Interfaculty Institute of Microbiology and Infection Medicine

Andreas Peschel

Andreas Peschel gained his PhD and became a post-doctoral scholar in the Microbial Genetics Department at the University of Tübingen. He worked as a visiting scholar at the Research Center Borstel – Leibniz Center for Medicine and Biosciences, Germany in 1998 and was a post-doctoral scholar at the Medical Microbiology and Immunology Department, University of Utrecht, the Netherlands 1999–2000. Andreas Peschel became an Assistant and Associate Professor at the University of Tübingen in 2001 and 2003, respectively. Since 2008 he is a Full Professor and co-founder of the Interfaculty Institute of Microbiology and Infection Medicine Tübingen. Andreas Peschel coordinates the Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)” and he is a member of the Executive Board of the German Center for Infection Research.

Research Interests

Human body surfaces are colonized by highly complex and variable consortia of microorganisms, so called microbiota, which play essential roles for many human body functions. In fact, humans have more bacterial than body cells together constituting a ‘metaorganism’. Only a small minority of the bacterial colonizers can be pathogens but these bacteria are highly relevant because they are responsible for the vast majority of invasive, often fatal infections. Despite its importance the microbial ecology of human body surfaces has hardly been explored.
Staphylococcus aureus is a constituent of the nasal microbiome in 20-30% of the human population and also represents the most frequent cause of life-threatening invasive infections in the northern hemisphere. The individual predisposition to S. aureus colonization and the transition from commensal to pathogenic lifestyles represent exciting examples of microbe-host coevolution and adaptation processes, addressed in three focus themes:

How staphylococcal “glycocodes” govern detection by host immunity and bacteriophages
(with Jessica Slavetinsky and Janes Krusche)

How the human innate immune system senses S. aureus infections 
(with Dorothee Kretschmer)

How S. aureus prevails in its major reservoir, the human nasal microbiome 
(with Bernhard Krismer)

Andreas Peschel, selected publications:

  • Krusche J, Beck C, Lehmann E, Gerlach D, Daiber E, Mayer C, Müller J, Onallah H, Würstle S, Wolz C, Peschel A (2025) Characterization and host range prediction of Staphylococcus aureus phages through receptor-binding protein analysis. Cell Rep. 44:115369. doi: 10.1016/j.celrep.2025.115369
  • Maier L, Stein-Thoeringer C, Ley R, Brötz-Oesterhelt H, Link H, Ziemert N, Wagner S, Peschel A (2024) Integrating research on bacterial pathogens and commensals to fight infections - an ecological perspective. Lancet Microbe 5:100843. doi: 10.1016/S2666-5247(24)00049-1
  • Torres Salazar BO, Dema T, Schilling NA, Janek D, Bornikoel J, Berscheid A, Elsherbini AM, Krauss S, Jaag SJ, Lämmerhofer M, Min Li, Alqahtani N, Horsburgh MJ, Weber T, Beltrán-Beleña JM, Brötz-Oesterhelt H, Grond S, Krismer B, Peschel A (2024) A nasal commensal produces the broad spectrum and short-lived antimicrobial peptide polyene epifadin to eliminate Staphylococcus aureus. Nat Microbiol. 9:200-213. doi: 10.1038/s41564-023-01544-2
  • Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A (2021) The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol. 19:726-739. doi: 10.1038/s41579-021-00569-w .
    Du X, Larsen J, Li M, Walter A, Slavetinsky C, Both A, Sanchez Carballo PM, Stegger M, Lehmann E, Liu Y, Liu J, Slavetinsky J, Duda KA, Krismer B, Heilbronner S, Weidenmaier C, Mayer C, Rohde H, Winstel V, Peschel A (2021) Staphylococcus epidermidis clones express Staphylococcus aureus-type wall teichoic acid to shift from a commensal to pathogen lifestyle. Nat Microbiol. 6:757-768. doi: 10.1038/s41564-021-00913-z
  • Gerlach D, Guo Y, De Castro C, Kim SH, Schlatterer K, Xu FF, Pereira C, Seeberger PH, Ali S, Codee J, Sirisan W, Schulte B, Wolz C, Larsen J, Molinaro A, Lee BL, Xia G, Stehle T, Peschel A (2018) Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature 563:705-709. doi: 10.1038/s41586-018-0730-x .
  • Taconnelli E, Autenrieth IB, Peschel A (2017) Fighting the enemy within. Science 355:689-690. doi: 10.1126/science.aam6372
  • Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, Weidenmaier C, Burian M, Schilling NA, Slavetinsky C, Marschall M, Willmann M, Kalbacher H, Schittek B, Brötz-Oesterhelt H, Grond S, Peschel A, Krismer B (2016) Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535:511-6.. doi: 10.1038/nature18634 .
    Hanzelmann D, Joo HS, Franz-Wachtel M, Hertlein T, Stevanovic S, Macek B, Götz F, Otto M, Kretschmer D, Peschel A (2016) Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants. Nat Commun I7:12304. doi: 10.1038/ncomms12304
  • Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturyia T, Kalbacher H, Gross M, Nicholson G, Neumeister B, Mond JJ, Peschel A (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosokomial infections. Nat Med 10:243-24. doi: 10.1038/nm991