Center for Plant Molecular Biology


Cellular Nanoscience
Schäffer Lab

ORCID

ResearcherID

Google Scholar

exaly

0000-0001-7876-085X

A-4664-2010

tZ1naAAAAAJ

1377666

Preis für mutige Wissenschaft 2016

Kinesin animation

Video RegierungBW YouTube

youtu.be/plvQCOE9s_k

Nalupurackal 2023 Icon

71. Simultaneous optical trapping and electromagnetic micromanipulation of ferromagnetically doped NaYF4 microparticles.
Nalupurackal, G; Murugan, G; Lokesh, M; Vaippully, R; Chauhan, A; Nanda, BRK; Sudakar, C; Kotamarthi, HC; Datta, P; Mahapatra, PS; Jannasch, A; Schäffer, E; Jayaraman, S and Roy, B

ACS Appl. Opt. Mater. 1, 615-622 (2023);

DOI: 10.1021/acsaom.2c00161

arXiv: 2203.02152

Català-Castro 2022 Icon

70. Exploring cell and tissue mechanics with optical tweezers.
Frederic Català-Castro, Erik Schäffer, Michael Krieg

J. Cell. Sci. 135, jcs259355 (2022);

DOI: 0.11242/jcs.259355

Wedler et al. 2022 Icon

69. A quick and reproducible silanization method using plasma activation for hydrophobicity-based kinesin-single-molecule-fluorescence-microscopy assays.
Viktoria Wedler, Dustin Quinones, Heiko Peisert, Erik Schäffer

Chem. Eur. J. 28, e202202036 (2022);

DOI: 0.1002/chem.202202036

Cover J. Microsc. Janasch 2022

68. Fast 3D imaging of giant unilamellar vesicles using reflected light-sheet microscopy with single molecule sensitivity.
Sven A. Szilagyi, Moritz Burmeister, Q. Tyrel Davis, Gero Lutz Hermsdorf, Suman De, Erik Schäffer, Anita Jannasch

J. Microsc. 285, 40-51 (2022);

DOI: 10.1111/jmi.13070

bioRxiv 2020.06.26.174102

https://uni-tuebingen.de/fileadmin/_processed_/e/d/csm_WebpageIconImageS_43e16de693.jpg

67. Anisotropic and amphiphilic mesoporous core–shell silica microparticles provide chemically selective environments for simultaneous delivery of curcumin and quercetin.
Akanksha Dohare, Swathi Sudhakar, Björn Brodbeck, Ashutosh Mukherjee, Marc Brecht, Andreas Kandelbauer, Erik Schäffer, Hermann A. Mayer

Langmuir 37, 13460-13470 (2021);

DOI: 10.1021/acs.langmuir.1c02210

https://uni-tuebingen.de/fileadmin/_processed_/a/6/csm_66-jnemclccgccgoena_6b486ee709.png

66. Single depolymerizing and transport kinesins stabilize microtubule ends.

Alexandra Ciorîță, Michael Bugiel, Swathi Sudhakar, Erik Schäffer, Anita Jannasch

Cytoskeleton 78, 177-184 (2021);

DOI: 10.1002/cm.21681

bioRxiv 2020.10.05.326330

https://uni-tuebingen.de/fileadmin/_processed_/2/d/csm_67-nffaelkhpimjlana_59dbe303b6.png

65. Germanium nanospheres for ultraresolution picotensiometry of kinesin motors.
Swathi Sudhakar, Mohammad Kazem Abdosamadi, Tobias Jörg Jachowski, Michael Bugiel, Anita Jannasch, Erik Schäffer
Science 371, eabd9944 (2021).

DOI: 10.1126/science.abd9944

bioRxiv 2020.06.18.159640

Research highlight by Nina Vogt: High-resolution optical tweezers. Nature Methods 18, 333 (2021). DOI: 10.1038/s41592-021-01121-7

https://uni-tuebingen.de/fileadmin/_processed_/0/3/csm_61-pup-schaeffer_7e990c855e.png

64. The kinesin-8 Kip3 depolymerizes microtubules with a collective force-dependent mechanism.
Michael Bugiel, Mayank Chugh, Tobias Jörg Jachowski, Erik Schäffer, Anita Jannasch
Biophys. J. 118, 1958-1967 (2020);

DOI: 10.1016/j.bpj.2020.02.030

bioRxiv 844829

https://uni-tuebingen.de/fileadmin/_processed_/3/c/csm_cjobemolfbfnlmen_31d43e66f6.png

63. In Vitro Reconstitution and Imaging of Microtubule Dynamics by Fluorescence and Label-free Microscopy.
William Graham Hirst, Christine Kiefer, Mohammad Kazem Abdosamadi, Erik Schäffer, Simone Reber
STAR Protocols, 100177 (2020).

