Methods Center

Prof. Dr. Augustin Kelava

Managing Director of the Methods Center and Professor for Quantitative Methods

Office
Methods Cemter
Haußerstr. 11
72076 Tübingen
+49 7071 29 74933
Fax: +49 7071 29 35264
augustin.kelavaspam prevention@uni-tuebingen.de

For all inquiries about teaching, please send an email to teachingspam prevention@mz.uni-tuebingen.de.

You can arrange an office hour at teachingspam prevention@mz.uni-tuebingen.de.


Key Research Topics

  • Latent variable models
    • Nonlinear latent structural equation models (incl. semi- and non-parametric methods)
    • Multilevel modeling (e.g. separation of intra-individual and inter-individual differences)
    • Dynamic latent variable models (time series models, intensive longitudinal data)
    • Network models
  • Latent class methods, regime switching models
  • Prediction of human experience and behavior (forecasting)
    • Development of filtering methods
    • Hybrid models (psychometrics and statistical learning)
  • Machine learning in the social and behavioral sciences
  • Psychology of large language models (LLMs)

I'm a Member (Link) of the Cluster of Excellence "Machine Learning for Science" (Link).

My Erdős number is 3 (see The Erdös Number Project). I have published with Jürgen Heller (paper). He has published with Janos Aczél (paper) who published with Paul Erdös (list).

Research Projects


Profile

since 2018
Managing Director of the Methods Center

University of Tübingen

since 2018
Professor for Quantitative Methods

Methods Center, University of Tübingen

2018
Offer University of California, Merced, Department of Psychology, Quantitative Psychology

(declined)

2015 - 2018
Director of the Tübingen Postdoc Academy of Education Sciences

University of Tübingen

2013 - 2018
Professor of Education Sciences

Hector Research Institute of Education Sciences and Psychology, University of Tübingen

2011 - 2013
Assistant Professor of Psychological and Psychophysiological Methods

Department of Psychology, Technical University of Darmstadt

2009
PhD in Psychology

University of Frankfurt

2004
Diploma in Psychology

University of Frankfurt


Publications

For a more comprehensive list, see Google Scholar.

