Technical Note 2: Analyzing prehistoric weights and weight systems using Kendall's formula and the open-source (geo-)statistical language R
Ahlrichs, Jan Johannes1,2 and Schmidt, Karsten1,3,4
1 Collaborative Research Center 1070 ResourceCultures, University of Tübingen
² Institute of Pre- and Protohistory and Medieval Archaeology, University of Tübingen
³ eScience-Center, University of Tübingen
4 Department of Geosciences, Soil Science & Geomorphology, University of Tübingen
The entire script with short description is attached for download. Additionally, we provide a test dataset, which we have used for further testings. The test data set represents an early Bronze Age metal hoard, that was discovered in 1970 during constructions works in Mauthausen near Bad Reichenhall (Menke 1978/79).
This technical section is made to evolve! Please share your thoughts, requirements and suggestions regarding the described issues to
Jan Ahlrichs jan.ahlrichsspam prevention@uni-tuebingen.de and
Karsten Schmidt karsten.schmidtspam prevention@uni-tuebingen.de
Download: R-Script
Download: Description (PDF)
Download: Test material
Introduction
Weight systems represent a fundamental precondition for the functioning of today's economic systems. The use of standardized weights and measures is important in order to assess the value of individual goods and to facilitate interregional trade and exchange. However, from an archaeological point of view the use of weights and weight systems is known as an important resource in prehistoric societies; but in many cases hard to identify and/or analyze. On the contrary, it can be traced back at least to the Bronze Age (Flinders Petrie 1926; Petruso 1981; Eiwanger 1989; Peroni 1998; Alberti et al. 2006; Michailidou 2008; Rahmstorf 2003, 2006a/b, 2010). In recent decades, it has been found that the archaeological records from the Mediterranean and the western Levant is well suited for studies on early weight systems: there are representations of weights, written records as well as archaeological finds, which can be identified as weights because of their shape and the basis of various markers as well. A large variety of studies were able to show that the introduction of weight systems and units in the Mediterranean and the Levant seems to be closely related to the development of city-like settlements and the development of hierarchical societies in which complex economies standardized weight units were used for administrative purposes and trade (Knapp 1988; Bass 1991; Wiener 1991; Petruso 1992; Hänsel 1995; Hesse 1995; Panagl 1995; Michailidou 2001; Ratnager 2003; Berg 2004; Bobokhyan 2009, 2010; Rahmstorf 2011, 2014). Probably one of the most famous examples for the importance of weight systems in Bronze Age trade is the shipwreck from Uluburun (Pulak 1996, 1998, 2000; Yalçin et. al 2005; Yalçin 2006).
However, when it comes to the Bronze and Iron Age cultures north of the Alps, the archaeological situation is quite different. Here, the detection of standardized weight units with archaeological methods is challenging, because these cultures left no written sources or pictorial representations of weights and scales behind, that could be used as a point of reference in the identification of archaeological finds as standardized weights. In recent years sophisticated statistical and mathematical approaches made it possible to identify individual artifacts as possible weights. In addition, there are finds, which can be interpreted as scales (Medovič 1995; Pare 1999; for Viking Age weights and scales see Steuer 1984, 1987). However, the question remains, on which units these weight systems are based. In this case archaeological research has to make use of quantitative methods in order to demonstrate the existence of standardized weight units in these non-literate societies. Hoards represent a useful resource for studies on weight systems, because they often contain several dozen artifacts made of bronze (Schwarz 1971; Menke 1978/79; Moosleitner 1988; Winghart 1990; Sommerfeld 1994; Lenerz-de Wilde 1995; Innerhofer 1997; Lenerz-de Wilde 2002; Hoßfeld 2006; Lenerz-de Wilde 2011).
