Publications
56.) A. van Le, D. Straub, B. Planer-Friedrich, S. Huge, S. Kleindienst, A. Kappler (Accepted)
Microbial communities contribute to the elimination of As, Fe, Mn and NH4+ from groundwater in household sand filters.
Sci Total Environ, https://doi.org/10.1016/j.scitotenv.2022.156496
55.) M. Patzner, N. Kainz, E. Lundin, M. Barczok, C. Smith, E. Herndon, L. Kinsman-Costello, S. Fischer, D. Straub, S. Kleindienst, A. Kappler, C. Bryce (2022)
Seasonal fluctuations of the rusty carbon sink in thawing permafrost peatlands.
Environ Sci Technol, https://doi.org/10.1021/acs.est.1c06937
54.) M. Patzner, M. Logan, A. McKenna, R. Young, Z. Zhou, H. Joss, C. Mueller, C. Hoeschen, T. Scholten, D. Straub, S. Kleindienst, T. Borch, A. Kappler, C. Bryce (2022).
Microbial iron(III) reduction during palsa collapse promotes greenhouse gas emissions before complete permafrost thaw.
Commun Earth Environ
Preprint: EarthArXiv, https://doi.org/10.31223/X5V908
53.) Y.M. Huang, N. Jakus, D. Straub, K.T. Konstantinidis, N. Blackwell, A. Kappler, S. Kleindienst (2022).
‘Candidatus Ferrigenium straubiae’ sp. nov., ‘Candidatus Ferrigenium bremense’ sp. nov., ‘Candidatus Ferrigenium altingense’ sp. nov., are autotrophic Fe(II)-oxidizing bacteria of the family Gallionellaceae.
52.) S. Abramov, D. Straub, J. Tejada, L. Grimm, F. Schädler, A. Bulaev, H. Thorwarth, R. Amils, A. Kappler, S. Kleindienst (2022).
Biogeochemical niches of Fe-cycling communities influencing heavy metal transport along the Rio Tinto, Spain.
Appl Environ Microbiol 88, e02290-21.
51.) N. Jakus, N. Blackwell, D. Straub, A. Kappler, S. Kleindienst (2021).
Presence of Fe(II) and nitrate shapes aquifer-originating communities leading to an autotrophic enrichment dominated by a Fe(II)-oxidizing Gallionellaceae sp.
FEMS Microbiol Ecol, https://doi.org/10.1093/femsec/fiab145
50.) Z. Yang, T. Sun, S. Kleindienst, D. Straub, R. Kretzschmar, L.T. Angenent, A. Kappler (2021).
A coupled function of biochar as geobattery and geoconductor leads to stimulation of microbial Fe(III) reduction and methanogenesis in a paddy soil enrichment culture.
Soil Biol Biochem, https://doi.org/10.1016/j.soilbio.2021.108446
49.) C. Nikolova, U.Z. Ijaz, C. Magill, S. Kleindienst, S.B. Joye, T. Gutierrez (2021).
Response and oil degradation activities of a northeast Atlantic bacterial community to biogenic and synthetic surfactants.
Microbiome, https://doi.org/10.1186/s40168-021-01143-5
48.) A. Pienkowska, M. Glodowska, M. Mansor, D. Buchner, D. Straub, S. Kleindienst, A. Kappler (2021).
Isotopic labeling reveals microbial methane oxidation coupled to Fe(III) mineral reduction in sediments from an As-contaminated aquifer.
Environ Sci Technol Lett, https://doi.org/10.1021/acs.estlett.1c00553
47.) N. Jakus, N. Blackwell, K. Osenbrueck, D. Straub, J.M. Byrne, Z. Wang, D. Gloeckler, M. Elsner, T. Lueders, P. Grathwohl, S. Kleindienst, A. Kappler (2021).
Nitrate removal by a novel autotrophic nitrate-reducing iron(II)-oxidizing culture enriched from a pyrite-rich limestone aquifer.
Appl Environ Microbiol, AEM0046021. doi:10.1128/AEM.00460-21
46.) Y.M. Huang, D. Straub, N. Blackwell, A. Kappler, S. Kleindienst (2021).
Meta-omics reveal Gallionellaceae and Rhodanobacter as interdependent key players for Fe(II) oxidation and nitrate reduction in the autotrophic enrichment culture KS.
Appl Environ Microbiol, AEM 00496-21. doi: 10.1128/AEM.00496-21
45.) Y.M. Huang, D. Straub, A. Kappler, N. Smith, N. Blackwell, S. Kleindienst (2021).
A novel enrichment culture highlights core features of microbial networks contributing to autotrophic nitrate reduction coupled to Fe(II) oxidation.
Microb Physiol, doi: 10.1159/000517083
44.) S. Peiffer, A. Kappler, S. Haderlein, C. Schmidt, J. Byrne, S. Kleindienst, C. Vogt, H. Richnow, M. Obst, L. Angenent, C. Bryce, C. McCammon, B. Planer-Friedrich (2021).
