The team’s research is aiming at photo-realism in acquiring high resolution, very accurate 3D models that capture the geometry and the appearance of the real world with the goal to enable photorealistic relighting and finally photorealistic rendering. To achieve that goal specific acquisition methods and technology are developed by combining optics, camera design, and image processing in the field of computational photography. Reconstructing the photorealistic model from captured data including the reflection properties is the next challenge. Robust reconstruction calls for intelligent, and highly efficient approaches which can only be achieved by combining GPGPU programming with advanced machine learning. Similarly, the reconstruction is tightly coupled to efficient rendering where we particularly address challenging light transport scenarios. A newer trend combines text and visual information in order to explore how both modalities can support each other, e.g. in language grounding or in creating graphics and scenes from textual descriptions.
Team: Raphael Braun, Andreas Engelhardt, Lukas Ruppert, Arjun Majumdar, Faezeh Zakeri
The core competence of the team is in the acquisition, rendering, and display of photo realistic 3D models of real-world objects and scenes. In order to fully capture the appearance, both the 3D geometry as well as the light transport characteristics, i.e., the view and illumination dependent reflection properties, have to be measured precisely. The current focus is on the acquisition outside of a lab environment or the acquisition of multispectral reflectance. In addition, capturing the reflectance of moving, dynamic objects is still to be solved.
Besides acquiring reflection properties we also work on rendering them efficiently in complex global illumination settings, e.g. using path guiding.
Team: Andreas Engelhardt, Arjun Majumdar, Raphael Braun, Alexander Oberdörster
Beyond traditional ways of taking pictures, the group is researching novel cameras and algorithms. By modifying the optics, the sensor, and by combining multiple different sensors paired with powerful algorithms it is possible to acquire better pictures or pictures showing other modes rather than color. By employing programmable diffractive optics we can shape the PSF of a camera. In such a way, images might be refocused after capture, the contrast might be increased while reducing noise in HDR images. One can capture 3D geometry from image collections and videos, or capture aspects that otherwise are invisible, i.e. temporal, polarization, or wavelength effects. By coupling cameras with projectors and compute power the additional information can also be visualized on real-world surfaces.
Team: Lukas Ruppert, Raphael Braun
Besides the traditional topic of real-time rendering on graphics cards our research focus on using the massive parallelism in modern GPUs with thousands of cores for supporting general purpose computing. All aspects of designing algorithms on massively parallel platforms are of interest. For example, we employ GPUs for the simulation of particular visual effects such as diffraction, fluorescence, and alike, to perform advanced image processing in real-time. In addition, the group works on general purpose GPU (GPGPU) applications, for example, highly efficient nearest neighbor search in high-dimensional spaces based on product quantization or hierarchical kNN graphs.
Team: Hassan Shahmohammadi, Zohreh Ghaderi, Leonard Salewski
Linking images and natural language opens new application scenarios. For one, providing a natural language interface to the visual world enables localization and reasoning about everyday objects in our environment. This includes visual grounding of word embeddings, video captioning, or visual Q&A including explanation generation. Furthermore, by closely analyzing the semantics of objects and by interpreting scenes we work on automatically translating text into visual representations. A key ingredient is harvesting multiple knowledge sources both in form of texts as well as image and video databases, with the focus to strengthen both the graphics/vision understanding as well as solving psycho-linguistic questions.
Team: Zohreh Ghaderi, Raphael Braun, Simon Holdenried-Krafft, Simon Doll, Sarah Müller
Many image and video processing algorithms have to deal with constantly changing input data as each frame might show different content in a different illumination. We apply machine learning architectures such as deep convolutional neural networks, recurrent networks, Transformer, and alike to enable novel information extraction and enhancement applications. They include image and video deblurring, road lane prediction, appearance robust similarity estimations, measuring aesthetics, or analyzing retinal fundus images and whole-slide images in pathology.
Auf unserer Webseite werden Cookies verwendet. Einige davon werden zwingend benötigt, während es uns andere ermöglichen, Ihre Nutzererfahrung auf unserer Webseite zu verbessern. Ihre getroffenen Einstellungen können jederzeit bearbeitet werden.
oder
Essentiell
in2cookiemodal-selection
Erforderlich, um die Benutzerauswahl der Cookie-Einstellungen zu speichern.
3 Monate
be_lastLoginProvider
Benötigt, damit TYPO3 beim Backend-Login den Zeitpunkt des letzten Logins feststellen kann.
3 Monate
be_typo_user
Dieses Cookie teilt der Webseite mit, ob ein Besucher oder eine Besucherin zugleich im TYPO3-Backend angemeldet ist und die Rechte besitzt, die Webseite zu verwalten.
Sitzungsende
ROUTEID
Diese Cookies werden gesetzt, um den Benutzer oder die Benutzerin immer zum gleichen Server zu leiten.
Sitzungsende
fe_typo_user
Ermöglicht Frontend-Login.
Sitzungsende
Videos
iframeswitch
Wird verwendet, um eingebettete externe Inhalte Dritter anzuzeigen.
