in den Wirtschaftswissenschaften oder ingenieurwissenschaftlichen Anwendungen.
Kelava, A., Kilian, P., Glaesser, J., Merk, S., & Brandt, H. (online first). Forecasting intraindividual changes of affective states taking into account interindividual differences using intensive longitudinal data from a university student drop out study in math. Psychometrika, https://doi.org/10.1007/s11336-022-09858-6
Our website uses cookies. Some of them are mandatory, while others allow us to improve your user experience on our website. The settings you have made can be edited at any time.
or
Essential
in2cookiemodal-selection
Required to save the user selection of the cookie settings.
3 months
be_lastLoginProvider
Required for the TYPO3 backend login to determine the time of the last login.
3 months
be_typo_user
This cookie tells the website whether a visitor is logged into the TYPO3 backend and has the rights to manage it.
Browser session
ROUTEID
These cookies are set to always direct the user to the same server.
Browser session
fe_typo_user
Enables frontend login.
Browser session
Videos
iframeswitch
Used to show all third-party contents.
3 months
yt-player-bandaid-host
Is used to display YouTube videos.
Persistent
yt-player-bandwidth
Is used to determine the optimal video quality based on the visitor's device and network settings.
Persistent
yt-remote-connected-devices
Saves the settings of the user's video player using embedded YouTube video.
Persistent
yt-remote-device-id
Saves the settings of the user's video player using embedded YouTube video.
Persistent
yt-player-headers-readable
Collects data about visitors' interaction with the site's video content - This data is used to make the site's video content more relevant to the visitor.
Persistent
yt-player-volume
Is used to save volume preferences for YouTube videos.
Persistent
yt-player-quality
Is used to save the quality settings for YouTube videos.
Persistent
yt-remote-session-name
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-session-app
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-fast-check-period
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-cast-installed
Saves the user settings when retrieving a YouTube video integrated on other web pages
Browser session
yt-remote-cast-available
Saves user settings when retrieving integrated YouTube videos.
Browser session
ANID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
2 years
SNID
Google Maps - Google uses these cookies to store user preferences and information when you view pages with Google Maps.
1 month
SSID
Used to store information about how you use the site and what advertisements you saw before visiting this site, and to customize advertising on Google resources by remembering your recent searches, your previous interactions with an advertiser's ads or search results, and your visits to an advertiser's site.
6 months
1P_JAR
This cookie is used to support Google's advertising services.
1 month
SAPISID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
2 years
APISID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
6 months
HSID
Includes encrypted entries of your Google account and last login time to protect against attacks and data theft from form entries.
2 years
SID
Used for security purposes to store digitally signed and encrypted records of a user's Google Account ID and last login time, enabling Google to authenticate users, prevent fraudulent use of login credentials, and protect user data from unauthorized parties. This may also be used for targeting purposes to display relevant and personalized advertising content.
6 months
SIDCC
This cookie stores information about user settings and information for Google Maps.
3 months
NID
The NID cookie contains a unique ID that Google uses to store your preferences and other information.
6 months
CONSENT
This cookie tracks how you use a website to show you advertisements that may be of interest to you.
18 years
__Secure-3PAPISID
This cookie is used to support Google's advertising services.
2 years
__Secure-3PSID
This cookie is used to support Google's advertising services.
6 months
__Secure-3PSIDCC
This cookie is used to support Google's advertising services.
6 months