 | 69. A quick and reproducible silanization method using plasma activation for hydrophobicity-based kinesin-single-molecule-fluorescence-microscopy assays. Viktoria Wedler, Dustin Quinones, Heiko Peisert, Erik Schäffer Chem. Eur. J. 28, e202202036 (2022); DOI: 0.1002/chem.202202036 |
 | 68. Fast 3D imaging of giant unilamellar vesicles using reflected light-sheet microscopy with single molecule sensitivity. Sven A. Szilagyi, Moritz Burmeister, Q. Tyrel Davis, Gero Lutz Hermsdorf, Suman De, Erik Schäffer, Anita Jannasch J. Microsc. 285, 40-51 (2022); DOI: 10.1111/jmi.13070 bioRxiv 2020.06.26.174102 |
 | 67. Anisotropic and amphiphilic mesoporous core–shell silica microparticles provide chemically selective environments for simultaneous delivery of curcumin and quercetin. Akanksha Dohare, Swathi Sudhakar, Björn Brodbeck, Ashutosh Mukherjee, Marc Brecht, Andreas Kandelbauer, Erik Schäffer, Hermann A. Mayer Langmuir 37, 13460-13470 (2021); DOI: 10.1021/acs.langmuir.1c02210 |
 | 66. Single depolymerizing and transport kinesins stabilize microtubule ends. Alexandra Ciorîță, Michael Bugiel, Swathi Sudhakar, Erik Schäffer, Anita Jannasch Cytoskeleton 78, 177-184 (2021); DOI: 10.1002/cm.21681 bioRxiv 2020.10.05.326330 |
 | 65. Germanium nanospheres for ultraresolution picotensiometry of kinesin motors. Swathi Sudhakar, Mohammad Kazem Abdosamadi, Tobias Jörg Jachowski, Michael Bugiel, Anita Jannasch, Erik Schäffer Science 371, eabd9944 (2021). DOI: 10.1126/science.abd9944 bioRxiv 2020.06.18.159640 Research highlight by Nina Vogt: High-resolution optical tweezers. Nature Methods 18, 333 (2021). DOI: 10.1038/s41592-021-01121-7 |
 | 64. The kinesin-8 Kip3 depolymerizes microtubules with a collective force-dependent mechanism. Michael Bugiel, Mayank Chugh, Tobias Jörg Jachowski, Erik Schäffer, Anita Jannasch Biophys. J. 118, 1958-1967 (2020); DOI: 10.1016/j.bpj.2020.02.030 bioRxiv 844829 |
 | 63. In Vitro Reconstitution and Imaging of Microtubule Dynamics by Fluorescence and Label-free Microscopy. William Graham Hirst, Christine Kiefer, Mohammad Kazem Abdosamadi, Erik Schäffer, Simone Reber STAR Protocols, 100177 (2020). DOI: 10.1016/j.xpro.2020.100177 |
 | 62. Polycationic gold nanorods as multipurpose in vitro microtubule markers. Viktoria Wedler, Fabian Strauß, Swathi Sudhakar, Gero Lutz Hermsdorf, York-Dieter Stierhof, Erik Schäffer Nanoscale Adv. 2, 4003-4010 (2020); DOI:10.1039/D0NA00406E bioRxiv 2020.04.25.061127 |
 | 61. Supported Solid Lipid Bilayers as a Platform for Single-Molecule Force Measurements. Swathi Sudhakar, Tobias Jörg Jachowski, Michael Kittelberger, Ammara Maqbool, Gero Lutz Hermsdorf, Mohammad Kazem Abdosamadi, Erik Schäffer Nano Lett. 19, 8877-8886 (2019); DOI: 10.1021/acs.nanolett.9b03761 |
 | 60. Self-sensing enzyme-powered micromotors equipped with pH responsive DNA nanoswitches. Tania Patiño, Alessandro Porchetta, Anita Jannasch, Anna Llado, Tom Stumpp, Erik Schäffer, Francesco Ricci, and Samuel Sanchez Nano Lett. 19, 3440-3447 (2019); DOI: 10.1021/acs.nanolett.8b04794 |