Archaeological and mathematical hurdles
Although the existence of prehistoric units and weight systems has been intensively studied in archaeological research, there are only few studies in which they were analyzed using quantitative methods (Kyhlberg 1980; Sperber 1986; Holm 1987; Sperber 1988, 1989, 1991; Malmer 1992; Petruso 1992; Sperber 1993a/b, 1996; Pare 1999; Sperber 1999; Petruso 2003; Hoßfeld 2006). There are several reasons for this observation. When it comes to the statistical analysis of weight units and weight systems from prehistoric cultures, different source-critical factors must be considered. A basic prerequisite for the recognition of weights is that normalized weights existed and they were made of a material that has been conserved until today.. It must also be noted that the use and distribution of weight systems is linked to cultural entities and presupposes politically stable communication spheres where their use is mandatory or generally accepted for other reasons. Consequently, for the study of prehistoric units there is the problem that standardized weight units and weight systems were subject to significant fluctuations not only on a spatial level but also on a temporal one. A statistical analysis is further complicated by the fact that the accuracy of prehistoric scales is unknown – therefore the methodological fault tolerance of the presumed weights themselves is also unknown. Another factor is the state of preservation of the archaeological finds: taxonomic processes such as post depositional fragmentation or corrosion can alter the mass of the weights – in particular when they are made of iron.
In an optimal case the quantitative analysis is based on artefacts with an unaltered mass, which presumably belong to a spatial and temporal coherent weight system of a studied society. Only in a few cases these prerequisite are met. Hence, we need a capable algorithm which can handle and/or communicate deviations within the artefact weights and the weight system.
Kendall's formula
Consider a data set of different measured weights (artefacts, fragments assumed to be part of a former weight system) x1, x2, ..., xn where each of the weights is an approximate integral multiple of one positive number q1, q2, ..., qk where typically k = 1 or another small integer. The numbers qk are related to the proposed weight or currency system and consists of an artificial vector of numbers (same units like x), where each of these numbers should be tested as potential candidate.
David G. Kendall (1918–2007) proposed a ‘cosine quantogram’ in the following form:
[1]
where 0 ≤ ε (i) ˂ qis the remainder when xi is divided by q. This formula works well if we are dealing with the k = 1 case, i.e. we assume one distinct multiple in a given dataset defining a weight system. To avoid misinterpretations, the k > 1 case should be regarded with caution. The quantogram responds with a positive peak at 1/q (see [1]) if a true quantum q > 0 is present. In the Null case the cosine function results in a fixed large value and declines later on, while for larger q values the curve is close to random oscillations comparable to a standardized stationary Gaussian time series (Kendal 1974,1977, 1986). Our best estimator should be something in between, if present. Thus selecting a meaningful quantum hunting search range [q1, …, qk] is essential (excluding zero and infinity) and should be carefully selected. Kendall recommend strongly to select various artificial search ranges and different scales of plotting to reveal the necessary density to identify all relevant peaks (Kendall 1974). Finally, the highest peak (H) in combination with the smallest base (potential indicator of deviation) should be selected and can be regarded as one multiplier within the analyzed weights. The significance can be tested according to Kendall (1974, 1977, 1986) proposed methodological workflow:
1. Arrange the data values in increasing order of size as x1, x2, …, xn
2. Put yj = xj+1 – x1 for j = 1,2, ..., N-l.
3. For consecutive values on the y-scale, starting at zero, reassign all the data values found in each cell to values randomly and uniformly distributed within that cell, thus getting y1*, y2*, ..., yN-1*
4. Now put x1* = x1 and xj* = x1 + yj+1* for j >= 2. Choose the coefficient so that x1*, x2*, ..., xN* have the same sum of squares as x1, x2, ..., xN
5. Draw the quantogram for the starred data, and record the height H* of the highest peak in the interval [1/q0,1/q1], proceeding exactly as in the analysis of the real data.
6. Repeat steps 3 to 5 a large number of times (at least 100), and then assess the significance of the observed peak H against the data-based simulation set of peaks H*.
Methodological workflow and script example
Different methodological steps are necessary to calculate Kendall’s formula with R. First of all it is needed to populate the given weights from your finds by using the read.table() function or if easier create your own vector of weights. Both steps are provided within the script and can easily be adjusted with your own dataset (cf. Line [15–17], Line [19]). For Line [20] it is necessary to select a potential test sequence of weights to analyze. Line [23–25] are general setting for the analysis of significance.