  • Sühr, T., Dorner, F. E., Salaudeen, O., Kelava, A., & Samadi, S. (2025). Stop evaluating AI with human tests, develop principled, AI-specific tests instead. arXiv preprint arXiv:2507.23009. https://arxiv.org/abs/2507.23009
  • Sühr, T., Dorner, F. E., Samadi, S., & Kelava, A. (2025). Challenging the validity of personality tests for large language models. In Proceedings of the 5th ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO ’25) (pp. 74–81). Association for Computing Machinery. https://doi.org/10.1145/3757887.3763016
  • Andriamiarana, V., Kilian, P., Brandt, H., & Kelava, A. (2025). Are Bayesian regularization methods a must for multilevel dynamic latent variables models? Behavior Research Methods, 57(2), 71. https://doi.org/10.3758/s13428-024-02589-9
  • Noventa, S., Heller, J., Ye, S., & Kelava, A. (2025). Toward a unified perspective on assessment models, part II: Dichotomous latent variables. Journal of Mathematical Psychology, 125, 10292. https://doi.org/10.1016/j.jmp.2025.102926
  • Noventa, S., Ye, S., Kelava, A., & Spoto, A. (2024). On the identifiability of 3-and 4-parameter item response theory models from the perspective of knowledge space theory. Psychometrika, 89(2), 486-516. https://doi.org/10.1007/s11336-023-09912-5
  • Nagel, M., Fischer, L., Pawlowski, T., & Kelava, A. (2024). An alternative prior for estimation in high-dimensional settings. Structural Equation Modeling: A Multidisciplinary Journal, 31(6), 939–951. https://doi.org/10.1080/10705511.2024.2291234
  • Noventa, S., Heller, J., & Kelava, A. (2024). Toward a unified perspective on assessment models, part I: Foundations of a framework. Journal of Mathematical Psychology, 122, 102872. Elsevier. https://doi.org/10.1016/j.jmp.2024.102872
  • Noventa, S., Faleh, R., & Kelava, A. (2024). On an EM-based closed-form solution for 2 parameter IRT models. arXiv preprint, arXiv:2411.18351. https://doi.org/10.48550/arXiv.2411.18351
  • Fischer, L., Nagel, M., Kelava, A., & Pawlowski, T. (2024). Emotional drinking: Surprise, suspense, and alcohol use during soccer matches. Preprint. (July 31, 2024). Available at SSRN: https://ssrn.com/abstract=4912703
  • Sühr, T., Dorner, F. E., Samadi, S., & Kelava, A. (2023). Challenging the validity of personality tests for large language models. arXiv preprint, arXiv:2311.18351. https://arxiv.org/abs/2311.05297
  • Wägerle, D., & Kelava, A. (2023). Investigating evidence, key concepts, and research gaps on social inequalities in the postdoctoral phase within German higher education: A scoping review protocol. Open Science Framework (OSF) Preprinthttps://doi.org/10.31219/osf.io/abcd1
  • Dorner, F. E., Sühr, T., Samadi, S., & Kelava, A. (2023). Do personality tests generalize to Large Language Models? Socially Responsible Language Modelling Research (SoLaR) 2023 Workshop at NeurIPS 2023. https://arxiv.org/abs/2311.05297
  • Kilian, P., Leyhr, D., Urban, C. J., Höner, O., & Kelava, A. (2023). A deep learning factor analysis model based on importance-weighted variational inference and normalizing flow priors: Evaluation within a set of multidimensional performance assessments in youth elite soccer players. Statistical Analysis and Data Mining, 16(5), 474-487. Link
  • Andriamiarana, V., Kilian, P., Kelava, A., & Brandt, H. (2023). On the requirements of non-linear dynamic latent class SEM: A simulation study with varying numbers of subjects and time points. Structural Equation Modeling, 30(5), 789-806. Link
  • Kilian, P., Ye, S., & Kelava, A. (2023). Mixed effects in machine learning - A flexible mixedML framework to add random effects to supervised machine learning regression. Transactions on Machine Learning Research (TMLR).Link
  • Merk, S., Groß Ophoff, J., & Kelava, A. (2023). Rich data, poor information? Teachers’ perceptions of mean differences in graphical feedback from statewide tests. Learning and Instruction, 84, 101717. Link
  • Kelava, A., Kilian, P., Glaesser, J., Merk, S., & Brandt, H. (2022). Forecasting intraindividual changes of affective states taking into account interindividual differences using intensive longitudinal data from a university student drop out study in math. Psychometrika, 87(2), 533-558. Link
  • Schneider, J., Rosman, T., Kelava, A., & Merk, S. (2022). Do Open Science Badges increase trust in scientists among undergraduates, scientists, and the public? Psychological Science, 33(9), 1588-1604. Link
  • Kilian, P., Loose, F., & Kelava, A. (2020). Predicting math student success in the initial phase of college with sparse information using approaches from statistical learning. Frontiers in Education, 5. Link
  • Brandt, H., Umbach, N., Kelava, A., & Bollen, K. (2020). Comparing estimators for latent interaction models under structural and distributional misspecifications. Psychological Methods. Link
  • Kelava, A. & Brandt, H. (2019). A Nonlinear Dynamic Latent Class Structural Equation Model. Structural Equation Modeling, 26,509-528. Link
  • Noventa, S., Spoto, A., Heller, J., & Kelava, A. (2019). On a generalization of local independence in item response theory based on knowledge space theory. Psychometrika, 84, 395-421. Link
  • Graser, J., Heimlich, C., Kelava, A., Hofmann, S.G., Stangier, U., & Schreiber, F. (2019). Erfassung der Emotionsregulation bei Jugendlichen anhand des „Affective Style Questionnaire (ASQ-Y)“ . [Assessment of emotion regulation strategies of youth using the Affective Style Questionnaire (ASQ-Y).] Diagnostica, 65, 49-59. Link
  • Leyhr, D., Raabe, J., Schultz, F., Kelava, A., & Höner, O. (2019). The adolescent motor performance development of elite female soccer players: A study of prognostic relevance for future success in adulthood using multilevel modelling. Journal of Sports Sciences, 1-10. Link
  • Brandt, H., Cambria, J., & Kelava, A. (2018). An adaptive Bayesian lasso approach with spike-and-slab priors to identify linear and interaction effects in structural equation models. Structural Equation Modeling, 25, 956-960. Link
  • Gemein, C., Roos, M., Wolf, A., Hermann, N., Kelava, A., Chasan, R., Weipert, K., Helmig, I., Bogossian, H., Hamm, C.W., Neumann, T., Schmitt, J., & Erkapic, D. (2018). Tilt testing and what you should know about it – Experience with 835 consecutive patients with syncope of unknown origin. International Journal of Cardiology, 258, 90–96. Link

