Interfaculty Institute of Biochemistry (IFIB)

Publications

Google Scholar   ORCID   ResearchGate 

 

An improved SNAP-ADAR tool enables efficient RNA base editing to interfere with post-translational protein modification

K. D. Kiran Kumar, S. Singh, S. M. Schmelzle, P. Vogel, C. Fruhner, A. Hanswillemenke, A. Brun, J. Wettengel, Y, Füll, L. Funk, V. Mast, J. J. Botsch, P. Reautschnig, J. B. Li, T. Stafforst*, Nature Communications 2024, in press

 

Precise in-vivo RNA base editing with a wobble-enhanced circular CLUSTER guide RNA

P. Reautschnig*, C. Fruhner, N. Wahn, C. P. Weigand, S. Kragness, J. F. Yung, D. T. Hofacker, J. Fisk, M. Edelman, N. Waffenschmidt, M. Feige, L. S. Pfeiffer, A. E. Schulz, Y, Füll, E. Y. Levanon, G. Mandel, T. Stafforst*, Nature Biotechnology 2024, online (open access)

related Research Briefing

highlighted in Nature Methods

 

Profiling the Interactome of Oligonucleotide Drugs by Proximity Biotinylation

A. Hanswillemenke, D. T. Hofacker, M. Sorgenfrei, C. Fruhner, M. Franz-Wachtel, D. Schwarzer, B. Macek and T. Stafforst*, Nature Chemical Biology 2024, online (open access)

 

Review: Precision RNA base editing with engineered and endogenous effectors

L. S. Pfeiffer and T. Stafforst*, Nature Biotechnology 2023, 41, 1526-42.

 

Precise and efficient C-to-U RNA Base Editing with SNAP-CDAR-S

N. Latifi, A. M. Mack, I. Tellioglu, S. Di Giorgio, T. Stafforst*, Nucl. Acids Res. 2023, gkad598.

 

ADAR1-mediated RNA editing promotes B cell lymophomagenesis

R. Pecori et al., iScience 2023, 26, 106864.

 

Experience with German Research Consortia in the Field of Chemical Biology of Native Nucleic Acid Modifications

M. Helm et al., ACS Chem. Biol. 2023, 18, 2441-9.

 

CLUSTER guide RNAs enable precise and efficient RNA editing in cell culture and in vivo

P. Reautschnig, N. Wahn, J. Wettengel, A. E. Schulz, N. Latifi, P. Vogel, T.-W. Kang, L. S. Pfeiffer, C. Zarges, U. Naumann, L. Zender, J. B. Li and T. Stafforst*, Nature Biotechnology 2022, 40, 759–768.

related talk @JRNLclub

 

Harnessing self-labeling enzymes for selective and concurrent A-to-I and C-to-U RNA base editing

A. Stroppel, N. Latifi, A. Hanswillemenke, R.N. Tasakis, F.N. Papavasiliou and T. Stafforst*, Nucl. Acids Res. 2021, 49, gkab541.

 

Controlling Site-directed RNA Editing by Chemically Induced Dimerization

A. Stroppel, R. Lappalainen and T. Stafforst*, ChemEurJ 2021, 27, 12300-12304.

 

New Frontiers for Site-Directed RNA Editing: Harnessing Endogenous ADARs

T. Merkle and T. Stafforst*, Methods in Molecular Biology 2021, 2181. Humana press, New York (eds, E. Picardi, G. Pesole)

 

Protocols for the generation of caged guideRNAs for light-triggered RNA-targeting with SNAP-ADARs

A. Hanswillemenke and T. Stafforst*, Methods Enzym. 2019, 624, 47-68.

 

Chemistry helps to bump off-target edits away

T. Stafforst*, Cell Chem. Biol. 2019, 26, 151-152.

 

Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides

T. Merkle, S. Merz, P. Reautschnig, A. Blaha, Q. Li, P. Vogel, J. Wettengel, J. B. Li, T. Stafforst*, Nature Biotechnology 2019, 37, 133-138.

press release en/dt

highlighted by Nature Methods

highlighted by Biopro BW

highlighted by Laborjournal

highlighted by C&EN

 