- #R-SCRIPT Part 1 – Little helpers
[1] push <- function(vec, item) {
[2] vec=substitute(vec)
[3] eval.parent(parse(text = paste(vec, ' <- c(', vec, ', ', item, ')', sep = '')), n = 1)
[4] }
[5] pop <- function(vec) {
[6] tmp <- vec[length(vec)]
[7] vec=substitute(vec)
[8] eval.parent(parse(text = paste(vec, ' <- ', vec, '[-length(', vec, ')]', sep = '')), n = 1)
[9] tmp
[10] }
- #R-SCRIPT Part 2 – User settings
[11] # Working directory
[12] setwd("C:/Path/to/your/data")
[13] # Read list of weights by predifined *.csv / *.txt
[14] table <- "Testdata_Mauthausen.txt"
[15] dsIn = read.table(table, header=TRUE, sep="\t", dec=".", strip.white=TRUE )
[16] names(dsIn)
[17] x = dsIn$Mauthausen_weights
[18] # Hardcoded list of weights
[19] x = c(119.50, 121.00, […])
[20] # artificial weight list [!ADJUST]
[21] q = seq(2, 40, length.out = 800)
[22] # Test of significance based on t.test()
[23] Initial_Lambda = 10 # cf. KENDAL, 1974, S.439 - Workflow [4]
[24] Initial_Adjustment = 0.001
The next part performs the cosine quantogram function on your dataset which you can visualize by the plot() function and different style settings (cf. Figure 1).
- #R-SCRIPT Part 3 – Hunting quanta (Kendall 1974)
[25] nq = length(q)
[26] nx = length(x)
[27] Q = matrix(rep(q,nx), nrow=nx, ncol=nq, byrow= T)
[28] X = matrix(rep(x,nq), nrow=nx, ncol=nq, byrow= F)
[29] # Remainder
[30] Xr = X%%Q
[31] # Hunting Quanta function
[32] phi = rep(0,length(X[1,]))
[33] for (i in 1:length(X[1,])) phi[i] = sqrt(2 / nx) * sum(cos(2 * pi * Xr[,i] / Q[,i]))
- #R-SCRIPT Part 4 – Visualization and report
[34] plot(q,phi, pch=19, col="white", main = "Cosine quantogram [Kendal, 1974]",
xlab="Quantum (g)", ylab=expression(paste(phi,"(",tau,")")), cex.lab = 1.5)
[35] lines(q,phi, col="red", lwd=1, lty=3)
[36] abline(h=0, lty="dashed", col="gray")
[37] print(c("Highest peak: ", max(phi)))
- #R-SCRIPT Part 4 – Test of significance [One sample t-test]
[38] H = max(phi) # reference peak
[39] sum_of_squares_x <- sum( (x-mean(x))^2)
[40] # Kendall's workflow [1]
[41] x <- sort(x)
[42] # Kendall's workflow [2]
[43] y<-rep(0, length(x)-1)
[44] for (i in 1:length(x)-1) y[i] <- x[i+1] - x[i]
[45] # Kendall's workflow [3] - [5]
[46] rH <- rep(0,100)
[47] for (reps in 1:100) {
[48] xr <- x
[49] yr <- runif(length(y),0, max(y))
[50] found = FALSE
[51] Lambda = Initial_Lambda
[52] Sequence_Of_Lamba = Lambda
[53] Adjust = Initial_Adjustment
[54] Index = 0
The part below [55-68] calculates an adjusted random distribution, which meets the statistical requirements mention in Kendal 1974 – Workflow [3] and [4]. We adjust the necessary Lambda by using a greedy search over potential candidates, which needs to be initialized via user setting. As rule of thumbs start with a bigger initial adjustment, to reduce the number of iterations and have a look to the Lambda, if it is increasing stop the algorithm and set the initial Lambda accordingly higher and finally allow finer adjustments. This part needs a little bit of time to fit the function according to the initial weights.