DOI: 10.1016/j.xpro.2020.100177

https://uni-tuebingen.de/fileadmin/_processed_/9/b/csm_63-pup-schaeffer_2a4b30855c.png

62. Polycationic gold nanorods as multipurpose in vitro microtubule markers.
Viktoria Wedler, Fabian Strauß, Swathi Sudhakar, Gero Lutz Hermsdorf, York-Dieter Stierhof, Erik Schäffer
Nanoscale Adv. 2, 4003-4010 (2020);

DOI:10.1039/D0NA00406E

bioRxiv 2020.04.25.061127

https://uni-tuebingen.de/fileadmin/_processed_/d/0/csm_62-pup-schaeffer_62c0ca6c41.png

61. Supported Solid Lipid Bilayers as a Platform for Single-Molecule Force Measurements.
Swathi Sudhakar, Tobias Jörg Jachowski, Michael Kittelberger, Ammara Maqbool, Gero Lutz Hermsdorf, Mohammad Kazem Abdosamadi, Erik Schäffer
Nano Lett. 19, 8877-8886 (2019);

DOI: 10.1021/acs.nanolett.9b03761

https://uni-tuebingen.de/fileadmin/_processed_/d/0/csm_60-pup-schaeffer_15f2436b93.png

60. Self-sensing enzyme-powered micromotors equipped with pH responsive DNA nanoswitches.
Tania Patiño, Alessandro Porchetta, Anita Jannasch, Anna Llado, Tom Stumpp, Erik Schäffer, Francesco Ricci, and Samuel Sanchez
Nano Lett. 19, 3440-3447 (2019);

DOI: 10.1021/acs.nanolett.8b04794

https://uni-tuebingen.de/fileadmin/_processed_/6/1/csm_59-pup-schaeffer_40db18aac8.png

59. High performance passive vibration isolation system for optical tables using six-degree-of-freedom viscous damping combined with steel springs.
Gero L. Hermsdorf, Sven A. Szilagyi, Sebastian Rösch, and Erik Schäffer.
Rev. Sci. Inst. 90, 015113 (2019);

DOI: 10.1063/1.5060707

arXiv: 1810.06641

LaserFocusWorld Laser Focus World 55(11), 37-40 (2019)

https://uni-tuebingen.de/fileadmin/_processed_/4/b/csm_58-pup-schaffer_bc7b6e0fd3.png

58. Three-dimensional optical tweezers tracking resolves random sideward steps of the kinesin-8 Kip3.
Michael Bugiel, Erik Schäffer.
Biophys. J. 115, 1993-2002 (2018);

DOI: 10.1016/j.bpj.2018.09.026

https://uni-tuebingen.de/fileadmin/_processed_/d/4/csm_57-pup-schaeffer_3b2670b729.png

57. Label‐free high‐speed wide‐field imaging of single microtubules using interference reflection microscopy.
Mohammed Mahamdeh, Steve Simmert, Anna Luchniak, Erik Schäffer, Jonathon Howard.
J. Microsc. 272, 60-66 (2018);

DOI: 10.1111/jmi.12744

https://uni-tuebingen.de/fileadmin/_processed_/0/1/csm_56-pup-schaeffer_09237c9830.png

56. Phragmoplast Orienting Kinesin 2 Is a Weak Motor Switching between Processive and Diffusive Modes,
Mayank Chugh, Maja Reißner, Michael Bugiel, Elisabeth Lipka, Arvid Herrmann, Basudev Roy, Sabine Müller, Erik Schäffer.
Biophys. J. 115, 375-385 (2018);

DOI: 10.1016/j.bpj.2018.06.012

55. LED-based interference-reflection microscopy combined with optical tweezers for quantitative three-dimensional microtubule imaging,
Steve Simmert, Mohammad Kazem Abdosamadi, Gero Hermsdorf, and Erik Schäffer.
Opt. Express 26, 14499-14513 (2018);
https://doi.org/10.1364/OE.26.014499

https://www.biorxiv.org/content/10.1101/277632v1

54. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors
Tania Patiño, Natalia Feiner-Gracia, Xavier Arqué, Albert Miguel-López, Anita Jannasch, Tom Stumpp, Erik Schäffer, Lorenzo Albertazzi, and Samuel Sánchez.
J. Am. Chem. Soc. 140, 7896-7903 (2018);
DOI: 10.1021/jacs.8b03460

53. Determination of pitch rotation in a spherical birefringent microparticle.
Basudev Roy, Avin Ramaiya and Erik Schäffer.

