Interfaculty Institute of Microbiology and Infection Medicine

Research focus

Our research focus is on staphylococci, a bacterial genus that can be divided into pathogenic and non-pathogenic species. Many Staphylococcus species colonize humans, especially the skin or mucosa, and interact actively with these organs. We are particularly interested in the physiology of staphylococci and their genetic adaptation to the skin habitat. The skin is the most important interface between humans and the environment. This organ harbors trillions of microorganisms, the so-called commensal microbiota, which plays an important role in tissue homeostasis and maintenance of a symbiotic relationship with the immune system. In this context, we have studied the mevalonate pathway (1, 2), the switch from respiration to fermentation under biofilm conditions (3-5), or the CO2/bicarbonate transporter, MpsAB (6-9), in Staphylococcus aureus. Another main topic is the interaction with the skin and its immune system or the peripheral nervous system. Lipoproteins (10-14) and cell wall components such as peptidoglycan (15-18) play a central role in the activation of the innate immune system in staphylococci. Recently, we have shown that neuromodulators secreted by bacteria, the so-called 'trace amines' can influence wound healing (19-23). Ultimately, we aim to better understand the complicated interaction between staphylococci and the host (microbe-host interaction), thereby Bacterial-Derived Mediators (BDMs) play a crucial role.

Another area of research are novel antibiotics, mainly produced by plants. Here, we are particularly interested in the mechanism of their efficacy and, if there are resistant mutants, the underlying resistance mechanism. The elucidation of such mechanisms of action provides us with important insights into the physiology and the enormous genetic adaptation potential of bacteria. Examples include rhodomyrtone (24-27), an antibiotic isolated from Rhodomyrtus tomentosa, or, hyperforin derived from St. John's wort and its chemically synthesized derivatives, polycyclic polyprenylated acylphloroglucinols (PPAPs) (28, 29).