[55] while (!found) {
[56] for (j in 2:length(x)) xr[j] <- xr[1] + Lambda*yr[j-1]
[57] sum_of_squares_xr = sum( (xr-mean(xr))^2 )
[58] if (sum_of_squares_xr < sum_of_squares_x) Lambda = Lambda + Adjust
[59] if (sum_of_squares_xr > sum_of_squares_x) Lambda = Lambda - Adjust
[60] if (round(sum_of_squares_xr) == round(sum_of_squares_x) ) found = TRUE
[61] push(Sequence_Of_Lamba, Lambda)
[62] if (duplicated(Sequence_Of_Lamba)[length(Sequence_Of_Lamba)] == TRUE)
[63] {
[64] Adjust = Adjust / 10
[65] Index = Index + 1
[66] }
[67] if (Index == 10) found = TRUE
[68] }
[69] # Calculate cosine quantogram based on the random uniform distribution
[70] nX = matrix(rep(xr,nq), nrow=nx, ncol=nq, byrow= F)
[71] Xr = nX%%Q
[72] phi_r = rep(0,length(nX[1,]))
[73] for (i in 1:length(nX[1,])) phi_r[i] = sqrt(2 / nx) * sum(cos(2 * pi * Xr[,i] / Q[,i]))
[74] rH[reps] = max(phi_r)
[75] }
For statistical testing we used a one sample t-test to examine the mean difference between the calculated H and the population mean of rH. Commonly in the one sample t-test, the population mean is known. We test the given H (as sample mean) against the population mean (mean of rH) to make a statistical decision as to wether or not H is different from rH.
[76] t.test(rH, mu=H)
In general, we formulate two hypotheses:
(i) Null hypothesis: assumes that there are no significance differences between the rH mean and the H mean.
(ii) Alternative hypothesis: assumes that there is a significant difference between the rH mean and the H mean.
To avoid rejecting the null hypothesis by mistake an error probability of normally values (α) between 0.5 and 0.01 are chosen. This means if the t value of our H is close to 0 the null hypothesis is true. Respectively, we have to reject the null hypothesis if the t value is different from 0 in direction to our alternative hypothesis. In general, if we consider the p-value below 0.5 we reject our null hypothesis.
Translating the null hypothesis in archeological terms means, we test the estimated weight to be part of a random distribution within the range of the given initial weights. If the null hypothesis is true, the estimated mean is in general part of a random distribution and cannot be considered as part of an underlying weight system. Respectively, the alternative hypothesis means we have significant differences between a random distribution mean and our calculated H, and thus we have most properly identified a weight system indicator.
References and further readings
Alberti, M. E., Ascalone, E. and Peyronel, L. (2006). Weights in context: Bronze Age weighing systems of Eastern Mediterranean: chronology, typology, material and archaeological contexts: proceedings of the International colloquium, Roma 22nd–24th November 2004. Studi di materiali 13. Roma: Istituto italiano di numismatica.
Bass, G. F. (1991). Evidence of Trade from Bronze Age Shipwrecks. In: N. H. Gale (ed.), Bronze Age Trade in the Mediterranean: papers presented at the conference held at Rewley House, Oxford, in December 1989. Studies in Mediterranean archaeology 90. Jonsered: P. Åströms, pp. 69–82.
Berg, I. (2004). The meanings of standardisation: conical cups in the late bronze Age Aegean. Antiquity 78(299), pp. 74–85.
Bobokhyan, A. (2009). Trading implements in early Troy. Anatolian Studies 59(1), pp. 19–50.
Bobokhyan, A. (2010). „Sicle caucasien“: Zur Frage der bronzezeitlichen Gewichtssysteme im Kulturgebiet zwischen Kaukasus und Taurus. In: S. Hansen – A. Hauptmann – I. Motzenbäcker – E. Pernicka (eds.), Von Majkop bis Trialeti: Gewinnung und Verbreitung von Metallen und Obsidian in Kaukasien im 4.–2. Jt. v. Chr.; Beiträge des Internationalen Symposiums in Berlin vom 1.–3. Juni 2006. Bonn: Habelt, pp. 179–203.
Dzbyński, A. (2008). Von Seeberg bis Kelsterbach: ein Beitrag zur Bedeutung des Kupfers im Äneolithikum und in der Bronzezeit Europas. Prähistorische Zeitschrift 83(1), pp. 36–44.