J. Opt. 20, 035603 (2018);
https://doi.org/10.1088/2040-8986/aaa9e4

52. Measuring Microtubule Supertwist and Defects by Three-Dimensional-Force-Clamp Tracking of Single Kinesin-1 Motors.

Michael Bugiel, Aniruddha Mitra, Salvatore Girardo, Stefan Diez and Erik Schäffer.

Nano Lett. 18, 1290-1295 (2018);

DOI: 10.1021/acs.nanolett.7b04971

51. Kinesin rotates unidirectionally and generates torque while walking on microtubules.

Avin Ramaiya, Basudev Roy, Michael Bugiel, and Erik Schäffer.

PNAS 114, 10894-10899 (2017);

DOI: 10.1073/pnas.1706985114

50. Developmentally Regulated GTP binding protein 1 (DRG1) controls microtubule dynamics.

Schellhaus, A. K., D. Moreno-Andrés, M. Chugh, H. Yokoyama, A. Moschopoulou, S. De, F. Bono, K. Hipp, E. Schäffer and W. Antonin.

Scientific Reports 7, 9996 (2017);

DOI:10.1038/s41598-017-10088-5

49. Bugiel, M., A. Jannasch and E. Schäffer. Implementation and Tuning of an Optical Tweezers Force-Clamp Feedback System. vol. 1486 of Methods in Molecular Biology. Optical Tweezers: Methods and Protocols. A. Gennerich. New York, NY, Springer New York: 109-136 (2017);

DOI: 10.1007/978-1-4939-6421-5_5

48. Custom-Made Microspheres for Optical Tweezers. vol. 1486 of Methods in Molecular Biology. Optical Tweezers: Methods and Protocols. A. Gennerich. New York, NY, Springer New York: 137-155 (2017); Anita Jannasch , Mohammad K. Abdosamadi , Avin Ramaiya , Suman De, Valentina Ferro, Aaron Sonnberger, Erik Schäffer.

DOI: 10.1007/978-1-4939-6421-5_6

47. Improved antireflection coated microspheres for biological applications of optical tweezers.
Valentina Ferro, Aaron Sonnberger, Mohammad K. Abdosamadi, Craig McDonald, Erik Schäffer, David McGloin.
Proc. SPIE 9922, 99222T (2016);

DOI: 10.1117/12.2239025.

46. Directed rotational motion of birefringent particles by randomly changing the barrier height at the threshold in a washboard potential.
Basudev Roy and Erik Schäffer.
Curr. Sci. 111, 2005-2008 (2016);

DOI: 10.18520/cs/v111/i12/2005-2008

45. Kinesin Kip2 enhances microtubule growth in vitro through length-dependent feedback on polymerization and catastrophe.
Anneke Hibbel, Aliona Bogdanova, Mohammed Mahamdeh, Anita Jannasch, Marko Storch, Erik Schäffer, Dimitris Liakopoulos, Jonathon Howard.
eLife 4, e10542 (2015);

http://dx.doi.org/10.7554/eLife.10542

44. Versatile microsphere attachment of GFP-labeled motors and other tagged proteins with preserved functionality.
Bugiel M, Fantana H, Bormuth V, Trushko A, Schiemann F, Howard J, Schäffer E, Jannasch A.
J. Biol. Methods 2, e30 (2015);

DOI: 10.14440/jbm.2015.79

43. Enzyme-Powered Hollow Mesoporous Janus Nanomotors.
Xing Ma, Anita Jannasch, Urban-Raphael Albrecht, Kersten Hahn§, Albert Miguel-López, Erik Schäffer, and Samuel Sánchez.
Nano Lett. 15, 7043–7050 (2015);