 

Text book

Moosbrugger, H. & Kelava, A. (Eds.) (2020). Testtheorie und Fragebogenkonstruktion. [Test Theory and the Construction of Questionnaires.] (3. Ed.). Heidelberg: Springer. doi: 10.1007/978-3-662-61532-4

Also available as pdf: https://www.springer.com/de/book/9783662615317

Book chapters

Kilian, P., Kelava, A. (2024). Enhancing Multilevel Models Through Supervised Machine Learning. In: Hwang, H., Wu, H., Sweet, T. (eds) Quantitative Psychology. IMPS 2023. Springer Proceedings in Mathematics & Statistics, vol 452. Springer, Cham. https://doi.org/10.1007/978-3-031-55548-0_14 


Conferences

  • Conference President of the 13th Meeting of the Quantitative Section of the German Psychological Society  [FGME 2017] in Tübingen; 18.-20. September 2017
  • Organizer of the Structural Equation Modeling Working Group Meeting [SEM 2019]; 28.02.-01.03.2019

Reviews

  • Alexander von Humboldt Foundation
  • Biological Psychology
  • British Journal of Mathematical and Statistical Psychology
  • Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
  • Diagnostica
  • Educational and Psychological Measurement
  • Einstein Stiftung Berlin (Einstein Foundation Berlin)
  • Empirische Pädagogik
  • European Journal of Psychological Assessment (EJPA)
  • European Journal of Work and Organizational Psychology
  • Frontiers in Psychology
  • IEEE Transactions on Neural Networks and Learning Systems
  • IEEE Transactions on Signal Processing
  • Journal of Educational and Behavioral Statistics (JEBS)
  • Journal of Educational Measurement (JEM)
  • Journal of Educational Psychology
  • Journal of Individual Differences (JID)
  • Journal of Numerical Cognition
  • Journal of the American Statistical Association (JASA)
  • Methodology – European Journal of Research Methods for the Behavioral and Social Sciences
  • Multivariate Behavioral Research (MBR)
  • Personality and Individual Differences (PAID)
  • Psychoanalytic Psychology
  • Psychologische Rundschau
  • Psychological Test and Assessment Modeling
  • Psychology Science Quaterly (PSQ)
  • Psychometrika
  • Review of Psychology
  • Sociological Methods and Research
  • Statistics in Medicine
  • Structural Equation Modeling
  • Swiss National Science Foundation (SNSF)
  • Zeitschrift für Erziehungswissenschaft
  • Zeitschrift für Pädagogische Psychologie

Memberships in Professional Organizations

  • Deutsche Gesellschaft für Psychologie [DGPs; German Psychological Society]
  • European Association of Methodology (EAM)
  • Gesellschaft für Empirische Bildungsforschung [GEBF; Association for Empirical Educational Research]
  • Psychometric Society

Functions in Professional Organizations and Scientific Advisory

  • 2020: Member of the ’Commission for the Evaluation of the Centre for International Student Assessment (ZIB, Zentrum für internationale Bildungsvergleichsstudien)’ of the Federal Ministry of Educational and Research of Germany (BMBF, Bundesministerium für Bildung und Forschung)
  • since 10/2019: Member of the Scientific Advisory Board ’Student selection and eligibility’ (Beirat ‘Eignung und Auswahl’) of the Ministry of Science, Research, and Art of the State Baden-Württemberg (MWK)
  • 2007-2011: Secretary of the Curatorship for Quality Assurance in Psychological Assessement (Federation of German psychological professional organizations)
  • 2011/12: Member of the “Young Researchers” Commission of the German Psychological Society
  • 2010-2012: (Associate) Speaker of all Young Researchers of the German Psychological Society
  • 2009-2012: (Associate) Speaker of the Young Researchers of the Quantitative Section of the German Psychological Society