Ein Brief des Tübinger Universalgelehrten Wilhelm Schickard an den berühmten Astronomen Johannes Kepler vom 20. September 1623 belegt die Erfindung der ersten mechanischen Rechenmaschine: „Ferner habe ich dasselbe, was Du rechnerisch gemacht hast, kürzlich auf mechanischem Wege versucht und eine aus elf vollständigen und sechs verstümmelten Rädchen bestehende Maschine konstruiert.“ Mit feinen Linien skizzierte Schickard den Bauplan seiner Erfindung.
Die Konstruktion konnte mit maximal sechsstelligen Zahlen in allen Grundrechenarten operieren: Addition, Subtraktion, Multiplikation und Division. Vor allem aber gelang ihr der automatische Zehnerübertrag, bei dem wahrscheinlich eine kleine Glocke schlug, wenn die letzte Ziffer von 9 auf 0 sprang. Bewegungen von Himmelskörpern konnte Schickard nun einfacher und schneller berechnen als per Kopf und Hand.
Das zentrale Bauteil der Rechenmaschine war ein Addierwerk mit sechs Zahnrädern, über die jeweils die Ziffern von 0 bis 9 eingestellt und zum Addieren im Uhrzeigersinn gedreht werden konnten, zum Subtrahieren gegen den Uhrzeigersinn. Für die Multiplikation integrierte Schickard ein System, das an die Rechenstäbchen des schottischen Gelehrten John Napier erinnert, und kombinierte sie mit den Rädern des Addierwerks, die den Multiplikator definierten. Die Zahlen mussten nur noch eingestellt und die Ergebnisse abgelesen werden – die eigentliche Rechenoperation aber erledigte die Maschine.
Die Tübinger Rechenmaschine stand in einem engen zeitlichen Zusammenhang mit dem Aufschwung der exakten Wissenschaften zu Beginn des 17. Jahrhunderts. Die Arbeiten der Astronomen Tycho Brahe, Galileo Galilei und Johannes Kepler hatten gezeigt, dass Naturphänomene – wie etwa die Bewegung der Planeten – durch Beobachten, Messen und Berechnen präzise vorhergesagt werden konnten. Auch von Seiten der Politik wurden die Naturwissenschaften ernstgenommen und gefördert, galt es doch vielen Zeitgenossen als ausgemacht, dass aus der Stellung der Himmelskörper auch die Zukunft berechnet werden könne. Mit den zunehmend komplexeren Berechnungen in den noch jungen Naturwissenschaften stiegen die mathematischen Anforderungen. Das Rechnen mit großen Zahlen aber ist fehleranfällig. „Insbesondere beim Addieren größerer Zahlenreihen hätte Schickards Rechenmaschine zu einer Erleichterung führen können, da sie helfen konnte, Rechenfehler zu vermeiden“, erklärt der Tübinger Informatiker Professor Herbert Klaeren.
„In Schickards Konstruktion sind die Kernelemente der Informatik enthalten“, sagt Professor Oliver Bringmann, Sprecher des Fachbereichs Informatik an der Universität Tübingen. „Sie definiert Rechenvorschriften und wendet sie gleich in einem automatisierten Verfahren an.“ Erst im 18. Jahrhundert sollten Rechenmaschinen mit höherer Leistungsfähigkeit gebaut werden.
Das Konstruieren und Experimentieren begleitete Schickards Wirken an der Universität Tübingen. Der Theologe wurde 1619 zum Professor für Hebräisch und andere biblische Sprachen berufen. Für seine Studierenden entwickelte er eine Lernhilfe aus aufeinander liegenden, drehbaren Scheiben mit hebräischen Verben und Endungen. So konnten sie sich die komplizierten Konjugationen leichter merken. Selbst Isaac Newton besaß ein Exemplar. Im Jahr 1631 wurde Schickard als Nachfolger des Astronomen und Mathematikers Michael Mästlin auf die Professur für Astronomie, Mathematik und Geodäsie berufen. Durch ein Handplanetarium stellte er die Bewegungen von Sonne, Erde und Mond dar, eine konisch geformte Himmelskarte erleichterte das Auffinden der Sternbilder. Als Schulaufseher inspizierte er Lateinschulen in Württemberg und vermaß auf seinen Reisen das Land. Anschließend zeichnete er aus den Daten viel genauere Karten, als es sie bis dahin gegeben hatte.
Johannes Kepler, der wie Schickard an der Universität Tübingen studiert hatte, wurde bereits im Jahr 1617 auf den jüngeren, „Mathematik liebenden“ Kollegen aufmerksam. Offensichtlich erkannte Kepler bei dieser Begegnung sofort den gewaltigen Intellekt des jungen Schickard und ermutigte ihn, sich mit den Naturwissenschaften zu beschäftigen. Fortan korrespondierten Kepler und Schickard miteinander und es kam zu weiteren Treffen, nachdem Kepler 1620 nach Württemberg heimkehrte, um seiner Mutter in einem Hexereiprozess beizustehen. Der Astronom schätzte Schickards handwerkliches und künstlerisches Geschick und beauftragte ihn mit Kupferstichen und Holzschnitten für sein epochales Werk „Harmonice mundi“, in dem Kepler die Gesetze der Planetenbewegungen formulierte. Schickard seinerseits wusste um die vielen Stunden, die Kepler mit der Berechnung von Planetenbahnen verbrachte. Diese Aufgabe wollte er seinem Freund offenbar erleichtern.