3 Monate
yt-player-bandaid-host
Wird verwendet, um YouTube-Videos anzuzeigen.
Beständig
yt-player-bandwidth
Wird verwendet, um die optimale Videoqualität basierend auf den Geräte- und Netzwerkeinstellungen des Besuchers oder der Besucherin zu bestimmen.
Beständig
yt-remote-connected-devices
Speichert die Einstellungen des Videoplayers des Benutzers oder der Benutzerin unter Verwendung von eingebettetem YouTube-Video.
Beständig
yt-remote-device-id
Speichert die Einstellungen des Videoplayers des Benutzers oder der Benutzerin unter Verwendung von eingebettetem YouTube-Video.
Beständig
yt-player-headers-readable
Sammelt Daten über die Interaktion der Besucher mit den Videoinhalten der Website - Diese Daten werden verwendet, um die Relevanz der Videoinhalte der Website für den Besucher zu erhöhen.
Beständig
yt-player-volume
Wird verwendet, um die bevorzugte Lautstärke der YouTube-Videos zu speichern.
Beständig
yt-player-quality
Wird verwendet, um die bevorzugte YouTube Wiedergabequalität zu speichern.
Beständig
yt-remote-session-name
Speichert die Einstellungen des Videoplayers des Benutzers oder der Benutzerin unter Verwendung von eingebettetem YouTube-Video.
Sitzungsende
yt-remote-session-app
Speichert die Einstellungen des Videoplayers des Benutzers oder der Benutzerin unter Verwendung von eingebettetem YouTube-Video.
Sitzungsende
yt-remote-fast-check-period
Speichert die Einstellungen des Videoplayers des Benutzers oder der Benutzerin unter Verwendung von eingebettetem YouTube-Video.
Sitzungsende
yt-remote-cast-installed
Speichert die Benutzereinstellungen beim Abruf eines auf anderen Webseiten integrierten YouTube-Videos.
Sitzungsende
yt-remote-cast-available
Speichert die Benutzereinstellungen beim Abruf von integrierten YouTube-Videos.
Sitzungsende
ANID
Wird für Targetingzwecke verwendet, um ein Profil der Interessen der Website-Besucher zu erstellen, um relevante und personalisierte Google-Werbung anzuzeigen.
2 Jahre
SNID
Google Maps - Google verwendet diese Cookies, um Benutzereinstellungen und Informationen zu speichern, wenn Sie Seiten mit Google Maps aufrufen.
1 Monat
SSID
Wird verwendet, um Informationen darüber zu speichern, wie Sie die Website nutzen und welche Werbung Sie vor dem Besuch dieser Website gesehen haben, und um die Werbung auf Google-Ressourcen anzupassen, indem Sie sich an Ihre letzten Suchanfragen, Ihre früheren Interaktionen mit Anzeigen oder Suchergebnissen eines Werbetreibenden und Ihre Besuche auf einer Website eines Werbetreibenden erinnern.
6 Monate
1P_JAR
Dieses Cookie wird verwendet, um die Werbedienste von Google zu unterstützen
1 Monat
SAPISID
Wird für Targetingzwecke verwendet, um ein Profil der Interessen der Website-Besucher zu erstellen, um relevante und personalisierte Google-Werbung anzuzeigen.
6 Monate
APISID
Wird für Targetingzwecke verwendet, um ein Profil der Interessen der Website-Besucher zu erstellen, um relevante und personalisierte Google-Werbung anzuzeigen.
6 Monate
HSID
Beinhaltet verschlüsselte Einträge Ihres Google Accounts und der letzten Login-Zeit um vor Attacken und Datendiebstahl aus Formulareinträgen zu schützen.
2 Jahre
SID
Wird zu Sicherheitszwecken verwendet, um digital signierte und verschlüsselte Aufzeichnungen der Google-Konto-ID eines Nutzers und der letzten Anmeldezeit zu speichern, die es Google ermöglichen, Nutzer zu authentifizieren, eine betrügerische Verwendung von Anmeldeinformationen zu verhindern und Benutzerdaten vor Unbefugten zu schützen. Dies kann auch für Targetingzwecke genutzt werden, um relevante und personalisierte Werbeinhalte anzuzeigen.
6 Monate
SIDCC
Dieses Cookie speichert Informationen über Nutzereinstellungen und -informationen für Google Maps.
3 Monate
NID
Das NID-Cookie enthält eine eindeutige ID, die Google verwendet, um Ihre Einstellungen und andere Informationen zu speichern.
6 Monate
CONSENT
Dieses Cookie verfolgt, wie Sie eine Website nutzen, um Ihnen Werbung zu zeigen, die für Sie interessant sein könnte.
18 Jahre
__Secure-3PAPISID
Dieses Cookie wird verwendet, um die Werbedienste von Google zu unterstützen
2 Jahre
__Secure-3PSID
Dieses Cookie wird verwendet, um die Werbedienste von Google zu unterstützen
2 Jahre
__Secure-3PSIDCC
Dieses Cookie wird verwendet, um die Werbedienste von Google zu unterstützen.
6 Monate