Silikate sind die wichtigsten Bestandteile der Gesteine unserer Erdkruste und der Gesteine der anderen festen Himmelskörper. Am Aufbau der Erdkruste machen sie - Quarz eingeschlossen - etwa 95 % aus. Auch wirtschaftlich sind die Silikate als Edelsteine , in der Glas-, Porzellan-, Keramik-, Feuerfest- und Zementindustrie etc. von sehr großem Wert und Nutzen. Die geochemische und technologische Bedeutung der Silikate und die Eigenschaften jeder einzelnen Mineralart lassen sich aufgrund der vielfältigen Kristall- bzw. Strukturchemie verstehen. Durch die ersten röntgenographischen Strukturbestimmungen, die schon 1926 an Silikaten (u. a. von BRAGG und TAYLOR) durchgeführt wurden, waren bereits recht früh die Voraussetzungen für eine Klassifikation dieser artenreichen Mineralgruppe geschaffen.
Die ersten ordnenden Strukturprinzipien der Silikate verdanken wir MACHATSCHKI (1928) und BRAGG (1930). Sie wurden von STRUNZ (1937/38) weiterentwickelt und auf alle Silikate angewendet. In der heute gültigen Silikatklassifikation in Neso-, Soro-, Cyclo-, Ino-, Phyllo- und Tektosilikate kommen viele Beziehungen morphologischer, kristallchemischer und kristallphysikalischer Art zum Ausdruck. Sie basiert vor allem auf die unterschiedliche Verknüpfung der [SiO4 ]4--Tetraeder miteinander.
Silizium (Si) besitzt bei 1 atm gegenüber Sauerstoff die Koordinationszahl 4 mit dem Tetraeder als Koordinationspolyeder. Bei genügend kleinen Drücken ist die Kristallchemie der Silikate wesentlich durch die verschiedenen [SiO4 ]4--Tetraederverbände mit heterodesmischer Bindung gekennzeichnet. Die Tetraeder können voneinander durch Kationen isoliert als Inseln vorliegen oder miteinander verbunden zu Gruppen, Ringen, Ketten, Bändern, ebenen Netzen und dreidimensionalen Gerüsten auftreten.
Das Si4+ -Kation (Radius = 0.42 Å) kann darüber hinaus durch das Al 3+-Kation (r = 0.51 Å) ersetzt werden. Zum Ladungsausgleich müssen weitere Kationen in die Kristallgitter der sogenannten Alumosilikate eingebaut, bzw. durch solche höherer Wertigkeit ersetzt werden:
Si4+ --> (Al3+ + Na+) oder (Si4+ + Na+) --> (Al3+ + Ca2+).
Dieser Mechanismus ist einer der Gründe für die außerordentliche Vielfalt natürlicher Silikate.
Nesosilikate (Inselsilikate)
Bauprinzip der Insel- bzw. Nesosilikate sind isolierte inselartige [SiO4]4--Tetraeder in der Kristallstruktur, welche über verschiedene Kationen miteinander verknüpft sind. Nesosilikate mit zusätzlichen tetraederfremden Anionen (O2-, OH-, F-) werden gesondert als Neso-Subsilikate bezeichnet.
Die Minerale dieser Klasse besitzen eine dichte Sauerstoff-Kugelpackung, hohes spezifisches Gewicht (über 3), hohe Härte (6 - 8) und hohe Brechungsindizes (n über 1.6). Pseudohexagonale und pseudokubische Symmetrie herrschen vor. Wichtigste gesteinsbildende Vertreter der Nesosilikate sind Minerale der Olivin- und Granatgruppe sowie Zirkon. Wirtschaftlich und petrologisch bedeutende Neso-Subsilikate sind die drei Aluminiumsilikate Sillimanit, Andalusit und Disthen, sowie Topas und Staurolith.
Sorosilikate (Gruppensilikate)
Die Abteilung der Gruppen- bzw. Sorosilikate ist gekennzeichnet durch selbständige Gruppen von [SiO4]4--Tetraedern. Meist handelt es sich um Strukturen mit Si2O7-Doppelgruppen und untergeordnet auch tetraederfremden Anionen und [SiO4]-Inseln. Die Symmetrie dieser Silikate ist bevorzugt monoklin.
Wichtigste Minerale dieser Gruppe sind Epidot, Zoisit und Vesuvian sowie Bertrandit , ein wirtschaftlich sehr wichtiges Berylliummineral.
Cyclosilikate (Ringsilikate)
Die Abteilung der Ring- oder Cyclosilikate enthält Kristallarten mit Ringen von [SiO4]4--Tetraedern, wobei diese mit ihren Nachbarringen nicht direkt über gemeinsame O2- -Ionen, sondern nur über Kationen verbunden sind.
Es gibt einfache Ringe, wie Dreierringe [Si3O9]6 - im Benitoit, Viererringe [Si4O12]8- in einigen seltenen Silikaten, Sechserringe [Si6O18]12- im Beryll und Turmalin, oder doppelstöckige Ringe, wie Doppel-Dreierringe [Si6O15]6- im Elpidit, Doppel-Sechserringe [Si12O30]12- im Milarit und andere.