DOI: 10.1021/acs.nanolett.5b03100

42. A Single-Strand Annealing Protein Clamps DNA to Detect and Secure Homology.
Ander M, Subramaniam S, Fahmy K, Stewart AF, Schäffer E.
PLoS Biol. 13, e1002213 (2015) ;

DOI: 10.1371/journal.pbio.1002213

41. The Kinesin-8 kip3 switches protofilaments in a sideward random walk asymmetrically biased by force.
Bugiel M, Böhl E, Schäffer E.
Biophys. J. 108, 2019-27 (2015);

DOI: 10.1016/j.bpj.2015.03.022

40. The Growth Speed of Microtubules with XMAP215-Coated Beads Coupled to their Ends is Increased by Tensile Force
Trushko, A; Schäffer, E and Howard, J
PNAS 110, 14670-14675 (2013);

DOI: 10.1073/pnas.1218053110

39. Kinesin-8 Is a Low-Force Motor Protein with a Weakly Bound Slip State
Jannasch, A; Bormuth, V; Storch, M; Howard, J and Schäffer, E
Biophys. J. 104, 2456-2464 (2013);

DOI: 10.1016/j.bpj.2013.02.040

38. Nanonewton Optical Force Trap Employing Anti-Reflection Coated, High-Refractive-Index Titania Microspheres
Jannasch, A; Demirörs, A F; van Oostrum, P D J; van Blaaderen, A and Schäffer, E
Nature Photonics 6 , 469-473 (2012);

DOI: 10.1038/NPHOTON.2012.140

37. Functional Surface Attachment in a Sandwich Geometry of GFP-Labeled Motor Proteins
Bormuth, V; Zörgibel, F; Schäffer, E and Howard, J
Single Molecule Enzymology 778 , 11-18 (2011);

DOI: 10.1007/978-1-61779-261-8_2

36. Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise
Jannasch, A; Mahamdeh, M and Schäffer, E
Phys. Rev. Lett. 107, 228301 (2011);

DOI: 10.1103/PhysRevLett.107.228301

35. Measuring the complete force field of an optical trap
Jahnel, M; Behrndt, M; Jannasch, A; Schäffer, E and Grill, SW
Opt. Lett. 36, 1260-1262 (2011);

DOI: 10.1364/OL.36.001260

34. Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence
Demirörs, AF; Jannasch, A; van Oostrum, PDJ; Schäffer, E; Imhof A and van Blaaderen, A
Langmuir 27, 1626-1634 (2011);

DOI: 10.1021/la103717m

33. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers
Mahamdeh, M; Campos, CP and Schäffer, E
Optics Express 19, 11759-11768 (2011);

DOI: 10.1364/OE.19.011759

32. Breaking of bonds between a kinesin motor and microtubules causes protein friction
Bormuth, V; Varga, V; Howard, J and Schäffer, E
Proc. SPIE 7762 , 776208 (2010);

DOI: 10.1117/12.863545

31. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy
Gell, C; Bormuth, V; Brouhard, GJ; Cohen, DN; Diez, S; Friel, CT; Helenius, J; Nitzsche, B; Petzold, H; Ribbe, J; Schäffer, E; Stear, JH; Trushko, A; Varga, V; Widlund; PO; Zanic, M and Howard, J
Methods in Cell Biology 95 , 221-245 (2010);

DOI: 10.1016/s0091-679x(10)95013-9

30. Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution
Mahamdeh, M and Schäffer, E
Optics Express 17, 17190-17199 (2009);

DOI: 10.1364/OE.17.017190

29. Protein friction limits diffusive and directed movements of kinesin motors on microtubules
Bormuth, V; Varga, V; Howard, J and Schäffer, E
Science 325, 870-873 (2009);

DOI: 10.1126/science.1174923

28. Optical trapping of coated microspheres
Bormuth, V; Jannasch, A; Ander, M; van Kats, C; van Blaaderen, A; Howard, J and Schäffer, E
Optics Express 16, 13831-13844 (2008);

DOI: 10.1364/OE.16.013831

27. Coated microspheres as enhanced probes for optical trapping
Jannasch, A; Bormuth, V; van Kats, C; van Blaaderen, A; Howard, J and Schäffer, E
Proc. SPIE 7038, 70382B-1-70382B-8 (2008);

DOI: 10.1117/12.795389

26. LED illumination for video-enhanced DIC imaging of single microtubules
Bormuth, V; Howard, J and Schäffer, E
J. Microsc. 226, 1-5 (2007);