Critical review on engineering deaminases for site-directed RNA editing

P. Vogel, T. Stafforst*, Current Opin. Biotech. 2019, 55, 74-80.

 

Efficient and Precise Editing of Endogenous Transcripts with SNAP-tagged ADARs

P. Vogel, M. Moschref, Q. Li, T. Merkle, K. D. Selvasaravanan, J. B. Li, T. Stafforst*. Nature Methods 2018, 15, 535-38.

press release ENGLISH

press release GERMAN

 

Npom-protected NONOate enables light-triggered NO/cGMP signalling in primary vascular smooth muscle cells

A. S. Stroppel, M. Paolillo, T. Ziegler, R. Feil, T. Stafforst*. ChemBioChem 2018, 19, 1312-18.

*highlighted in ChemistryViews*

highlighted as "very important paper"

 

Switching protein localization by site-directed RNA editing under control of light

P. Vogel, A. Hanswillemenke, T. Stafforst*, ACS Synth. Biol. 2017, 6, 1642-9.

*open access*

 

Applying Human ADAR1p110 and ADAR1p150 for Site-Directed RNA Editing - G/C Substitution Stabilizes GuideRNAs Against Editing

M. Heep, P. Mach, P. Reautschnig, J. Wettengel, T. Stafforst*, Genes 2017, 8, 34 (special issue on RNA editing).

*open access*

 

Harnessing human ADAR2 for RNA repair – Recoding a PINK1 mutation rescues mitophagy

J. Wettengel, P. Reautschnig, S. Geisler, P. J. Kahle, T. Stafforst*, Nucl. Acids Res. 2017, 45, 2797-2808.

*open access*

 

The notorious R.N.A. in the Spotlight - Drug or Target for the Treatment of Disease

P. Reautschnig, P. Vogel, T. Stafforst*, RNA Biology 2017, 14, 651-668 (invited review).

*open access*

 

Site-directed RNA editing in vivo can be triggered by the light-driven assembly of an artificial riboprotein

A. Hanswillemenke, T. Kuzdere, P. Vogel, G. Jekely, T. Stafforst*, J. Am. Chem. Soc. 2015, 137, 15 875-81.

*open access*

 

Trendbericht Biochemie 2014: Biochemie natürlicher RNA-Modifikationen

T. Stafforst*, Nachrichten aus der Chemie 2015, 63, 306-9.

 

Upon the photostability of 8-nitro-cGMP and its caging as a 7-dimethylaminocoumarinyl ester

A. Samanta, M. Thunemann, R. Feil, T. Stafforst*, Chem. Commun. 2014, 50, 7120-23.

 

Site-directed RNA editing with Antagomir-deaminases - a tool to study protein and RNA function

P. Vogel, T. Stafforst*, ChemMedChem 2014, 9, 2021-25.

 

Improving Directed RNA Editing In Vitro and in Cell Culture by Chemical Modification of the guideRNA

P. Vogel, M. F. Schneider, J. Wettengel, T. Stafforst*, Angew. Chem. Int. Ed. 2014, 53, 6267-71.

German version:

Chemisch modifizierte guideRNAs verbessern die ortsgerichtete RNA-Editierung in vitro und in Zellkultur

Angew. Chem. 2014, 126, 6382-86.

 

Optimal guideRNAs for Re-directing Deaminase Activity of hADAR1 and hADAR2 in trans

M. F. Schneider, J. Wettengel, P. C. Hoffmann, T. Stafforst*, Nucl. Acids Res. 2014, 42, e87.

*open access*

 

Pyrene Chromophores for the Photoreversal of Psoralen Interstrand Crosslinks

J. M. Stadler, T. Stafforst*, Org. Biomol. Chem. 2014, 12, 5260-66.

 

Gerichtete Editierung – ein Werkzeug zur Reprogrammierung von RNA

T. Stafforst*, Biospektrum 2014, 20, 231-233.

 

The Selenocysteine Incorporation Machinery Allows the Dual Use of Sense Codons - A New Strategy to Expand the Genetic Code?