Da die morphologische Symmetrie im allgemeinen ein Abbild der Ringsymmetrie ist und Viererringe offenbar selten sind, liegen viele Beispiele mit trigonaler und hexagonaler Symmetrie vor.
Inosilikate (Ketten- und Bandsilikate)
Die Strukturen der Ino- bzw. Kettensilikate sind gekennzeichnet durch eindimensional unendliche [SiO4]4--Tetraederketten oder -bänder (durch Querverbindungen über gemeinsame Tetraedersauerstoffe verknüpfte Ketten).
Die Periodizität der Ketten und Bänder umfaßt meist zwei Tetraederlängen, wie in den wichtigsten Vertretern dieser Klasse, den Pyroxenen (z.B. Diopsid CaMg[Si2O6]) und Amphibolen (z.B. Tremolit Ca2Mg5[(OH)2|Si8O22]), oder drei Tetraederlängen, im Wollastonit Ca3[Si3O9], oder fünf und sieben Tetraederlängen, im Rhodonit CaMn4[Si5O15] und Pyroxmangit (Mn,Fe)7[Si7O21].
An jedes der genannten Minerale schließen sich zum Teil sehr zahlreiche weitere Vertreter analogen Strukturtyps an.
Als Folge der Ketten- bzw. Bandstruktur existieren parallel zu den Ketten stets mehrere Ebenen guter Spaltbarkeit (nach (110)). Die äußere Kristallform, die ja meist auch Ausdruck des inneren strukturellen Aufbaus ist, weist meist eine stark bevorzugte Richtung auf. Die Minerale sind deshalb in der Regel säulig, nadelig oder sogar faserig (dann als (Cummingtonit-)Asbest bezeichnet).
Prehnit ist ein Mineral, das aufgrund seiner Struktur bereits zu den Phyllosilikaten überleitet.
Phyllosilikate (Schichtsilikate)
In den Phyllo- bzw. Schichtsilikaten ist jedes Tetraeder bereits über drei Ecken an die drei Nachbartetraeder gebunden. Die Verknüpfung erfolgt in der Weise, dass zweidimensional unendliche Tetraedernetze entstehen, zwischen denen Schichten von oktaedrisch von O und (OH)- umgebenen Kationen (K, Li, Mg, Zn, Fe2+, Fe3+, Mn2+ etc.) liegen. In den Tetraederschichten weisen alle freien Tetraederspitzen in eine Richtung.
Sind die Tetraeder einer Schicht zu Einzel- oder Doppelnetzen aus Sechserringen verbunden, so entstehen hexagonale bzw. pseudohexagonale Minerale, wie in der Glimmer-Familie (Muskovit ,Biotit), Chlorit-Reihe (Pennin, Rhipidolith) und Kaolinit-Serpentinit-Familie (Chrysotil, Kaolinit). Besteht die Schicht dagegen aus Viererringen, so ist das Mineral tetragonal bzw. pseudotetragonal (z.B. Apophyllit ).
Die Schichtgittereigenschaften dieser Minerale zeigen sich eindrucksvoll an der vollkommenen blättrigen Spaltbarkeit nach (0001), am meist negativen optischen Charakter der Minerale und der guten Translationsfähigkeit entlang der Basis, was die z.T. starke Verformbarkeit (Plastizität) insbesondere der Tonminerale bedingt.
Tektosilikate (Gerüstsilikate)
In den Tekto- bzw. Gerüstsilikaten ist jedes [SiO4]- oder [AlO4]-Tetraeder mit allen vier Sauerstoffatomen an seine Nachbartetraeder gebunden, wodurch ein dreidimensional unendliches, lockeres Tetraedergerüst mit z.T. großen Hohlräumen entsteht.
Die Si4+ -Ionen können in geordneter und ungeordneter Weise durch Al3+-Ionen vertreten werden, wobei der notwendige Ladungsausgleich in der Regel durch Alkali- und Erdalkaliionen sowie anderen Kationen erfolgt (sogenannte Alumosilikate). Hierdurch und durch den Einbau zusätzlicher Anionen (z.B. [SO4]2-, [CO3]2-, Cl-) sowie durch die Einlagerung von H2O (Kristallwasser und in Gitterweiterungen locker gebundenes "Zeolithwasser") entsteht eine Vielzahl von Kristallstrukturen in dieser Abteilung.
Die Sauerstoffpackung ist in den Tektosilikaten recht locker, so dass sich diese Minerale, insbesondere die Zeolithe, durch geringes spezifisches Gewicht, niedrige Lichtbrechung und eine mittlere Härte (4 - 6) auszeichnen (z.B. Chabasit, Natrolith, Heulandit). Die Zeolithe besitzen besonders weitmaschige Gerüste, in deren Hohlräumen und Kanälen die Kationen Na, K, Ca, Ba etc. und Wassermoleküle nicht nur reichlich Platz haben, sondern leicht abgegeben und wieder aufgenommen bzw. ausgetauscht werden können (Anwendung als Molekularsiebe und Ionenaustauscher).
Zu den Tektosilikaten zählen die wichtigsten und verbreitetsten gesteinsbildenden Minerale der Erdkruste, nämlich die Feldspäte (z.B. Albit, Anorthit, Orthoklas) und die Feldspatvertreter (z.B. Nephelin, Leucit).