 | 59. High performance passive vibration isolation system for optical tables using six-degree-of-freedom viscous damping combined with steel springs. Gero L. Hermsdorf, Sven A. Szilagyi, Sebastian Rösch, and Erik Schäffer. Rev. Sci. Inst. 90, 015113 (2019); DOI: 10.1063/1.5060707 arXiv: 1810.06641 LaserFocusWorld Laser Focus World 55(11), 37-40 (2019) |
 | 58. Three-dimensional optical tweezers tracking resolves random sideward steps of the kinesin-8 Kip3. Michael Bugiel, Erik Schäffer. Biophys. J. 115, 1993-2002 (2018); DOI: 10.1016/j.bpj.2018.09.026 |
 | 57. Label‐free high‐speed wide‐field imaging of single microtubules using interference reflection microscopy. Mohammed Mahamdeh, Steve Simmert, Anna Luchniak, Erik Schäffer, Jonathon Howard. J. Microsc. 272, 60-66 (2018); DOI: 10.1111/jmi.12744 |
 | 56. Phragmoplast Orienting Kinesin 2 Is a Weak Motor Switching between Processive and Diffusive Modes, Mayank Chugh, Maja Reißner, Michael Bugiel, Elisabeth Lipka, Arvid Herrmann, Basudev Roy, Sabine Müller, Erik Schäffer. Biophys. J. 115, 375-385 (2018); DOI: 10.1016/j.bpj.2018.06.012 |
 | 55. LED-based interference-reflection microscopy combined with optical tweezers for quantitative three-dimensional microtubule imaging, Steve Simmert, Mohammad Kazem Abdosamadi, Gero Hermsdorf, and Erik Schäffer. Opt. Express 26, 14499-14513 (2018); https://doi.org/10.1364/OE.26.014499 https://www.biorxiv.org/content/10.1101/277632v1 |
 | 54. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors Tania Patiño, Natalia Feiner-Gracia, Xavier Arqué, Albert Miguel-López, Anita Jannasch, Tom Stumpp, Erik Schäffer, Lorenzo Albertazzi, and Samuel Sánchez. J. Am. Chem. Soc. 140, 7896-7903 (2018); DOI: 10.1021/jacs.8b03460 |
 | 53. Determination of pitch rotation in a spherical birefringent microparticle. Basudev Roy, Avin Ramaiya and Erik Schäffer. J. Opt. 20, 035603 (2018); https://doi.org/10.1088/2040-8986/aaa9e4 |
 | 52. Measuring Microtubule Supertwist and Defects by Three-Dimensional-Force-Clamp Tracking of Single Kinesin-1 Motors. Michael Bugiel, Aniruddha Mitra, Salvatore Girardo, Stefan Diez and Erik Schäffer. Nano Lett. 18, 1290-1295 (2018); DOI: 10.1021/acs.nanolett.7b04971 |
 | 51. Kinesin rotates unidirectionally and generates torque while walking on microtubules. Avin Ramaiya, Basudev Roy, Michael Bugiel, and Erik Schäffer. PNAS 114, 10894-10899 (2017); DOI: 10.1073/pnas.1706985114 |
 | 50. Developmentally Regulated GTP binding protein 1 (DRG1) controls microtubule dynamics. Schellhaus, A. K., D. Moreno-Andrés, M. Chugh, H. Yokoyama, A. Moschopoulou, S. De, F. Bono, K. Hipp, E. Schäffer and W. Antonin. Scientific Reports 7, 9996 (2017); DOI:10.1038/s41598-017-10088-5 |
 | 49. Bugiel, M., A. Jannasch and E. Schäffer. Implementation and Tuning of an Optical Tweezers Force-Clamp Feedback System. vol. 1486 of Methods in Molecular Biology. Optical Tweezers: Methods and Protocols. A. Gennerich. New York, NY, Springer New York: 109-136 (2017); DOI: 10.1007/978-1-4939-6421-5_5 |