T. Stafforst*, ChemBioChem 2014, 15, 356-58.

 

Diskussionspapier: Biotechnologie - der Schlüssel zur Bioökonomie

Zukunftsforum der Dechema, Dechema 2014.

 

On the Sensitivity of Peptide Nucleic Acid Duplex Formation and Crystal Dissolution to a Variation of Force-Field Parameters

S. J. Bachmann, Z. Lin, T. Stafforst, W. F. van Gunsteren, J. Dolenc*, J. Chem. Theor. Comp. 2014, 10, 391-400.

 

Photoactivation of a Psoralen-blocked Luciferase Gene by Blue Light

T. Stafforst*, J. M. Stadler, Angew. Chem. Int. Ed. 2013, 52, 12448-51.

German version:

Photoaktivierung eines Psoralen-vernetzten Luciferasegens mit blauem Licht

Angew. Chem. 2013, 125, 12676-80.

 

An RNA-Deaminase Conjugate Selectively Repairs Point Mutations

T. Stafforst*, M. F. Schneider, Angew. Chem. Int. Ed. 2012, 51, 11166-9.

German version:

Ein RNA-Deaminase-Konjugat ermöglicht die selektive Reparatur von Punktmutationen

Angew. Chem. 2012, 124, 11329-32.

 

A FlAsH Reporter for Protein-Dimerization Triggers

T. Stafforst*, ChemBioChem 2012, DOI: 10.1002/cbic.201100787

 

Photolyase-like Repair of Psoralen-crosslinked Nucleic Acids

T. Stafforst*, D. Hilvert*, Angew. Chem. Int. Ed. 2011, 50, 9483-9486; Angew. Chem. 2011, 123, 9655-9658.

German version:

Photolyase-artige Reparatur Psoralen-quervernetzter Nucleinsäuren

Angew. Chem. 2011, 123, 9655-58.

 

Temperature-dependent intensity anomalies in amino acid esters: weak hydrogen bonds in protected glycine, alanine and valine

K. E. Otto, S. Hesse, T. N. Wassermann, C. A. Rice, M. A. Suhm*, T. Stafforst, U. Diederichsen, Phys. Chem. Chem. Phys. 2011, 13, 14119 - 14130.

 

Modulating PNA-DNA Hybridization by Light

T. Stafforst*, D. Hilvert*,

Angew. Chemie Int. Ed. 2010, 49, 9998-10001; Angew. Chem. 2010, 122, 10195-10198

German version:

Photokontrolle der PNA-DNA-Hybridisierung

Angew. Chem. 2010, 122, 10195-98.

 

Kinetic Characterization of Spiropyrans in Aqueous Media

T. Stafforst*, D. Hilvert, Chem. Commun. 2009, 287 - 288.

 

Synthesis of the chromophore of the Green Fluorescent Protein functionalized with alanine and N-(2-aminoethyl)glycine for incorporation into peptides and PNA

T. Stafforst, U. Diederichsen*, Eur. J. Org. Chem. 2007, 899 - 911.

 

Synthesis of acid-sensitive N-(2-aminoethyl)glycine-PNA oligomers via Fmoc/Bhoc strategy

T. Stafforst, U. Diederichsen*, Eur. J. Org. Chem. 2007, 681 - 688.

 

Thymine Oxetanes as Charge Traps for Chemical Monitoring of Nucleic Acid Mediated Transfer of Excess Electrons

T. Stafforst, U. Diederichsen*, Angew. Chem. Int. Ed. 2006, 45, 5376 - 5380.

German version:

Thyminoxetane als Ladungsfallen zum chemischen Nachweis des Nucleinsäure-vermittelten Überschusselektronentransfers

Angew. Chem. 2006, 118, 5502 – 06.

 

(6-4)-Photolyase activity requires a charge shift reaction

T. Stafforst, U. Diederichsen*, Chem. Commun. 2005, 3430 - 3432.

 

Aggregation behaviour of p-n-alkylbenzamidinium chloride surfactants

R. Talhout, T. Stafforst, J. B. F. N. Engberts*, J. Colloid Interface Sci. 2004, 276, 212 - 220