Seminar: Current Topics in Deep Neural Networks

 

Instructors Valentin Bolz, Daniel Weber, Rafia Rahim, Martin Lahr
Preliminary Meeting 25.10.2019, 10:00 AM, Sand14, A302
Credits 3 LP (new PO), 4 LP (old PO)
Weekly Meetings Monday 16:00
Room A302
Language English
Max. Participants 12

Description

Deep learning is a subfield of machine learning that has achieved significant state-of-the-art results in many areas of artificial intelligence, including computer vision and robotics, and has been advancing very quickly in recent years. This seminar aims to cover current topics in the field of deep learning. It takes shape as a paper reading and discussing the concept of "learning and learning". A collection of papers from selected journals and conferences is provided for the students to choose from. In each meeting, one topic is presented by the students. 

Students are graded based on: a) their presentation, b) a short (10-15 page) report that they write on the subject, and c) their participation in post-presentation discussions. So, attendance is required to pass the course.

The first meeting will be held on 25th of October 2019. In the session, each student chooses one topic and the presentations will start after two weeks; one presentation in each meeting. Participation in the preliminary meeting is required. If you are unable to attend this session, please write to email to valentin.bolz@uni-tuebingen.de.

Important note: Since there is a maximum number of 12 participants in this course, please register in ILIAS as soon as possible if you are interesting in taking the seminar.

Requirements

This is a BSc Seminar (after 5th semester). Interested MSc students are welcome as well. 
There are no formal requirements. However, it is helpful to have a good background in mathematics (linear algebra, statistics).

Registration

Important note: Since there is a maximum number of 12 participants in this course, please register in ILIAS as soon as possible if you are interesting in taking the seminar.

ILIAS

Vorlesungsverzeichnis

Topics

This premilinary list provides an overview of the topics covered in the seminar. Note that this list is not final and will be extended.

     Object Detection

     Image Segmentation

     Architecture Search

     Graph Neural Networks

     Pruning Neural Networks / Light Weight Networks

     Recurrent Neural Networks

     Famous Datasets and Award-Winning Neural Network Architectures

You can get access to the most resources with an online-search from the university network (computer science pools, ZDV pools, VPN-client, etc.). For the literature search, it is recommended to use Google Scholar, Citeseer, arXiv. For very recent submissions on arXiv, click here. If a paper is published in CVPR or ICCV, you can find it on CVF open access. NIPS proceedings can be reached here. Also, you can download the PDFs from authors' webpages.

Useful Documents