Interfaculty Institute of Microbiology and Infection Medicine

Publications

 

 

 
44. Ropponen HK, Diamanti E, Johannsen S, Illarionov B, Hamid R, Jaki M, Sass P, Fischer M, Haupenthal J, Hirsch AKH. Exploring the Translational Gap of a Novel Class of Escherichia coli IspE Inhibitors. ChemMedChem. 2023 Sep 17:e202300346. doi: 10.1002/cmdc.202300346. 
43. Brötz-Oesterhelt H, Hughes C, Sass P, Stegmann E, Ziemert N. Aktuelle Methoden in der antibakteriellen Naturstoffforschung. Biospektrum 29, 599–601 (2023). 
42.

Pan S, Jensen AA, Wood NA, Henrichfreise B, Brötz-Oesterhelt H, Fisher DJ, Sass P*, Ouellette SP*. Molecular characterization of the ClpC AAA+ ATPase in the biology of Chlamydia trachomatismBio e0007523 (2023). 

41.

Gratani FL, Englert T, Nashier P, Sass P, Mann P, Czech L, Neumann N, Doello S, Blobelt R, Alberti S, Forchhammer K, Bange G, Höfer K, Macek B. E. coli toxin YjjJ (HipH) is a Ser/Thr protein kinase that impacts cell division, carbon metabolism and ribosome assembly. mSystems e0104322 (2023). 

40 Matos de Opitz CL, Sass P. Microscopy-based multiwell assay to characterize disturbed bacterial morphogenesis upon antibiotic action. In Peter Sass (ed.), Antibiotics: Methods and Protocols, Methods in Molecular Biology 2nd edition, vol. 2601. Springer, New York. In press (2023). 
39 Brajtenbach D, Puls JS, Matos de Opitz CL, Sass P*, Kubitscheck U*, Grein F*. Quantitative analysis of microscopy data to evaluate bacterial responses to antibiotic treatment. In Peter Sass (ed.), Antibiotics: Methods and Protocols, Methods in Molecular Biology 2nd edition, vol. 2601. Springer, New York.In press (2023). 
38. Sass P. Antibiotics - Precious goods in changing times (update 2023). In Peter Sass (ed.), Antibiotics: Methods and Protocols, Methods in Molecular Biology 2nd edition, vol. 2601. Springer, New York. In press (2023). 
37.

Reinhardt L, Thomy D, Lakemeyer M, Ortega J, Sieber SA, Sass P*, Brötz-Oesterhelt H*. Antibiotic acyldepsipeptides stimulate the Streptomyces Clp-ATPase/ClpP complex for accelerated proteolysis. mBio 13(6) e0141322 (2022). 

36.

Dietrich A, Steffens U, Gajdiss M, Boschert AL, Dröge JK, Szekat C, Sass P, Malik IT, Bornikoel J, Reinke L, Maček B, Franz-Wachtel M, Nieselt K, Harbig T, Scherlach K, Brötz-Oesterhelt H, Hertweck C, Sahl HG, Bierbaum G. Cervimycin-Resistant Staphylococcus aureus Strains Display Vancomycin-Intermediate Resistant Phenotypes. Microbiol Spectr. e0256722 (2022). 

35.

Reher R, Aron AT, Fajtová P, Stincone P, Wagner B, Pérez-Lorente AI, Liu C, Shalom IYB, Bittremieux W, Wang M, Jeong K, Matos-Hernandez ML, Alexander KL, Caro-Diaz EJ, Naman CB, Scanlan JHW, Hochban PMM, Diederich WE, Molina-Santiago C, Romero D, Selim KA, Sass P, Brötz-Oesterhelt H, Hughes CC, Dorrestein PC, O'Donoghue AJ, Gerwick WH, Petras D. Native metabolomics identifies the rivulariapeptolide family of protease inhibitors. Nat Commun. 13(1):4619 (2022). 

34.

Dietrich A, Steffens U, Sass P, Bierbaum G. The hypersusceptible antibiotic screening strain Staphylococcus aureus SG511-Berlin harbors multiple mutations in regulatory genes. Int J Med Microbiol. 311(8):151545 (2021). 

33. Silber N, Mayer C, Matos de Opitz CL, Sass PProgression of the late-stage divisome is unaffected by the depletion of the cytoplasmic FtsZ pool. Commun Biol 4, 270 (2021) 
32.

Silber N, Matos de Opitz CL, Mayer C, Sass P. Cell division protein FtsZ: from structure and mechanism to antibiotic target. Future Microbiol 15:801-831 (2020) 

31. Matos de Opitz CL, Sass P. Tackling antimicrobial resistance by exploring new mechanisms of antibiotic action. Future Microbiol 15:703-708 (2020) 
30. Silber N, Pan S, Schäkermann S, Mayer C, Brötz-Oesterhelt H, Sass P. Cell division protein FtsZ is unfolded for N-terminal degradation by antibiotic-activated ClpP. mBio 11(3):e01006-20 (2020). 
29.