Ausgewählte Publikationen

  1. Reichert S, Ebner P, Bonetti EJ, Luqman A, Nega M, Schrenzel J, Sproer C, Bunk B, Overmann J, Sass P, Francois P, Götz F. 2018. Genetic Adaptation of a Mevalonate Pathway Deficient Mutant in Staphylococcus aureus. Front Microbiol 9:1539.
  2. Yu W, Leibig M, Schäfer T, Bertram R, Ohlsen K, Götz F. 2013. The mevalonate auxotrophic mutant of Staphylococcus aureus can adapt to mevalonate depletion. Antimicrob Agents Chemother 57:5710-3.
  3. Leibig M, Liebeke M, Mader D, Lalk M, Peschel A, Götz F. 2011. Pyruvate formate lyase acts as a formate supplier for metabolic processes during anaerobiosis in Staphylococcus aureus. J Bacteriol 193:952-62.
  4. Gaupp R, Schlag S, Liebeke M, Lalk M, Götz F. 2010. Advantage of upregulation of succinate dehydrogenase in Staphylococcus aureus biofilms. J Bacteriol 192:2385-94.
  5. Resch A, Rosenstein R, Nerz C, Götz F. 2005. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 71:2663-76.
  6. Fan SH, Matsuo M, Huang L, Tribelli PM, Götz F. 2021. The MpsAB Bicarbonate Transporter Is Superior to Carbonic Anhydrase in Biofilm-Forming Bacteria with Limited CO2 Diffusion. Microbiol Spectr doi:10.1128/Spectrum.00305-21:e0030521.
  7. Fan SH, Liberini E, Götz F. 2021. Staphylococcus aureus Genomes Harbor Only MpsAB-Like Bicarbonate Transporter but Not Carbonic Anhydrase as Dissolved Inorganic Carbon Supply System. Microbiol Spectr doi:10.1128/Spectrum.00970-21:e0097021.
  8. Fan SH, Ebner P, Reichert S, Hertlein T, Zabel S, Lankapalli AK, Nieselt K, Ohlsen K, Götz F. 2019. MpsAB is important for Staphylococcus aureus virulence and growth at atmospheric CO2 levels. Nat Commun 10:3627.
  9. Mayer S, Steffen W, Steuber J, Götz F. 2015. The Staphylococcus aureus NuoL-Like Protein MpsA Contributes to the Generation of Membrane Potential. J Bacteriol 197:794-806.
  10. Mohammad M, Na M, Hu Z, Nguyen MT, Kopparapu PK, Jarneborn A, Karlsson A, Ali A, Pullerits R, Götz F, Jin T. 2021. Staphylococcus aureus lipoproteins promote abscess formation in mice, shielding bacteria from immune killing. Commun Biol 4:432.
  11. Nguyen MT, Uebele J, Kumari N, Nakayama H, Peter L, Ticha O, Woischnig AK, Schmaler M, Khanna N, Dohmae N, Lee BL, Bekeredjian-Ding I, Götz F. 2017. Lipid moieties on lipoproteins of commensal and non-commensal staphylococci induce differential immune responses. Nat Commun 8:2246.
  12. Nguyen MT, Kraft B, Yu W, Demicrioglu DD, Hertlein T, Burian M, Schmaler M, Boller K, Bekeredjian-Ding I, Ohlsen K, Schittek B, Götz F. 2015. The νSaα Specific Lipoprotein Like Cluster (lpl) of S. aureus USA300 Contributes to Immune Stimulation and Invasion in Human Cells. PLoS Pathog 11:e1004984.
  13. Schmaler M, Jann NJ, Götz F, Landmann R. 2010. Staphylococcal lipoproteins and their role in bacterial survival in mice. Int J Med Microbiol 300:155-60.
  14. Hashimoto M, Tawaratsumida K, Kariya H, Kiyohara A, Suda Y, Krikae F, Kirikae T, Götz F. 2006. Not lipoteichoic acid but lipoproteins appear to be the dominant immunobiologically active compounds in Staphylococcus aureus. J Immunol 177:3162-9.
  15. Nega M, Tribelli PM, Hipp K, Stahl M, Götz F. 2020. New insights in the coordinated amidase and glucosaminidase activity of the major autolysin (Atl) in Staphylococcus aureus. Commun Biol 3:695.
  16. Schäffler H, Demircioglu DD, Kuhner D, Menz S, Bender A, Autenrieth IB, Bodammer P, Lamprecht G, Götz F, Frick JS. 2014. NOD2 stimulation by Staphylococcus aureus-derived peptidoglycan is boosted by Toll-Like Receptor 2 costimulation with lipoproteins in Dendritic Cells. Infect Immun 82:4681-8.
  17. Müller-Anstett MA, Müller P, Albrecht T, Nega M, Wagener J, Gao Q, Kaesler S, Schaller M, Biedermann T, Götz F. 2010. Staphylococcal peptidoglycan co-localizes with Nod2 and TLR2 and activates innate immune response via both receptors in primary murine keratinocytes. PLoS One 5:e13153.
  18. Bera A, Herbert S, Jakob A, Vollmer W, Götz F. 2005. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55:778-787.
  19. Luqman A, Götz F. 2021. The Ambivalent Role of Skin Microbiota and Adrenaline in Wound Healing and the Interplay between Them. Int J Mol Sci 22.
  20. Luqman A, Zabel S, Rahmdel S, Merz B, Gruenheit N, Harter J, Nieselt K, Götz F. 2020. The Neuromodulator-Encoding sadA Gene Is Widely Distributed in the Human Skin Microbiome. Front Microbiol 11:573679.
  21. Luqman A, Muttaqin MZ, Yulaipi S, Ebner P, Matsuo M, Zabel S, Tribelli PM, Nieselt K, Hidayati D, Götz F. 2020. Trace amines produced by skin bacteria accelerate wound healing in mice. Commun Biol 3:277.
  22. Luqman A, Ebner P, Reichert S, Sass P, Kabagema-Bilan C, Heilmann C, Ruth P, Götz F. 2019. A new host cell internalisation pathway for SadA-expressing staphylococci triggered by excreted neurochemicals. Cell Microbiol doi:10.1111/cmi.13044:e13044.
  23. Luqman A, Nega M, Nguyen MT, Ebner P, Götz F. 2018. SadA-Expressing Staphylococci in the Human Gut Show Increased Cell Adherence and Internalization. Cell Rep 22:535-545.
  24. Nguyen MT, Saising J, Tribelli PM, Nega M, Diene SM, Francois P, Schrenzel J, Sproer C, Bunk B, Ebner P, Hertlein T, Kumari N, Härtner T, Wistuba D, Voravuthikunchai SP, Mader U, Ohlsen K, Götz F. 2019. Inactivation of farR Causes High Rhodomyrtone Resistance and Increased Pathogenicity in Staphylococcus aureus. Front Microbiol 10:1157.
  25. Saising J, Nguyen MT, Härtner T, Ebner P, Al Mamun Bhuyan A, Berscheid A, Muehlenkamp M, Schakermann S, Kumari N, Maier ME, Voravuthikunchai SP, Bandow J, Lang F, Brötz-Oesterhelt H, Götz F. 2018. Rhodomyrtone (Rom) is a membrane-active compound. Biochim Biophys Acta 1860:1114-1124.
  26. Saising J, Götz F, Dube L, Ziebandt AK, Voravuthikunchai SP. 2014. Inhibition of staphylococcal biofilm-related gene transcription by rhodomyrtone, a new antibacterial agent. Ann Microbiol DOI 10.1007/s13213-014-09404-1.
  27. Morkunas M, Dube L, Götz F, Maier ME. 2013. Synthesis of the acylphloroglucinols rhodomyrtone and rhodomyrtosone B. Tetrahedron 69:8559-8563.
  28. Wang H, Kraus F, Popella P, Baykal A, Guttroff C, Francois P, Sass P, Plietker B, Götz F. 2019. The Polycyclic Polyprenylated Acylphloroglucinol Antibiotic PPAP 23 Targets the Membrane and Iron Metabolism in Staphylococcus aureus. Front Microbiol 10:14.
  29. Guttroff C, Baykal A, Wang H, Popella P, Kraus F, Biber N, Krauss S, Götz F, Plietker B. 2017. Polycyclic Polyprenylated Acylphloroglucinols: An Emerging Class of Non-Peptide-Based MRSA- and VRE-Active Antibiotics. Angew Chem Int Ed Engl 56:DOI: 10.1002/anie.201707069.