06.11.2023

35 Paper bei NeurIPS 2023 akzeptiert

Bei der diesjährigen NeurIPS-Konferenz wurden 35 Beiträge von Forschenden unseres Exzellenzclusters akzeptiert.

Die 37. Konferenz zu Neural Information Processing Systems (NeurIPS) findet in Präsenz am New Orleans Ernest N. Morial Convention Center in den USA vom 10. - 16. Dezember 2023 statt. NeurIPS ist die größte Konferenz für Maschinelles Lernen und Computational Neuroscience. Ziel der jährlichen Treffen ist es, den Forschungsaustausch zu neuronalen Informationsverarbeitungssysteme in ihren biologischen, technologischen, mathematischen und theoretischen Aspekten zu fördern. Der Schwerpunkt liegt auf peer-reviewed, neuartigen Forschungsarbeiten, die in einer allgemeinen Session vorgestellt und diskutiert werden, sowie auf eingeladenen Vorträgen von ausgewiesenen Experten.

In diesem Jahr ist unser Cluster mit 35 Papern auf der NeurIPS vertreten.

Liste der akzeptierten Beiträge unserer Mitglieder (alle Beiträge sind hier zu finden):

  1. Leonard Salewski, Isabel Rio-Torto, Stephan Alaniz, Eric Schulz, Zeynep Akata
    In-Context Impersonation Reveals Large Language Models' Strengths and Biases
  2. Julian Coda-Forno, Marcel Binz, Zeynep Akata, Matt Botvinick, Jane Wang, Eric Schulz
    Meta-in-context learning in large language models
  3. Abhra Chaudhuri, Massimiliano Mancini, Zeynep Akata, Anjan Dutta
    Transitivity Recovering Decompositions: Interpretable and Robust Fine-Grained Relationships
  4. Ilze Amanda Auzina, Çağatay Yıldız, Sara Magliacane, Matthias Bethge, Efstratios Gavves
    Modulated Neural ODEs
  5. Thaddäus Wiedemer, Prasanna Mayilvahanan, Matthias Bethge, Wieland Brendel
    Compositional Generalization from First Principles
  6. Ori Press, Steffen Schneider, Matthias Kümmerer, Matthias Bethge
    RDumb: A simple approach that questions our progress in continual test-time adaptation
  7. Roland S. Zimmermann, Thomas Klein, Wieland Brendel
    Scale Alone Does not Improve Mechanistic Interpretability in Vision Models
  8. Tankred Saanum, Noemi Elteto, Peter Dayan, Marcel Binz, Eric Schulz
    Reinforcement Learning with Simple Sequence Priors
  9. Maximilian Mueller, Tiffany Vlaar, David Rolnick, Matthias Hein
    Normalization Layers Are All That Sharpness-Aware Minimization Needs
  10. Naman Deep Singh, Francesco Croce, Matthias Hein
    Revisiting Adversarial Training for ImageNet: Architectures, Training and Generalization across Threat Models
  11. Jonathan Schmidt, Philipp Hennig, Jörg Nick, Filip Tronarp
    The Rank-Reduced Kalman Filter: Approximate Dynamical-Low-Rank Filtering In High Dimensions
  12. Nathanael Bosch, Philipp Hennig, Filip Tronarp
    Probabilistic Exponential Integrators
  13. Runa Eschenhagen, Alexander Immer, Richard Turner, Frank Schneider, Philipp Hennig
    Kronecker-Factored Approximate Curvature for Modern Neural Network Architectures
  14. Agustinus Kristiadi, Felix Dangel, Philipp Hennig
    The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
  15. Michael Kirchhof, Bálint Mucsányi, Seong Joon Oh, Dr. Enkelejda Kasneci
    URL: A Representation Learning Benchmark for Transferable Uncertainty Estimates
  16. Moritz Haas, David Holzmüller, Ulrike Luxburg, Ingo Steinwart
    Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension
  17. Basile Confavreux, Poornima Ramesh, Pedro Goncalves, Jakob H Macke, Tim Vogels
    Meta-learning families of plasticity rules in recurrent spiking networks using simulation-based inference
  18. Jonas Wildberger, Maximilian Dax, Simon Buchholz, Stephen Green, Jakob H Macke, Bernhard Schölkopf
    Flow Matching for Scalable Simulation-Based Inference
  19. Richard Gao, Michael Deistler, Jakob H Macke
    Generalized Bayesian Inference for Scientific Simulators via Amortized Cost Estimation
  20. Marco Bagatella, Georg Martius
    Goal-conditioned Offline Planning from Curious Exploration
  21. Cansu Sancaktar, Justus Piater, Georg Martius
    Regularity as Intrinsic Reward for Free Play
  22. Pavel Kolev, Georg Martius, Michael Muehlebach
    Online Learning under Adversarial Nonlinear Constraints
  23. Andrii Zadaianchuk, Maximilian Seitzer, Georg Martius
    Object-Centric Learning for Real-World Videos by Predicting Temporal Feature Similarities
  24. Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam, Bernhard Schölkopf, Pradeep Ravikumar
    Learning Linear Causal Representations from Interventions under General Nonlinear Mixing
  25. Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller, Bernhard Schölkopf
    Controlling Text-to-Image Diffusion by Orthogonal Finetuning
  26. Laurence Midgley, Vincent Stimper, Javier Antorán, Emile Mathieu, Bernhard Schölkopf, José Miguel Hernández-Lobato
    SE(3) Equivariant Augmented Coupling Flows
  27. Siyuan Guo, Viktor Toth, Bernhard Schölkopf, Ferenc Huszar
    Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data
  28. Liang Wendong, Armin Kekić, Julius von Kügelgen, Simon Buchholz, Michel Besserve, Luigi Gresele, Bernhard Schölkopf
    Causal Component Analysis
  29. Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng LYU, Kevin Blin, Fernando Gonzalez Adauto, Max Kleiman-Weiner, Mrinmaya Sachan, Bernhard Schölkopf
    CLadder: Assessing Causal Reasoning in Language Models
  30. Julius von Kügelgen, Michel Besserve, Liang Wendong, Luigi Gresele, Armin Kekić, Elias Bareinboim, David Blei, Bernhard Schölkopf
    Nonparametric Identifiability of Causal Representations from Unknown Interventions
  31. Marco Fumero, Florian Wenzel, Luca Zancato, Alessandro Achille, Emanuele Rodolà, Stefano Soatto, Bernhard Schölkopf, Francesco Locatello
    Leveraging sparse and shared feature activations for disentangled representation learning
  32. Junhyung Park, Simon Buchholz, Bernhard Schölkopf, Krikamol Muandet
    A Measure-Theoretic Axiomatisation of Causality
  33. Cian Eastwood, Shashank Singh, Andrei L Nicolicioiu, Marin Vlastelica Pogančić, Julius von Kügelgen, Bernhard Schölkopf
    Spuriosity Didn’t Kill the Classifier: Using Invariant Predictions to Harness Spurious Features
  34. Adrián Javaloy, Pablo Sanchez-Martin, Isabel Valera
    Causal normalizing flows: from theory to practice
  35. Alexandre Marthe, Aurélien Garivier, Claire Vernade
    Beyond Average Reward in Markov Decision Processes

 

Zurück

Datenschutzeinstellungen

Auf unserer Webseite werden Cookies verwendet. Einige davon werden zwingend benötigt, während es uns andere ermöglichen, Ihre Nutzererfahrung auf unserer Webseite zu verbessern. Ihre getroffenen Einstellungen können jederzeit bearbeitet werden.

oder

Essentiell

in2code

Videos

in2code
YouTube
Google