A biogeochemical-hydrological framework for the role of redox active compounds in aquatic systems.
43.) M. Glodowska, M. Schneider, E. Eiche, A. Kontny, T. Neumann, D. Straub, S. Kleindienst, Andreas Kappler (2021).
Microbial transformation of biogenic and abiogenic Fe minerals followed by in-situ incubations in an As-contaminated vs. non-contaminated aquifer.
42.) M. Glodowska, M. Schneider, E. Eiche, A. Kontny, T. Neumann, D. Straub, M. Berg, H. Prommer. B.C. Bostick, A.A. Nghiem, S. Kleindienst, A. Kappler (2021).
Fermentation, methanotrophy and methanogenesis influence sedimentary Fe and As dynamics in As-affected aquifers in Vietnam.
Sci Total Environ, 779: 146501
41.) S. Rughöft, N. Jehmlich, T. Gutierrez, S. Kleindienst (2021).
Comparative proteomics of Marinobacter sp. TT1 reveals Corexit impacts on hydrocarbon metabolism, chemotactic motility and biofilm formation.
40.) S. Rughöft, A.L. Vogel, S. Joye, T. Gutierrez, S. Kleindienst (2021).
Starvation-dependent inhibition of the hydrocarbon degrader Marinobacter sp. TT1 by a chemical dispersant.
39.) M. Glodowska, E. Stopelli, D. Straub, D.V. Thi, P.T.K. Trang, P.H. Vie, AdvectAs team members, M. Berg, A. Kappler, S. Kleindienst (2021).
Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling.
38.) D. Straub, N. Blackwell , A. Langarica Fuentes , A. Peltzer, S. Nahnsen, S. Kleindienst (2020).
Interpretations of environmental microbial community studies are biased by the selected 16S rRNA (gene) amplicon sequencing pipeline.
Frontiers in Microbiology https://doi.org/10.3389/fmicb.2020.550420
37.) Glodowska, M., Stopelli, E., Schneider, M., Rathi, B., Straub, D., Lightfoot, A., Kipfer, R., Berg, M., AdvectAs team members, Jetten, M., Kleindienst, S., Kappler, A. (2020).
Arsenic mobilization in groundwater driven by microbial iron-dependent anaerobic oxidation of methane.
Nature Commun, 1. doi: 10.1038/s43247-020-00037-y
36.) T. D. Pena-Monenegro, S. Kleindienst, A. E. Allen, A. M. Eren, J. P. McCrow, J. D. Sanchez-Calderon, J. Arnold, S. B. Joye (preprint - 2020).
Colwellia and Marinobacter metagenomes reveal species-specific responses to oil and dispersant exposure in deep sea microbial communities.
bioRxiv, doi: https://doi.org/10.1101/2020.09.28.317438
35.) N. Blackwell, C. Bryce, D. Straub, A. Kappler, S. Kleindienst (2020).
Genomic insights into two novel Zetaproteobacteria Fe(II)-oxidizing isolates reveal lifestyle adaption to coastal marine sediments.
Appl Environ Microbiol, 86: e01160-20
34.) Glodowska, M., Stopelli, E., Schneider, M., Lightfoot, A., Rathi, B., Straub, D., Patzner, M., Duyen, V.T., Berg, M., Kleindienst, S., Kappler, A. (2020)
Role of in-situ natural organic matter in mobilizing As during microbial reduction of FeIII-mineral-bearing aquifer sediments from Hanoi (Vietnam).
Environ Sci Technol 2020, 54 (7): 4149 - 4159
33.) S. Abramov, J. Tejada, L. Grimm, F. Schaedler, A.G. Bulaev, E. Tomaszewski, J. Byrne, D. Straub, H. Thorwarth, R. Amils, S. Kleindienst, A. Kappler (2020)
Role of biogenic Fe(III) minerals as a sink and carrier of heavy metals in the Rio Tinto river, Spain.
Sci Total Environ, doi: 10.1016/j.scitotenv.2020.137294
32.) S. Kleindienst, K. Knittel (2020)
Chapter: Anaerobic hydrocarbon-degrading sulfate-reducing bacteria at marine gas and oil seeps. In: Teske A., Carvalho V. (eds) Marine Hydrocarbon Seeps.
Springer Oceanography. Springer, Cham, doi: 10.1007/978-3-030-34827-4_2
31.) T. Gutierrez and S. Kleindienst (2020)
Chapter: Uncovering microbial hydrocarbon degradation processes: the promise of stable isotope probing. In: Teske A., Carvalho V. (eds) Marine Hydrocarbon Seeps.