DOI: 10.1111/j.1365-2818.2007.01756.x

25. Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers
Schäffer, E; Nørrelykke, SF and Howard, J
Langmuir 23, 3654-3665 (2007);

DOI: 10.1021/la0622368

24. Brownian motion after Einstein: Some new applications and new experiments
Selmeczi, D; Tolić-Nørrelykke, SF; Schäffer, E; Hagedorn, P; Mosler, S; Berg-Sørensen, K; Larsen, N and Flyvbjerg, H
Lect. Notes Phys. 711, 181-199 (Springer Berlin 2007);

DOI: 10.1007/3-540-49522-3_9

23. Brownian motion after Einstein and Smoluchowski: Some new applications and new experiments
Selmeczi, D; Tolić-Nørrelykke, SF; Schäffer, E; Hagedorn, P; Mosler, S; Berg-Sørensen, K; Larsen, N and Flyvbjerg, H
Acta Phys. Pol. B 38, 2407-2431 (2007);

DOI: 10.1007/3-540-49522-3_9

22. Calibration of optical tweezers with positional detection in the back focal plane
Tolić-Nørrelykke, SF*; Schäffer, E*; Howard, J; Pavone, F; Jülicher, F and Flyvbjerg, H
Rev. Sci. Inst. 77, 103101 (2006);

DOI: 10.1063/1.2356852
*These authors contributed equally to the work.

21. Dynamic domain formation in membranes: Thickness modulation induced phase separation
Schäffer, E and Thiele, U
Eur. Phys. J. E 14, 169-175 (2004);

DOI: 10.1140/epje/i2003-10147-x

20. Molecular forces caused by the confinement of thermal noise
Morariu, MD; Schäffer, E and Steiner, U
Phys. Rev. Lett. 92, 156102 (2004);

DOI: 10.1103/PhysRevLett.92.156102

19. Self-organized organic nanostructures: structure formation in thin polymer blend films
Walheim, S; Schäffer, E and Steiner, U
Surf. Interface Anal. 36, 195-196 (2004);

DOI: 10.1002/sia.1670

18. Thermomechanical lithography: Pattern replication using a temperature gradient driven instability
Schäffer, E; Harkema, S; Roerdink, M; Blossey, R and Steiner, U
Adv. Mat. 15, 514-517 (2003);

DOI: 10.1002/adma.200390119

17. Capillary instabilities by fluctuation induced forces
Morariu, MD; Schäffer, E and Steiner, U
Eur. Phys. J. E 12,375-381 (2003);

DOI: 10.1140/epje/e2004-00005-8

16. Morphological instability of a confined polymer film in a thermal gradient
Schäffer, E; Harkema, S; Roerdink, M; Blossey, R and Steiner U
Macromolecules 36, 1645-1655 (2003);

DOI: 10.1021/ma021080p
Unsteady as she flows
Editors' Choice
Science 299, 1151 (2003)

15. The distribution of active force generators controls mitotic spindle position
Grill, SW; Howard, J; Schäffer, E; Stelzer, EHK and Hyman, AA
Science 301, 518-521 (2003);

DOI: 10.1126/science.1086560

14. Hierarchical structure formation and pattern replication induced by an electric field
Morariu, M; Voicu, N; Schäffer, E; Lin, Z; Russell, TP and Steiner, U
Nature Materials 2, 48-52 (2003);

DOI: 10.1038/nmat789
Harnessing the unstable
News & Views
Nature Materials 2, 11-12 (2003);

13. Pattern replication by confined dewetting
Harkema, S; Schäffer, E; Morariu, M and Steiner, U
Langmuir 19, 9714-9718 (2003);

DOI: 10.1021/la034527b

12. Aspects of electrohydrodynamic instabilities at polymer interfaces
Russell, TP; Lin, Z; Schäffer, E and Steiner, U
Fibers Polym. 4, 1-7 (2003);

DOI: 10.1007/BF02899322

11. Acoustic instabilities in thin polymer films
Schäffer, E and Steiner, U
Eur. Phys. J. E 8, 347-351 (2002);

DOI: 10.1140/epje/i2002-10018-0

10. Temperature-gradient-induced instability in polymer films
Schäffer, E; Harkema, S; Blossey, R and Steiner, U
Eur. Phys. Lett. 60, 255-261 (2002);