Eiwanger, J. (1989). Tantalon. Ein bronzezeitlicher Goldstandard zwischen Ägäis und Mitteleuropa. Germania 67(1), pp. 443–462.
Flinders Petrie, W. M. (1926). Ancient weights and measures. London: Department of Egyptology, University College London.
Gullman, J. and Reid, C. (2012). Kortameddelanden: The Metrology of the Timboholm Hoard Revisited. Fornvännen 107(1), pp. 134–136.
Hänsel, B. (1995). Einführung. In: B. Hänsel (ed.), Handel, Tausch und Verkehr im bronze- und früheisenzeitlichen Südosteuropa. Südosteuropaschriften 17. Prähistorische Archäologie in Südosteuropa 11. Berlin: Seminar für Ur- und Frühgeschichte der Freien Universität, pp. 9–19.
Herschend, F. (1987). Metrological problems. Tor: tidskrift för arkeologi 21, pp. 173–204.
Hesse, K. (1995). Handel, Tausch und Prestigegüterwirtschaft in außereuropäischen Zivilisationen. In: B. Hänsel (ed.), Handel, Tausch und Verkehr im bronze- und früheisenzeitlichen Südosteuropa. Südosteuropaschriften 17. Prähistorische Archäologie in Südosteuropa 11. Berlin: Seminar für Ur- und Frühgeschichte der Freien Universität, pp. 31–37.
Holm, S. (1987). Statistical methods for module problems. Tor: tidskrift för arkeologi 21, pp. 205–210.
Hoßfeld, H. (2006). Prämonetäre Phänomene bei Ringhorten seit der mittleren Bronzezeit beidseits der Oder. Prähistorische Zeitschrift 81(1), pp. 175–199.
Innerhofer, F. (1997). Frühbronzezeitliche Barrenhortfunde – Die Schätze aus dem Boden kehren zurück. In: A. Hänsel – B. Hänsel (eds.), Gaben an die Götter: Schätze der Bronzezeit Europas. Ausstellung der Freien Universität Berlin in Verbindung mit dem Museum für Vor- und Frühgeschichte, Staatliche Museen zu Berlin – Preussischer Kulturbesitz. Museum für Vor- und Frühgeschichte (Berlin, Germany) 4. Berlin: Museum für Vor- und Frühgeschichte, pp. 53–59.
Jockenhövel, A. (1994). Ortsfest und mobil – Haus- und Handwerk, Handel und Verkehr. In: A. Jockenhövel – W. Kubach (eds.), Bronzezeit in Deutschland. Archäologie in Deutschland, Sonderheft 1994. Stuttgart: K. Theiss, pp. 41–44.
Kendall, D. G. (1974). Hunting Quanta. Philosophical Transactions of the Royal Society of London. Mathematical and Physical Sciences A 276, pp. 231–266.
Kendall, D. G. (1977). Hunting Quanta. In: R. Bartoszyński (ed.), Proceedings of the symposium to honour Jerzy Neyman. Warszawa: PWN, pp. 111–159.
Kendall, D. G. (1986). Quantum hunting. In: S. Klotz – N. L. Johnson (eds.), Enclypedia of the Statistical Sciences. New York: Wiley, pp. ...
Knapp, B. A. (1988). Hoards d'oeuvres: of metals & men on Bronze Age Cyprus Oxford Journal of Archaeology 7(2), pp. 147–176.
Kyhlberg, O. (1980). Vikt och värde. Arkeologiska studier i värdemätning, betalningsmedel och metrologi under yngre järnålder. Stockholm studies in archaeology 1.
Lenerz-de Wilde, M. (1995). Prämonetäre Zahlungsmittel in der Kupfer- und Bronzezeit Mitteleuropas. Fundberichte aus Baden- Württemberg 20(1), pp. 229–327.
Lenerz-de Wilde, M. (2002). Bronzezeitliche Zahlungsmittel. Mitteilungen der Anthropologischen Gesellschaft in Wien 132(1), pp. 1–23.