 | 48. Custom-Made Microspheres for Optical Tweezers. vol. 1486 of Methods in Molecular Biology. Optical Tweezers: Methods and Protocols. A. Gennerich. New York, NY, Springer New York: 137-155 (2017); Anita Jannasch , Mohammad K. Abdosamadi , Avin Ramaiya , Suman De, Valentina Ferro, Aaron Sonnberger, Erik Schäffer. DOI: 10.1007/978-1-4939-6421-5_6 |
 | 47. Improved antireflection coated microspheres for biological applications of optical tweezers. Valentina Ferro, Aaron Sonnberger, Mohammad K. Abdosamadi, Craig McDonald, Erik Schäffer, David McGloin. Proc. SPIE 9922, 99222T (2016); DOI: 10.1117/12.2239025. |
 | 46. Directed rotational motion of birefringent particles by randomly changing the barrier height at the threshold in a washboard potential. Basudev Roy and Erik Schäffer. Curr. Sci. 111, 2005-2008 (2016); DOI: 10.18520/cs/v111/i12/2005-2008 |
 | 45. Kinesin Kip2 enhances microtubule growth in vitro through length-dependent feedback on polymerization and catastrophe. Anneke Hibbel, Aliona Bogdanova, Mohammed Mahamdeh, Anita Jannasch, Marko Storch, Erik Schäffer, Dimitris Liakopoulos, Jonathon Howard. eLife 4, e10542 (2015); http://dx.doi.org/10.7554/eLife.10542 |
 | 44. Versatile microsphere attachment of GFP-labeled motors and other tagged proteins with preserved functionality. Bugiel M, Fantana H, Bormuth V, Trushko A, Schiemann F, Howard J, Schäffer E, Jannasch A. J. Biol. Methods 2, e30 (2015); DOI: 10.14440/jbm.2015.79 |
 | 43. Enzyme-Powered Hollow Mesoporous Janus Nanomotors. Xing Ma, Anita Jannasch, Urban-Raphael Albrecht, Kersten Hahn§, Albert Miguel-López, Erik Schäffer, and Samuel Sánchez. Nano Lett. 15, 7043–7050 (2015); DOI: 10.1021/acs.nanolett.5b03100 |
 | 42. A Single-Strand Annealing Protein Clamps DNA to Detect and Secure Homology. Ander M, Subramaniam S, Fahmy K, Stewart AF, Schäffer E. PLoS Biol. 13, e1002213 (2015) ; DOI: 10.1371/journal.pbio.1002213 |
 | 41. The Kinesin-8 kip3 switches protofilaments in a sideward random walk asymmetrically biased by force. Bugiel M, Böhl E, Schäffer E. Biophys. J. 108, 2019-27 (2015); DOI: 10.1016/j.bpj.2015.03.022 |
 | 40. The Growth Speed of Microtubules with XMAP215-Coated Beads Coupled to their Ends is Increased by Tensile Force Trushko, A; Schäffer, E and Howard, J PNAS 110, 14670-14675 (2013); DOI: 10.1073/pnas.1218053110 |
 | 39. Kinesin-8 Is a Low-Force Motor Protein with a Weakly Bound Slip State Jannasch, A; Bormuth, V; Storch, M; Howard, J and Schäffer, E Biophys. J. 104, 2456-2464 (2013); DOI: 10.1016/j.bpj.2013.02.040 |
 | 38. Nanonewton Optical Force Trap Employing Anti-Reflection Coated, High-Refractive-Index Titania Microspheres Jannasch, A; Demirörs, A F; van Oostrum, P D J; van Blaaderen, A and Schäffer, E Nature Photonics 6 , 469-473 (2012); DOI: 10.1038/NPHOTON.2012.140 |
 | 37. Functional Surface Attachment in a Sandwich Geometry of GFP-Labeled Motor Proteins Bormuth, V; Zörgibel, F; Schäffer, E and Howard, J Single Molecule Enzymology 778 , 11-18 (2011); DOI: 10.1007/978-1-61779-261-8_2 |
 | 36. Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise Jannasch, A; Mahamdeh, M and Schäffer, E Phys. Rev. Lett. 107, 228301 (2011); DOI: 10.1103/PhysRevLett.107.228301 |