Springer Oceanography.Springer, Cham, doi: 10.1007/978-3-030-34827-4_10
30.) E. Stopelli, D. Vu Thi, M. Tran Thi, T. Pham Thi, V. Pham Hung, A. Lightfoot, R. Kipfer, M. Schneider, E. Eiche, A. Kontny, T. Neumann, M. Glodowska, M. Patzner, A. Kappler, S. Kleindienst, B. Rathi, O. Cirpka, B. Bostick, H. Prommer, L. Winkel, M. Berg (2020)
Spatial and temporal evolution of groundwater arsenic contamination in the Red River delta, Vietnam: interplay of mobilisation and retardation processes.
Sci Total Environ doi.org/10.1016/j.scitotenv.2020.137143
29.) K. Ziervogel, S.B. Joye, S. Kleindienst, S. Malkin, U. Passow, A.D. Steen, C. Arnosti (2019).
Polysaccharide hydrolysis in the presence of oil and dispersants: insights into potential degradation pathways of exopolymeric substances (EPS) from oil-degrading bacteria.
Elem Sci Anth, 7(1), p.31. (2019)
28.) Otte, J.M., Blackwell, N., Ruser, R., Kappler, A., Kleindienst, S., Schmidt, C. (2019).
N2O formation by nitrite-induced (chemo)denitrification in coastal marine sediment.
Scientific Reports, 9: 10691 (2019)
27.) C. Bryce, N. Blackwell, D. Straub, S. Kleindienst, and A. Kappler (2019).
Draft genome of Chlorobium sp. strain N1: a marine Fe(II)-oxidizing green sulfur bacterium.
Microbiol Resour Announc, 8: e00080-19
26.) S. Kleindienst, K. Chourey, G. Chen, R. Murdoch, S.A. Higgins, R. Iyer, S. Champagna, E.E. Mack, E. Seger, R. Hettich, F.E. Loeffler (2019).
Proteogenomics reveals novel reductive dehalogenases and methyltransferases expressed during anaerobic dichlormethane metabolism.
Appl Environ Microbiol, 85: e02768-18
Featuring Journal Cover Image (see below)
25.) J. Otte, N. Blackwell, V. Soos, S. Rughoeft, M. Maisch, A. Kappler, S. Kleindienst, C. Schmidt (2018).
Sterilization impacts on marine sediment – Are we able to inactivate microorganisms in environmental samples?
24.) C. Bryce, N. Blackwell, C. Schmidt, J. Otte, Y. Huang, S. Kleindienst, E. Tomaszewski, M. Schad, V. Warter, C. Peng, J.M. Byrne, A. Kappler (2018).
Microbial anaerobic Fe(II) oxidation – ecology, mechanisms and environmental implications.
Environ Microbiol, 20: 3462-3483
23.) C. Bryce, M. Franz-Wachtel, N. Nalpas, J. Miot, K. Benzerara, J.M. Byrne, S. Kleindienst, B. Macek, A. Kappler (2018).
Proteome response of a metabolically flexible anoxygenic phototroph to Fe(II) oxidation.
Appl Environ Microbiol, 84: e01166-18
22.) J.M. Otte, J. Harter, K. Laufer, N. Blackwell, D. Straub, A. Kappler, S. Kleindienst (2018).
The distribution of active iron cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients.
Environ Microbiol, 20: 2483-2499
21.) E. Koeksoy, M. Halama, N. Hagemann, P.R. Weigold, K. Laufer, S. Kleindienst, J.M. Byrne, A. Sundman, K. Hanselmann, I. Halevy, R. Schoenberg, K.O. Konhauser, A. Kappler (2018).
A case study for late Archean and Proterozoic biogeochemical iron- and sulphur-cycling in a modern habitat – the Arvadi Spring.
20.) S. Joye, S. Kleindienst, T. Peña Montenegro (2018).
SnapShot: Microbial hydrocarbon bioremediation.
19.) C. Tominski, T. Lösekann-Behrens, A. Ruecker, N. Hagemann, S. Kleindienst, C. Müller, C. Höschen, I. Kögel-Knabner, A. Kappler, S. Behrens (2018).
FISH-SIMS imaging of an autotrophic, nitrate-reducing, Fe(II)-oxidizing enrichment culture provides insights into carbon metabolism.
Appl Environ Microbiol, 84: e02166-17
18.) G. Chen, S. Kleindienst, D.R. Griffiths, E.E. Mack, E.S. Seger, F.E. Löffler (2017).
Mutualistic interaction between dichloromethane- and chloromethane-degrading bacteria in an anaerobic mixed culture.
Environ Microbiol, 19: 4784–4796
17.) S.B. Joye, S. Kleindienst (2017).
Chapter: Hydrocarbon Seep Ecosystems. In: J. Kallmeyer (ed.). Life at Vents and Seeps (Life in Extreme Environments, Volume 5).