Lenerz-de Wilde, M. (2011). Neue Ringbarrenhorte – Bronzen als Wertträger (prämonetäre Zahlungsmittel). In: U. L. Dietz and A. Jockenhövel (eds.), Bronzen im Spannungsfeld zwischen praktischer Nutzung und symbolischer Bedeutung. Beiträge zum internationalen Kolloquium am 9. und 10. Oktober 2008 in Münster. Prähistorische Bronzefunde XX, Band 13. Stuttgart: F. Steiner, pp. 177–198.
Malmer, M. P. (1992). Weight systems in the Scandinavian Bronze Age. Antiquity 66(251), pp. 377–388.
Medovič, P. (1995). Die Waage aus der frühhallstattzeitlichen Siedlung Bordjoš (Borjas) bei Novi Bečej. In: B. Hänsel (ed.), Handel, Tausch und Verkehr im bronze- und früheisenzeitlichen Südosteuropa. Südosteuropaschriften 17. Prähistorische Archäologie in Südosteuropa 11. Berlin: Seminar für Ur- und Frühgeschichte der Freien Universität, pp. 205–218.
Menke, M. (1978/79). Studien zu den frühbronzezeitlichen Metalldepots Bayerns. Jahresbericht der Bayerischen Bodendenkmalpflege 19/20, pp. 5–305.
Michailidou, A. (2001). Recording quantities of metal in bronze age societies in the Aegean and the Near East. In: A. Michailidou (ed.), Manufacture and measurement : counting, measuring and recording craft items in Early Aegean societies. Meletēmata (Kentron Hellēnikēs kai Rōmaikēs Archaiotētos) 42. Athens: Research Centre for Greek and Roman Antiquity, National Hellenic Research Foundation, pp. 85–119.
Michailidou, A. (2008). Weight and value in pre-coinage societies, volume 2. Meletēmata (Kentron Hellēnikēs kai Rōmaikēs Archaiotētos) 42. Athens: Diffusion de Boccard.
Moosleitner, F. (1988). Vier Spangenbarrendepots aus Obereching, Land Salzburg. Mit einem Beitrag von H. Moesta. Germania 66(1), pp. 29–67.
Panagl, O. (1995). Handel, Händler und Verkehr im Spiegel griechischer Texte von Linear B bis Homer. In: B. Hänsel (ed.), Handel, Tausch und Verkehr im bronze- und früheisenzeitlichen Südosteuropa. Südosteuropaschriften 17. Prähistorische Archäologie in Südosteuropa 11. Berlin: Seminar für Ur- und Frühgeschichte der Freien Universität, pp. 49–52.
Pare, C. F. E.(1999). Weights and Weighing in Bronze Age Central Europe. In: Eliten der Bronzezeit. Ergebnisse zweier Kolloquien in Mainz und Athen. Monographien (Römisch-Germanisches Zentralmuseum Mainz. Forschungsinstitut für Vor- und Frühgeschichte) 43. Mainz: Verlag des Römisch-Germanischen Zentralmuseums, pp. 421–514.
Pare, C. F. E. (2000). Bronze and Bronze Age. In: C. F. E. Pare (Hrsg.), Metals make the world go round. The supply and circulation of metals in Bronze Age Europe. Proceedings of a conference held at the University of Birmingham, June 1997. Oxford: Oxbow, pp. 1–38.
Pare, C. F. E. (2013). Weighing, commodification and money. In: H. Fokkens – A. Harding (eds.), The Oxford handbook of the European Bronze Age. Oxford: Oxford University Press, pp. 508–527.
Peroni, R. (1998). Bronzezeitliche Gewichtssysteme im Metallhandel zwischen Mittelmeer und Ostsee. In: B. Hänsel (ed.), Mensch und Umwelt in der Bronzezeit Europas. Kiel: Oetker-Voges, pp. 217–224.
Petruso, K. M. (1981). Early Weights and Weighing in Egypt and the lndus Valley. Museum of Fine Arts Boston. M Bulletin 79(1), pp. 44–51.