Malik IT, Pereira R, Vielberg MT, Mayer C, Straetener J, Thomy D, Famulla K, Castro H, Sass P, Groll M, Brötz-Oesterhelt H. Functional characterisation of ClpP mutations conferring resistance to acyldepsipeptide antibiotics in Firmicutes. Chembiochem. 2020. doi: 10.1002/cbic.201900787. 

28. Tribelli PM, Luqman A, Nguyen MT, Madlung J, Fan SH, Macek B, Sass P, Bitschar K, Schittek B, Kretschmer D, Götz F. Staphylococcus aureus Lpl protein triggers human host cell invasion via activation of Hsp90 receptor. Cell Microbiol. 22(1):e13111 (2020). 
27. Pan S, Malik IT, Thomy D, Henrichfreise B, Sass P. The functional ClpXP protease of Chlamydia trachomatis requires distinct clpP genes from separate genetic loci. Sci Rep. 9(1):14129. doi: 10.1038/s41598-019-50505-5 (2019). 
26.

Thomy D, Culp E, Adamek M, Cheng EY, Ziemert N, Wright GD, Sass P, Brötz-Oesterhelt H. The ADEP biosynthetic gene cluster in Streptomyces hawaiiensis NRRL 15010 reveals an accessory clpP gene as a novel antibiotic resistance factor. Appl. Environ. Microbiol. doi:10.1128/AEM.01292-19 (2019).

25. Mayer C, Sass P*, Brötz-Oesterhelt H*. Consequences of dosing and timing on the antibacterial effects of ADEP antibiotics. Int J Med Microbiol. 151329. doi: 10.1016/j.ijmm.2019.151329 (2019). 
24. Luqman A, Ebner P, Reichert S, Sass P, Kabagema-Bilan C, Heilmann C, Ruth P, Götz F. A new host cell internalisation pathway for SadA-expressing staphylococci triggered by excreted neurochemicals. Cell Microbiol. e13044. doi: 10.1111/cmi.13044 (2019). 
23.

Sass P. Molekulare Antibiotikaforschung: neue Wirkprinzipien gegen multiresistente Keime. Biospektrum 25: 463. https://doi.org/10.1007/s12268-019-1076-0 (2019). 

22.

Wang H, Kraus F, Popella P, Baykal A, Guttroff C, François P, Sass P, Plietker B, Götz F. The polycyclic polyprenylated acylphloroglucinol antibiotic PPAP 23 targets the membrane and iron metabolism in Staphylococcus aureus. Front Microbiol doi: 10.3389/fmicb.2019.00014 (2019).

21.

Reichert S, Ebner P, Bonetti EJ, Luqman A, Nega M, Schrenzel J, Spröer C, Bunk B, Overmann J, Sass P, François P, Götz F. Genetic adaptation of a mevalonate pathway deficient mutant in Staphylococcus aureus. Front Microbiol doi: 10.3389/fmicb.2018.01539 (2018).

20. Perez R, Wörmer LP, Sass P, Maldener, I. 2017. A highly asynchronous developmental program triggered during germination of dormant akinetes of the filamentous diazotrophic cyanobacteria. FEMS Microbiol Ecol. 94(1). doi: 10.1093/femsec/fix131 (2018).
19. Sass P. 2017. Antibiotics: Precious Goods in Changing Times. Methods Mol Biol. 2017;1520:3-22.
18.

Sass P. 2017. Antibiotics: Methods and Protocols, Methods in Molecular Biology, vol. 1520, Peter Sass (ed.), DOI 10.1007/978-1-4939-6634-9_1, © Springer Science+Business Media New York 2017

17.

Hardt P, Engels I, Rausch M, Gajdiss M, Ulm H, Sass P, Ohlsen K, Sahl HG, Bierbaum G, Schneider T, Grein F. 2017. The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus aureus. Int. J. Med. Microbiol. 307(1):1-10. doi: 10.1016/j.ijmm.2016.12.001.

16.

Famulla, K., P. Sass, I. Malik, T. Akopian, O. Kandror, M. Alber, B. Hinzen, H. Ruebsamen-Schaeff, R. Kalscheuer, A.L. Goldberg, H. Brötz-Oesterhelt. 2016. „Acyldepsipeptide antibiotics kill mycobacteria by preventing the physiological functions of the ClpP1P2 protease.” Mol Microbiol. (2016) 101(2):194-209.

15.

