04.10.2022

28 Paper bei NeurIPS 2022 akzeptiert

Bei der diesjährigen NeurIPS-Konferenz wurden 28 Beiträge von Forschenden unseres Exzellenzclusters akzeptiert.

Die 36. Konferenz zu Neural Information Processing Systems (NeurIPS) findet als hybride Veranstaltung sowohl in Präsenz am New Orleans Convention Center in den USA als auch virtuell vom 28. November bis 9. Dezember 2022 statt. NeurIPS ist die größte Konferenz für Maschinelles Lernen und Computational Neuroscience. Ziel der jährlichen Treffen ist es, den Forschungsaustausch zu neuronalen Informationsverarbeitungssysteme in ihren biologischen, technologischen, mathematischen und theoretischen Aspekten zu fördern. Der Schwerpunkt liegt auf peer-reviewed, neuartigen Forschungsarbeiten, die in einer allgemeinen Session vorgestellt und diskutiert werden, sowie auf eingeladenen Vorträgen von ausgewiesenen Experten.

In diesem Jahr ist unser Cluster mit 28 Papern auf der NeurIPS vertreten.

Liste der akzeptierten Beiträge unserer Mitglieder (alle Beiträge sind hier zu finden):

  1. Relational Proxies: Emergent Relationships as Fine-Grained Discriminators
    Abhra Chaudhuri · Anjan Dutta · Massimiliano Mancini · Zeynep Akata
  2. Efficient identification of informative features in simulation-based inference
    Jonas Beck · Michael Deistler · Yves Bernaerts · Jakob H Macke · Philipp Berens
  3. A Causal Analysis of Harm
    Sander Beckers · Hana Chockler · Joseph Halpern
  4. Embrace the Gap: VAEs Perform Independent Mechanism Analysis
    Patrik Reizinger · Luigi Gresele · Jack Brady · Julius von Kügelgen · Dominik Zietlow · Bernhard Schölkopf · Georg Martius · Wieland Brendel · Michel Besserve
  5. VoxGRAF: Fast 3D-Aware Image Synthesis with Sparse Voxel Grids
    Katja Schwarz · Axel Sauer · Michael Niemeyer · Yiyi Liao · Andreas Geiger
  6. MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction
    Zehao Yu · Songyou Peng · Michael Niemeyer · Torsten Sattler · Andreas Geiger
  7. Performative Power
    Moritz Hardt · Meena Jagadeesan · Celestine Mendler-Dünner
  8. Provably Adversarially Robust Detection of Out-of-Distribution Data (Almost) for Free
    Alexander Meinke · Julian Bitterwolf · Matthias Hein
  9. Diffusion Visual Counterfactual Explanations
    Maximilian Augustin · Valentyn Boreiko · Francesco Croce · Matthias Hein
  10. SAMURAI: Shape And Material from Unconstrained Real-world Arbitrary Image collections
    Mark Boss · Andreas Engelhardt · Abhishek Kar · Yuanzhen Li · Deqing Sun · Jonathan Barron · Hendrik PA Lensch · Varun Jampani
  11. Interpolation and Regularization for Causal Learning
    Leena Chennuru Vankadara · Luca Rendsburg · Ulrike Luxburg · Debarghya Ghoshdastidar
  12. Truncated proposals for scalable and hassle-free simulation-based inference
    Michael Deistler · Pedro Goncalves · Jakob H Macke
  13. Curious Exploration via Structured World Models Yields Zero-Shot Object Manipulation
    Cansu Sancaktar · Sebastian Blaes · Georg Martius
  14. Interventions, Where and How? Bayesian Active Causal Discovery at Scale
    Panagiotis Tigas · Yashas Annadani · Andrew Jesson · Bernhard Schölkopf · Yarin Gal · Stefan Bauer
  15. Rule-Based but Flexible? Evaluating and Improving Language Models as Accounts of Human Moral Judgment
    Zhijing Jin · Sydney Levine · Fernando Gonzalez Adauto · Ojasv Kamal · Maarten Sap · Mrinmaya Sachan · Rada Mihalcea · Josh Tenenbaum · Bernhard Schölkopf
  16. Neural Attentive Circuits
    Martin Weiss · Nasim Rahaman · Francesco Locatello · Chris Pal · Yoshua Bengio · Bernhard Schölkopf · Li Erran Li · Nicolas Ballas
  17. Exploring the Latent Space of Autoencoders with Interventional Assays
    Felix Leeb · Stefan Bauer · Michel Besserve · Bernhard Schölkopf
  18. Amortized Inference for Causal Structure Learning
    Lars Lorch · Scott Sussex · Jonas Rothfuss · Andreas Krause · Bernhard Schölkopf
  19. Assaying Out-Of-Distribution Generalization in Transfer Learning
    Florian Wenzel · Andrea Dittadi · Peter Gehler · Carl-Johann Simon-Gabriel · Max Horn · Dominik Zietlow · David Kernert · Chris Russell · Thomas Brox · Bernt Schiele · Bernhard Schölkopf · Francesco Locatello
  20. Probable Domain Generalization via Quantile Risk Minimization
    Cian Eastwood · Alexander Robey · Shashank Singh · Julius von Kügelgen · Hamed Hassani · George J. Pappas · Bernhard Schölkopf
  21. Function Classes for Identifiable Nonlinear Independent Component Analysis
    Simon Buchholz · Michel Besserve · Bernhard Schölkopf
  22. AutoML Two-Sample Test
    Jonas Kübler · Vincent Stimper · Simon Buchholz · Krikamol Muandet · Bernhard Schölkopf
  23. Sampling without Replacement Leads to Faster Rates in Finite-Sum Minimax Optimization
    Aniket Das · Bernhard Schölkopf · Michael Muehlebach
  24. Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
    Ronan Perry · Julius von Kügelgen · Bernhard Schölkopf
  25. Direct Advantage Estimation
    Hsiao-Ru Pan · Nico Gürtler · Alexander Neitz · Bernhard Schölkopf
  26. Learning Structure from the Ground up---Hierarchical Representation Learning by Chunking
    Shuchen Wu · Noemi Elteto · Ishita Dasgupta · Eric Schulz
  27. Exploration With a Finite Brain
    Marcel Binz · Eric Schulz
  28. Learning interacting dynamical systems with latent Gaussian process ODEs
    Cagatay Yildiz · Melih Kandemir · Barbara Rakitsch
Zurück