20.11.2025

39 Paper bei NeurIPS 2025 akzeptiert

Bei der diesjährigen NeurIPS-Konferenz wurden 39 Beiträge von Forschenden unseres Exzellenzclusters akzeptiert.

Die 39. Konferenz zu Neural Information Processing Systems (NeurIPS) findet am San Diego Convention Center in den Vereinigten Staaten vom 2. - 7. Dezember 2025 und am Hilton Mexico City Reforma in Mexiko vom 30. November - 5. Dezember 2025 statt. NeurIPS ist die größte Konferenz für Maschinelles Lernen und Computational Neuroscience. Ziel der jährlichen Treffen ist es, den Forschungsaustausch zu neuronalen Informationsverarbeitungssysteme in ihren biologischen, technologischen, mathematischen und theoretischen Aspekten zu fördern. Der Schwerpunkt liegt auf peer-reviewed, neuartigen Forschungsarbeiten, die in einer allgemeinen Session vorgestellt und diskutiert werden, sowie auf eingeladenen Vorträgen von ausgewiesenen Experten.

In diesem Jahr ist unser Cluster mit 39 Papern auf der NeurIPS vertreten.

Liste der akzeptierten Beiträge unserer Mitglieder (hervorgehoben) und ihren Teammitgliedern (alle Beiträge sind hier zu finden):