Er gab den Bau einer „Rechen-Uhr“ – so seine eigene Bezeichnung – bei seinem „Mechanicus“ Johann Pfister in Auftrag. Der baute im Jahr 1623 ein Exemplar für Schickard und später ein zweites Exemplar, das für Kepler bestimmt war. Keplers Exemplar wurde noch in Pfisters Werkstatt durch ein Feuer vernichtet.
Schickards Leben endete tragisch. In der Anfangszeit des Dreißigjährigen Kriegs konnte sich die Stadt Tübingen durch hohe Geldzahlungen vor Zerstörung bewahren. Doch nach der verlorenen Schlacht von Nördlingen im Jahr 1634 quartierten sich kaiserliche Truppen in Tübingen ein und brachten die Pest mit. Zuerst raffte die Seuche Schickards Frau und seine drei Töchter dahin. Schickard selbst erkrankte, konnte sich aber erholen. Im Oktober 1635 erkrankte er erneut und starb, einen Tag vor seinem neunjährigen Sohn.
Nach dem Pest-Tod von Schickard und seiner Familie ging das Wissen um die Rechenmaschine und Schickards Exemplar in den Wirren des 30-jährigen Kriegs verloren. Historiker erklärten irrtümlicherweise den französischen Philosophen Blaise Pascal, der zwanzig Jahre später eine eigene mechanische Rechenmaschine entwickelte, zu ihrem Erfinder. Schickards Skizzen tauchten jedoch über Umwege wieder auf. Erst nach dem Zweiten Weltkrieg gelang es, die Maschine an der Universität Tübingen zu rekonstruieren und ihre Funktionsfähigkeit nachzuweisen. 1960 wurde sie der Öffentlichkeit präsentiert. Nachbauten befinden sich heute unter anderem in der Computersammlung der Universität Tübingen und im Tübinger Stadtmuseum.
Tilman Wörtz
Wer die Funktionsweise der Rechenmaschine besser verstehen will, kann sich über diesen Link eine App herunterladen und einfach Rechenaufgaben lösen: https://mathematikalpha.de/schickardsche-rechenmaschine
Die Universität Tübingen wird das 400-jährige Jubiläum von Schickards Erfindung am 14. September 2023 mit einem Festakt in der Neuen Aula begehen. Im Rahmen der Veranstaltung präsentiert das Bundesfinanzministerium gemeinsam mit der Universität eine 20-Euro-Sammlermünze und eine 85-Cent-Sonderbriefmarke zu Ehren von Wilhelm Schickard und seiner Erfindung. Im Anschluss veranstaltet der Fachbereich Informatik der Universität Tübingen das Symposium „Von der mechanischen Rechenmaschine zum Quantencomputing“.
Our website uses cookies. Some of them are mandatory, while others allow us to improve your user experience on our website. The settings you have made can be edited at any time.
or
Essential
in2cookiemodal-selection
Required to save the user selection of the cookie settings.
3 months
be_lastLoginProvider
Required for the TYPO3 backend login to determine the time of the last login.
3 months
be_typo_user
This cookie tells the website whether a visitor is logged into the TYPO3 backend and has the rights to manage it.
Browser session
ROUTEID
These cookies are set to always direct the user to the same server.
Browser session
fe_typo_user
Enables frontend login.
Browser session
Videos
iframeswitch
Used to show all third-party contents.
3 months
yt-player-bandaid-host
Is used to display YouTube videos.
Persistent
yt-player-bandwidth
Is used to determine the optimal video quality based on the visitor's device and network settings.
Persistent
yt-remote-connected-devices
Saves the settings of the user's video player using embedded YouTube video.
Persistent
yt-remote-device-id
Saves the settings of the user's video player using embedded YouTube video.
Persistent
yt-player-headers-readable
Collects data about visitors' interaction with the site's video content - This data is used to make the site's video content more relevant to the visitor.
Persistent
yt-player-volume
Is used to save volume preferences for YouTube videos.
Persistent
yt-player-quality
Is used to save the quality settings for YouTube videos.
Persistent
yt-remote-session-name
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-session-app
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-fast-check-period
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-cast-installed
Saves the user settings when retrieving a YouTube video integrated on other web pages
Browser session
yt-remote-cast-available
Saves user settings when retrieving integrated YouTube videos.
Browser session
ANID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
2 years
SNID
Google Maps - Google uses these cookies to store user preferences and information when you view pages with Google Maps.
1 month
SSID
Used to store information about how you use the site and what advertisements you saw before visiting this site, and to customize advertising on Google resources by remembering your recent searches, your previous interactions with an advertiser's ads or search results, and your visits to an advertiser's site.
6 months
1P_JAR
This cookie is used to support Google's advertising services.
1 month
SAPISID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
2 years
APISID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
6 months
HSID
Includes encrypted entries of your Google account and last login time to protect against attacks and data theft from form entries.
2 years
SID
Used for security purposes to store digitally signed and encrypted records of a user's Google Account ID and last login time, enabling Google to authenticate users, prevent fraudulent use of login credentials, and protect user data from unauthorized parties. This may also be used for targeting purposes to display relevant and personalized advertising content.
6 months
SIDCC
This cookie stores information about user settings and information for Google Maps.
3 months
NID
The NID cookie contains a unique ID that Google uses to store your preferences and other information.
6 months
CONSENT
This cookie tracks how you use a website to show you advertisements that may be of interest to you.
18 years
__Secure-3PAPISID
This cookie is used to support Google's advertising services.
2 years
__Secure-3PSID
This cookie is used to support Google's advertising services.
6 months
__Secure-3PSIDCC
This cookie is used to support Google's advertising services.
6 months