 | 35. Measuring the complete force field of an optical trap Jahnel, M; Behrndt, M; Jannasch, A; Schäffer, E and Grill, SW Opt. Lett. 36, 1260-1262 (2011); DOI: 10.1364/OL.36.001260 |
 | 34. Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence Demirörs, AF; Jannasch, A; van Oostrum, PDJ; Schäffer, E; Imhof A and van Blaaderen, A Langmuir 27, 1626-1634 (2011); DOI: 10.1021/la103717m |
 | 33. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers Mahamdeh, M; Campos, CP and Schäffer, E Optics Express 19, 11759-11768 (2011); DOI: 10.1364/OE.19.011759 |
 | 32. Breaking of bonds between a kinesin motor and microtubules causes protein friction Bormuth, V; Varga, V; Howard, J and Schäffer, E Proc. SPIE 7762 , 776208 (2010); DOI: 10.1117/12.863545 |
 | 31. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy Gell, C; Bormuth, V; Brouhard, GJ; Cohen, DN; Diez, S; Friel, CT; Helenius, J; Nitzsche, B; Petzold, H; Ribbe, J; Schäffer, E; Stear, JH; Trushko, A; Varga, V; Widlund; PO; Zanic, M and Howard, J Methods in Cell Biology 95 , 221-245 (2010); DOI: 10.1016/s0091-679x(10)95013-9 |
 | 30. Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution Mahamdeh, M and Schäffer, E Optics Express 17, 17190-17199 (2009); DOI: 10.1364/OE.17.017190 |
 | 29. Protein friction limits diffusive and directed movements of kinesin motors on microtubules Bormuth, V; Varga, V; Howard, J and Schäffer, E Science 325, 870-873 (2009); DOI: 10.1126/science.1174923 |
 | 28. Optical trapping of coated microspheres Bormuth, V; Jannasch, A; Ander, M; van Kats, C; van Blaaderen, A; Howard, J and Schäffer, E Optics Express 16, 13831-13844 (2008); DOI: 10.1364/OE.16.013831 |
 | 27. Coated microspheres as enhanced probes for optical trapping Jannasch, A; Bormuth, V; van Kats, C; van Blaaderen, A; Howard, J and Schäffer, E Proc. SPIE 7038, 70382B-1-70382B-8 (2008); DOI: 10.1117/12.795389 |
 | 26. LED illumination for video-enhanced DIC imaging of single microtubules Bormuth, V; Howard, J and Schäffer, E J. Microsc. 226, 1-5 (2007); DOI: 10.1111/j.1365-2818.2007.01756.x |
 | 25. Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers Schäffer, E; Nørrelykke, SF and Howard, J Langmuir 23, 3654-3665 (2007); DOI: 10.1021/la0622368 |
 | 24. Brownian motion after Einstein: Some new applications and new experiments Selmeczi, D; Tolić-Nørrelykke, SF; Schäffer, E; Hagedorn, P; Mosler, S; Berg-Sørensen, K; Larsen, N and Flyvbjerg, H Lect. Notes Phys. 711, 181-199 (Springer Berlin 2007); DOI: 10.1007/3-540-49522-3_9 |
 | 23. Brownian motion after Einstein and Smoluchowski: Some new applications and new experiments Selmeczi, D; Tolić-Nørrelykke, SF; Schäffer, E; Hagedorn, P; Mosler, S; Berg-Sørensen, K; Larsen, N and Flyvbjerg, H Acta Phys. Pol. B 38, 2407-2431 (2007); DOI: 10.1007/3-540-49522-3_9 |
 | 22. Calibration of optical tweezers with positional detection in the back focal plane Tolić-Nørrelykke, SF*; Schäffer, E*; Howard, J; Pavone, F; Jülicher, F and Flyvbjerg, H Rev. Sci. Inst. 77, 103101 (2006); DOI: 10.1063/1.2356852 *These authors contributed equally to the work. |