  1. Direct Alignment with Heterogeneous Preferences
    Ali Shirali, Arash Nasr-Esfahany, Abdullah Alomar, Parsa Mirtaheri, Rediet Abebe, Ariel Procaccia
  2. TRACE: Contrastive learning for multi-trial time series data in neuroscience
    Lisa Schmors, Dominic Gonschorek, Jan Niklas Böhm, Yongrong Qiu, Na Zhou, Dmitry Kobak, Andreas Tolias, Fabian Sinz, Jacob Reimer, Katrin Franke, Sebastian Damrich, Philipp Berens
  3. A data and task-constrained mechanistic model of the mouse outer retina shows robustness to contrast variations
    Kyra Kadhim, Jonas Beck, Ziwei Huang, Jakob H Macke, Fred Rieke, Thomas Euler, Michael Deistler, Philipp Berens
  4. Equivariance by Contrast: Identifiable Equivariant Embeddings from Unlabeled Finite Group Actions
    Tobias Schmidt, Steffen Schneider, Matthias Bethge
  5. What Moves the Eyes: Doubling Mechanistic Model Performance Using Deep Networks to Discover and Test Cognitive Hypotheses
    Federico D'Agostino, Lisa Schwetlick, Matthias Bethge, Matthias Kümmerer
  6. AlgoTune: Can Language Models Speed Up General-Purpose Numerical Programs?
    Ori Press, Brandon Amos, Haoyu Zhao, Yikai Wu, Samuel Ainsworth, Dominik Krupke, Patrick Kidger, Touqir Sajed, Bartolomeo Stellato, Jisun Park, Nathanael Bosch, Eli Meril, Albert Steppi, Arman Zharmagambetov, Fangzhao Zhang, David Pérez-Piñeiro, Alberto Mercurio, Ni Zhan, Talor Abramovich, Kilian Lieret, Hanlin Zhang, Shirley Huang, Matthias Bethge, Ofir Press
  7. BEDLAM2.0: Synthetic humans and cameras in motion
    Joachim Tesch, Giorgio Becherini, Prerana Achar, Anastasios Yiannakidis, Muhammed Kocabas, Priyanka Patel, Michael Black
  8. HairFree: Compositional 2D Head Prior for Text-Driven 360° Bald Texture Synthesis
    Mirela Ostrek, Michael Black, Justus Thies
  9. Quantifying Uncertainty in Error Consistency: Towards Reliable Behavioral Comparison of Classifiers
    Thomas Klein, Sascha Meyen, Wieland Brendel, Felix A. Wichmann, Kristof Meding
  10. Concept-Guided Interpretability via Neural Chunking
    Shuchen Wu, Stephan Alaniz, Shyamgopal Karthik, Peter Dayan, Eric Schulz, Zeynep Akata
  11. FNOPE: Simulation-based inference on function spaces with Fourier Neural Operators
    Guy Moss, Leah Muhle, Reinhard Drews, Jakob H Macke, Cornelius Schröder
  12. Put CASH on Bandits: A Max K-Armed Problem for Automated Machine Learning
    Amir Rezaei Balef, Claire Vernade, Katharina Eggensperger
  13. Position: Benchmarking is Broken - Don't Let AI be Its Own Judge
    Zerui Cheng, Stella Wohnig, Ruchika Gupta, Samiul Alam, Tassallah Abdullahi, João Alves Ribeiro, Christian Nielsen-Garcia, Saif Mir, Siran Li, Jason Orender, Seyed Ali Bahrainian, Daniel Kirste, Aaron Gokaslan, Carsten Eickhoff, Ruben Wolff
  14. ReSim: Reliable World Simulation for Autonomous Driving
    Jiazhi Yang, Kashyap Chitta, Shenyuan Gao, Long Chen, Yuqian Shao, Xiaosong Jia, Hongyang Li, Andreas Geiger, Xiangyu Yue, Li Chen
  15. Register and [CLS] tokens induce a decoupling of local and global features in large ViTs
    Alexander Lappe, Martin Giese
  16. How Benchmark Prediction from Fewer Data Misses the Mark
    Guanhua Zhang, Florian E. Dorner, Moritz Hardt
  17. Monoculture or Multiplicity: Which Is It?
    Mila Gorecki, Moritz Hardt
  18. Advancing Compositional Awareness in CLIP with Efficient Fine-Tuning
    Amit Peleg, Naman Deep Singh, Matthias Hein
  19. Robustness in Both Domains: CLIP Needs a Robust Text Encoder
    Elias Abad Rocamora, Christian Schlarmann, Naman Deep Singh, Yongtao Wu, Matthias Hein, Volkan Cevher
  20. Rethinking Approximate Gaussian Inference in Classification
    Bálint Mucsányi, Nathaël Da Costa, Philipp Hennig
  21. Learning in Compact Spaces with Approximately Normalized Transformer
    Jörg Franke, Urs Spiegelhalter, Marianna Nezhurina, Jenia Jitsev, Frank Hutter, Michael Hefenbrock
  22. Do-PFN: In-Context Learning for Causal Effect Estimation
    Jake Robertson, Arik Reuter, Siyuan Guo, Noah Hollmann, Frank Hutter, Bernhard Schölkopf
  23. TabArena: A Living Benchmark for Machine Learning on Tabular Data
    Nick Erickson, Lennart Purucker, Andrej Tschalzev, David Holzmüller, Prateek Desai, David Salinas, Frank Hutter
  24. DeltaProduct: Improving State-Tracking in Linear RNNs via Householder Products
    Julien Siems, Timur Carstensen, Arber Zela, Frank Hutter, Massimiliano Pontil, Riccardo Grazzi
  25. Gompertz Linear Units: Leveraging Asymmetry for Enhanced Learning Dynamics
    Indrashis Das, Mahmoud Safari, Steven Adriaensen, Frank Hutter
  26. EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Network
    Michael Arbel, David Salinas, Frank Hutter
  27. On the Surprising Effectiveness of Large Learning Rates under Standard Width Scaling
    Moritz Haas, Sebastian Bordt, Ulrike Luxburg, Leena Chennuru Vankadara
  28. Performative Validity of Recourse Explanations
    Gunnar König, Hidde Fokkema, Timo Freiesleben, Celestine Mendler-Dünner, Ulrike Luxburg
  29. Effortless, Simulation-Efficient Bayesian Inference using Tabular Foundation Models
    Julius Vetter, Manuel Gloeckler, Daniel Gedon, Jakob H Macke
  30. Identifying multi-compartment Hodgkin-Huxley models with high-density extracellular voltage recordings
    Ian Christopher Tanoh, Michael Deistler, Jakob H Macke, Scott Linderman
  31. Forecasting in Offline Reinforcement Learning for Non-stationary Environments
    Suzan Ece Ada, Georg Martius, Emre Ugur, Erhan Oztop
  32. Look-Ahead Reasoning on Learning Platforms
    Haiqing Zhu, Tijana Zrnic, Celestine Mendler-Dünner
  33. Collective Counterfactual Explanations: Balancing Individual Goals and Collective Dynamics
    Ahmad-Reza Ehyaei, Ali Shirali, Samira Samadi
  34. SPARTAN: A Sparse Transformer World Model Attending to What Matters
    Anson Lei, Bernhard Schölkopf, Ingmar Posner
  35. Reparameterized LLM Training via Orthogonal Equivalence Transformation
    Zeju Qiu, Simon Buchholz, Tim Xiao, Maximilian Dax, Bernhard Schölkopf, Weiyang Liu
  36. Counterfactual reasoning: an analysis of in-context emergence
    Moritz Miller, Bernhard Schölkopf, Siyuan Guo
  37. Are Language Models Efficient Reasoners? A Perspective from Logic Programming
    Andreas Opedal, Yanick Zengaffinen, Haruki Shirakami, Clemente Pasti, Mrinmaya Sachan, Abulhair Saparov, Ryan Cotterell, Bernhard Schölkopf
  38. Non-Stationary Lipschitz Bandits
    Nicolas Nguyen, Solenne Gaucher, Claire Vernade
  39. Quantization-Free Autoregressive Action Transformer
    Ziyad Sheebaelhamd, Michael Tschannen, Michael Muehlebach, Claire Vernade
Zurück