Petruso, K. M. (1992). Ayia Irini: the balance weights: an analysis of weight measurement in prehistoric Crete and the Cycladic Islands. KEOS VIII. Mainz am Rhein: P. von Zabern.
Petruso, K. M. (2003). Quantal analysis of some Mycenaean balance weights. In: K. P. Foster – R. Laffineur (eds.), METRON: Measuring the Aegean Bronze Age. Aegaeum 24. Liège: Université de Liège, pp. 293–299.
Pulak, C. M. (1996). Analysis of the weight assemblages from the late bronze age shipwrecks at Uluburun and Cape Gelidonya, Turkey. PhD thesis. Texas: A&M University.
Pulak, C. M. (1998). The Uluburun shipwreck: an overview. The International Journal of Nautical Archaeology 27(3), pp. 188–224.
Pulak, C. M. (2000). The balance weights from the Late Bronze Age shipwreck at Uluburun. In: C. F. E. Pare (ed.), Metals Make the World Go Round: The Supply and Circulation of Metals in Bronze Age Europe. Proceedings of a conference held at the University of Birmingham, June 1997. Oxford: Oxbow Books, pp. 247–66.
Rahmstorf, L. (2003). The identification of Early Helladic weights and their wider implications. In: K. P. Foster – R. Laffineur (eds.), METRON: Measuring the Aegean Bronze Age. Aegaeum 24. Liège: Université de Liège, pp. 293–299.
Rahmstorf, L. (2006a). In search for the earliest balance weights, scales and weighing systems. From the east mediterranean, the near east and the middle east. In: M. E. Alberti – E. Ascalone – L. Peyronel (eds.), Weights in context: bronze age weighing systems of Eastern Mediterranean: chronology, typology, material and archaeological contexts: proceedings of the International colloquium, Roma 22nd–24th November 2004. Studi di materiali 13. Roma: Istituto italiano di numismatica, pp. 9–44.
Rahmstorf, L. (2006b). Zur Ausbreitung vorderasiatischer Innovationen in die frühbronzezeitliche Ägäis. Prähistorische Zeitschrift 81(1), pp. 49–96.
Rahmstorf, L. (2010). The concept of weighing during the Bronze Age in the Aegean, the Near East and Europe. In: I. Morley – C. Renfrew (eds.), The archaeology of measurement: comprehending Heaven, Earth and time in ancient societies. Cambridge: Cambridge University Press, pp. 88–105.
Rahmstorf, L. (2011). Maß für Maß: Indikatoren für Kulturkontakte im 3. Jahrtausend. In: C. Hattler (ed.), Kykladen: Lebenswelten einer frühgriechischen Kultur. Karlsruhe: Badisches Landesmuseum, pp. 145–153.
Rahmstorf, L. (2014). "Pebble weights" und Waagbalken aus der jüngeren Bronzezeit Europas. In: B. Nessel – I. Heske – D. Brandherm (eds.), Ressourcen und Rohstoffe in der Bronzezeit.: Nutzung – Distrbution – Kontrolle. Beiträge zur Sitzung der Arbeitsgemeinschaft Bronzezeit auf der Jahrestagung des Mittel- und Ostdeutschen Verbandes für Altertumssforschung in Brandenburg an der Havel, 16. bis 17. April 2012. Arbeitsberichte zur Bodendenkmalpflege in Brandenburg 26. Wünsdorf: Brandenburgisches Landesamt für Denkmalpflege und Archäologisches Landesmuseum, pp. 109–120.
Rahmstorf, L. and Pare, C. F. E. (2007). Zu Gewichtssteinen der Späthallstatt- und Latènezeit. Jahrbuch des Römisch-Germanischen Zentralmuseums 54(1), pp. 265–295.
Ratnager, S. (2003). Theorizing Bronze-Age intercultural trade: the evidence of the weights. Paléorient 29(1), pp. 79–92.
Schwarz, K. (1971). K. Schwarz, Zwei Ringbarren-Hortfunde der frühen Bronzezeit aus Piding-Mauthausen. In: Führer zu vor- und frühgeschichtlichen Denkmälern 19. Mainz: P. von Zabern, pp. 131–140.