De Gruyter, Walter de Gruyer GmbH, Berlin/Boston
16.) M. Nordhoff, C. Tominski, M. Halama, J. Byrne, M. Obst, S. Kleindienst, S. Behrens, A. Kappler (2017).
Insights into nitrate-reducing Fe(II) oxidation mechanisms by analyzing cell-mineral associations, cell encrustation and mineralogy in the chemolithoautotrophic enrichment culture KS.
Appl Environ Microbiol, 38: e00752-17
15.) S. Kleindienst, S.B. Joye (2019).
Chapter: Global aerobic degradation of hydrocarbons in aquatic systems. In: F. Rojo (ed.). Aerobic utilization of hydrocarbons, oils and lipids, Handbook of hydrocarbon and lipid microbiology.
Springer, Cham. Berlin/Heidelberg. doi: 10.1007/978-3-319-39782-5_46-1
14.) S. Kleindienst, S.A. Higgins, D. Tsementzi, G. Chen, K.T. Konstantinidis, E.E. Mack, F.E. Löffler (2017).
'Candidatus Dichloromethanomonas elyunquensis' gen. nov., sp. nov., a dichloromethane-degrading anaerobe of the Peptococcaceae family.
Syst Appl Microbiol, 40: 150–159
13.) S.B. Joye, S. Kleindienst, J.A. Gilbert, K.M. Handley, P. Weisenhorn, W.A. Overholt, J.E. Kostka (2016).
Responses of microbial communities to hydrocarbon exposures.
12.) S. Kleindienst, M. Seidel, K. Ziervogel, S. Grim, K. Loftis, S. Harrison, S. Malkin, M.J. Perkins, J. Field, M.L. Sogin, T. Dittmar, U. Passow, P.M. Medeiros, S.B. Joye (2016).
Reply to Prince et al.: Ability of chemical dispersants to reduce oil spill impacts remains unclear.
11.) S. Kleindienst, S.A. Higgins, D. Tsementzi, K.T. Konstantinidis, E.E. Mack, F.E. Löffler (2016).
Draft genome of a strictly anaerobic dichloromethane-degrading bacterium.
10.) S. Kleindienst, S. Grim, M. Sogin, A. Bracco, M. Crespo-Medina, S.B Joye (2016).
Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume.
9.) M. Seidel, S. Kleindienst, T. Dittmar, S.B. Joye, P.M. Medeiros (2016).
Influence of dispersant on the biodegradation of crude oil in deep sea water from the Gulf of Mexico: Insights from ultra-high resolution mass spectrometry.
Deep-Sea Res Pt II, 129: 108-118
8.) S. Kleindienst, M. Seidel, K. Ziervogel, S. Grim, K. Loftis, S. Harrison, S. Malkin, M.J. Perkins, J. Field, M.L. Sogin, T. Dittmar, U. Passow, P.M. Medeiros, S.B. Joye (2015).
Chemical dispersants can suppress the activity of natural oil-degrading microorganisms.
7.) S. Kleindienst, J.H. Paul, S.B. Joye (2015).
Using dispersants following oil spills: impacts on the composition and activity of microbial communities.
Nature Rev Microbiol, 13: 388-396
6.) S. Kleindienst, F.A. Herbst, M. Stagars, F. von Netzer, R. Amann, J. Peplies, M. von Bergen, J. Seifert, F. Musat, T. Lueders, K. Knittel (2014).
Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps.
5.) K.G. Lloyd, L. Schreiber, D.G. Petersen, K. Kjeldsen, M. Lever, A.D. Steen, R. Stepanauskas, M. Richter, S. Kleindienst, S. Lenk, A. Schramm, B.B. Jorgensen (2013).
Predominant archaea in marine sediments degrade detrital proteins.
4.) F. von Netzer, G. Pilloni, S. Kleindienst, M. Krüger, K. Knittel, F. Gründger, T. Lueders (2013).
Enhanced gene detection assays for fumarate-adding enzymes allow uncovering anaerobic hydrocarbon degraders in terrestrial and marine systems.
Appl Environ Microbiol, 79: 543-552
3.) S. Kleindienst, A. Ramette, R. Amann, K. Knittel (2012).
Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments.
Environ Microbiol, 14: 2689–2710
Featuring Journal Cover Image (see below)
2.) J. Graue, S. Kleindienst, T. Lueders, H. Cypionka, B. Engelen (2012).
Identifying fermenting bacteria in anoxic tidal-flat sediments by a combination of microcalorimetry and ribosome-based stable-isotope probing.
FEMS Microbiol Ecol, 81: 78–87
1.) B. Orcutt, S.B. Joye, S. Kleindienst, K. Knittel, A. Ramette, A. Reitz, V. Samarkin, T. Treude, and A. Boetius (2010).
Impact of natural oil and higher hydrocarbons on microbial diversity, distribution and activity in Gulf of Mexico cold seep sediments.