DOI: 10.1209/epl/i2002-00344-9

9. Electric field induced dewetting at polymer/polymer interfaces
Lin, Z; Kerle, T; Russell, TP; Schäffer, E and Steiner, U
Macromolecules 35, 6255-6262 (2002);

DOI: 10.1021/ma020311p

8. Structure formation at the interface of liquid/liquid bilayer in electric fields
Lin, Z; Kerle, T; Russell, TP; Schäffer, E and Steiner, U
Macromolecules 35, 3971-3976 (2002);

DOI: 10.1021/ma0122425

7. Electrohydrodynamic instabilities in polymer films
Schäffer, E; Thurn-Albrecht, T; Russell, TP and Steiner, U
Eur. Phys. Lett. 53, 518-524 (2001);

DOI: 10.1209/epl/i2001-00183-2

6. Spreading of polydimethylsiloxane drops: Crossover from Laplace to van der Waals spreading
Pérez, E; Schäffer, E and Steiner, U
J. Colloid Interface Sci. 234, 178-193 (2001);

DOI: 10.1006/jcis.2000.7292

5. Electric field induced instabilities at liquid/liquid interfaces
Lin, Z; Kerle, T; Baker, SM; Hoagland, DA; Schäffer, E; Steiner, U and Russell, TP
J. Chem. Phys. 114, 2377-2381 (2001);

DOI: 10.1063/1.1338125

4. Contact line dynamics near the pinning threshold: A capillary rise and fall experiment
Schäffer, E and Wong, P-z
Phys. Rev. E 61, 5257-5277 (2000);

DOI: 10.1103/PhysRevE.61.5257

Schaeffer 2000 Icon

3. Electrically induced structure formation and pattern transfer
Schäffer, E; Thurn-Albrecht, T; Russell, TP and Steiner, U
Nature 403, 874-877 (2000);

DOI: 10.1038/35002540

2. Nanophase-separated polymer films as high-performance antireflection coatings
Walheim, S; Schäffer, E; Mlynek, J and Steiner, U
Science 283, 520-522 (1999) ;

DOI: 10.1126/science.283.5401.520

1. Dynamics of contact line pinning in capillary rise and fall
Schäffer, E and Wong, P-z
Phys. Rev. Lett. 80, 3069-3072 (1998);

DOI: 10.1103/PhysRevLett.80.3069


Patents

Optical trapping particle and optical trapping method
Bormuth, V; Jannasch, A; van Blaaderen, A; Howard, J and Schäffer, E
European Patent Registration PCT/EP2009/001425 (2008)

Method and apparatus for forming patterns in films using temperature gradients
Schäffer, E and Steiner, U
European Patent Registration PCT 124205.6 (2000)

Method and apparatus for forming submicron patterns on films
Schäffer, E; Thurn-Albrecht, T; Mlynek, J; Russell, TP and Steiner, U
US Patent Registration 07880-075001 (1999)

Verfahren zur Herstellung von Antireflexschichten
Walheim,S; Schäffer, E; Eggert, S; Mlynek, J and Steiner, U
International Patent Registration 99 932 749.7 (1999)



Press

Wie kräftig sind biologische Motoren?
B. Röthlein
Die Welt 18. August 2009, Seite 27

Lastenträger in der Laserfalle
F. Stadler
Sächsische Zeitung Dresden, 1. Februar (2007




Proceedings

Experimental study of contact line dynamics by capillary rise and fall
Wong, P-z and Schäffer, E
In Contact Angle, Wettability and Adhesion;Mittal, KL; editor; Vol. 3, 25-37 (2003)

Controlling film instabilities
Schäffer, E; Walheim, S and Steiner, U
In Proceedings of the 4th European Coating Symposium 2001; Buchlin, J.-M. and Anthoine, J., editors, 33-43 (2002)

Dynamics of contact line pinning in capillary rise and fall
Wong, P-z; Schäffer, E; and Pengra, DB
In Dynamics in Small Confining Systems; Drake, JM; Klafter, J and Kopelman, R; editors
MRS Conf. Proc. 464, 351-362 (1997)



Theses

Instabilities in thin polymer films: Structure formation and pattern transfer
Schäffer, E
Dissertation University of Konstanz (2001)

Contact line dynamics near the pinning threshold
Schäffer, E
Thesis (M.S.) University of Massachusetts at Amherst (1997)