Sommerfeld, C. (1994). Gerätegeld Sichel. Studien zur monetären Struktur bronzezeitlicher Hortfunde im nördlichen Mitteleuropa. Vorgeschichtliche Forschungen 19. Berlin: W. de Gruyter.
Sperber, E. (1986). Weight or Volume? A study of bronze covered iron weights. Laborativ Arkeologi 1(1), pp. 59–80.
Sperber, E. (1988). How accurate was Viking Age weighing in Sweden? Fornvännen 83(1), pp. 157–166.
Sperber, E. (1989). The weights found at the Viking Age site of Paviken. A metrological study. Fornvännen 84(1), pp. 129–134.
Sperber, E. (1991). Balances and weights in Viking Age Sweden. Laborativ Arkeologi 5(1), pp. 163–170.
Sperber, E. (1993a). Establishing weight systems in Bronze Age Scandinavia. Antiquity 67(256), pp. 613–619.
Sperber, E. (1993b). Notes on the economy of Gotland in the tenth century. PACT (Journal of the European Study Group on Physical, Chemical, Biological and Mathematical Techniques Applied to Archaeology) 38(1), pp. 459–467.
Sperber, E. (1996). Balances, weights and weighing in ancient and early medieval Sweden. Theses and papers in scientific archaeology 2. Stockholm: Archaeological Research Laboratory, Stockholm University.
Sperber, E. (1999). Bronze coated cubo-octahedral weights with an iron core from Viking Age Sweden. Laborativ Arkeologi 12(1), pp. 7–9.
Steuer, H. (1984). Feinwaagen und Gewichte als Quellen zur Handelsgeschichte des Ostseeraumes. In: H. Jankuhn – G. Kossack (Hrsg.), Archäologische und naturwissenschaftliche Untersuchungen an ländlichen und frühstädtischen Siedlungen im deutschen Küstengebiet vom 5. Jh. v. Chr. bis zum 11. Jh. n. Chr., Band 2. Handelsplätze des frühen und hohen Mitlelalters. Weinheim: Acta Humaniora, pp. 273–292.
Steuer, H. (1987). Gewichtsgeldwirtschaften im frühgeschichtlichen Europa – Feinwaagen und Gewichte als Quellen zur Währungsgeschichte. In: K. Düwel – H. Jankuhn – W. Kimmig – E. Ebel – H. Seemann (Hrsg.), Untersuchungen zu Handel und Verkehr der vor- und frühgeschichtlichen Zeit in Mittel- und Nordeuropa 4: Der Handel der Karolinger- und Wikingerzeit. Bericht über die Kolloquien der Kommission für die Altertumskunde Mittel- und Nordeuropas in den Jahren 1980 bis 1983. Göttingen: Vandenhoeck & Ruprecht, pp. 405–527.
Wiener, M. A. (1991). The Nature and control of Minoan Foreign Trade. In: N. H. Gale (ed.), Bronze Age Trade in the Mediterranean: papers presented at the conference held at Rewley House, Oxford, in December 1989. Studies in Mediterranean archaeology 90. Jonsered: P. Åströms, pp. 325–350.
Winghart, S. (1990). Ein frühbronzezeitliches Ösenringdepot von Grub. Das Archäologische Jahr in Bayern 1990, pp. 42–44.
Yalçin, Ü., Pulak, C. M. And Slotta, R. (2005). Das Schiff von Uluburun: Welthandel vor 3000 Jahren: Katalog der Ausstellung des Deutschen Bergbau-Museums Bochum vom 15. Juli 2005 bis 16. Juli 2006. Veröffentlichungen aus dem Deutschen Bergbau-Museum Bochum 138. Bochum: Deutsches Bergbau-Museum.
Yalçin, Ü. (2006). The ship of Uluburun: a comprehensive compendium of the exhibition catalogue 'The ship of Uluburun: world trade 3000 years ago': handouts, Uluburun workshop. Bochum: Deutsches Bergbau-Museum.
Die Bildrechte des Technical Note liegen bei Karsten Schmidt.