Gersch, M., K. Famulla, M. Dahmen, C. Göbl, I. Malik, K. Richter, V.S. Korotkov, P. Sass, H. Rübsamen-Schaeff, T. Madl, H. Brötz-Oesterhelt, S.A. Sieber. 2015. „AAA+ chaperones and acyldepsipeptides activate the ClpP protease via conformational control.” Nature Commun. (2015), 6:6320.

14.

Brötz-Oesterhelt, H., and P. Sass. 2014. “Bacterial caseinolytic proteases as novel targets for antibacterial treatment.” Int J Med Microbiol. (2014); 304(1):23-30. doi: 10.1016/j.ijmm.2013.09.001.

13.

Berscheid, A., P. François, A. Strittmatter, G. Gottschalk, J. Schrenzel, P. Sass*, G. Bierbaum*. 2014. „Generation of a vancomycin-intermediate Staphylococcus aureus (VISA) strain by two amino acid exchanges in VraS.” J Antimicrob Chemother. (2014), 69(12):3190-8.

12.

Sass, P., and H. Brötz-Oesterhelt, H. 2013. “Bacterial cell division as a target for new antibiotics.” Curr. Opin. Microbiol. (2013); 16(5):522-30. doi: 10.1016/j.mib.2013.07.006.

11.

Bara, R., I. Zerfass, A.H. Aly, H. Goldbach-Gecke, V. Raghavan, P. Sass, A. Mándi, V. Wray, P.L. Polavarapu, A. Pretsch, W. Lin, T. Kurtán, A. Debbab, H. Brötz-Oesterhelt, and P. Proksch. 2013. “Atropisomeric dihydro-anthracenones as inhibitors of multiresistant Staphylococcus aureus” J. Med. Chem. (2013), 56(8):3257-72.

10.

Brötz-Oesterhelt, H., and P. Sass. 2013. “Bacterial cell stress protein ClpP: A novel antibiotic target.” In: B. Henderson (ed.), “Moonlighting Cell Stress Proteins in Microbial Infections” in the series Heat Shock Proteins 7:375-385. Springer Netherlands, DOI 10.1007/978-94-007-6787-4_24, Print ISBN 978-94-007-6786-7, Online ISBN 978-94-007-6787-4.

9.

Sass, P., and H. Brötz-Oesterhelt. 2012. “Bacterial stress responses to antimicrobial agents.” In: H.C. Wong (ed.), Stress responses in foodborne microorganisms. Nova Science Publishers, Inc., ISBN: 978-1-61122-810-6.

8.

Sass, P.*, A. Berscheid*, A. Jansen, M. Oedenkoven, C. Szekat, A. Strittmatter, G. Gottschalk, and G. Bierbaum. 2012. “Genome sequence of Staphylococcus aureus VC40, a vancomycin and daptomycin resistant strain, to study the genetics of development of resistance to currently applied last-resort antibiotics.” J. Bacteriol. (2012), 194(8):2107-08.

7.

Berscheid, A.*, P. Sass*, K. Weber-Lasalle, A.L. Cheung, and G. Bierbaum. 2012. “Revisiting the genomes of the Staphylococcus aureus strains NCTC 8325 and RN4220.” Int J Med Microbiol. (2012), 302(2):84-87.

6.

Sass, P, M. Josten, K. Famulla, G. Schiffer, H.-G. Sahl, L. Hamoen, and H. Brötz-Oesterhelt. 2011. „Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ.“ Proc Natl Acad Sci U S A. (2011), 108(42):17474-9.

5.

Brötz-Oesterhelt, H., and P. Sass. 2011. Molekulare Antibiotikaforschung – Neue Leitstrukturen und Wirkmechanismen gegen multiresistente Bakterien. Annual reports of the Heinrich Heine University of Düsseldorf.

4.

Brötz-Oesterhelt, H., and P. Sass. 2010. “Post-genomic strategies in antibacterial drug discovery.” Fut Microbiol (2010); 5(10): 1553-1579.

3.

Sass, P., and G. Bierbaum. 2009. “Native graS mutation supports the susceptibility of Staphylococcus aureus strain SG511 to antimicrobial peptides.” Int J Med Microbiol. (2009); 299(5):313-22.

2.

Sass, P., A. Jansen, C. Szekat, V. Sass, H.-G. Sahl, and G. Bierbaum. 2008. „The lantibiotic mersacidin is a strong inducer of the cell wall stress response of Staphylococcus aureus.” BMC Microbiol. (2008); 8:186.

1.

Sass, P., and G. Bierbaum. 2007. “Lytic activity of recombinant bacteriophage ɸ11 and ɸ12 endolysins on whole cells and biofilms of Staphylococcus aureus.” Appl Environ Microbiol. (2007); 73(1):347-52.

*equal contribution