Veranstaltungen des Clusters
Hier finden Sie Informationen zu allen unseren aktuellen Cluster-Veranstaltungen im Überblick.
Alle zurückliegenden Cluster-Veranstaltungen finden Sie untenstehend im ARCHIV.
Cluster Kolloquium "Maschinelles Lernen"
Seminarreihe des Exzellenzclusters "Maschinelles Lernen"
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Mittwochs | 14:00 - 15:00 | mit anschliessendem Get Together
Hörsaal, AI Research Building, Maria von Linden-Str. 6 (Erdgeschoss), 72076 Tübingen
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
PROGRAMM
Mehr Informationen folgen in Kürze!
Veranstaltungs-Archiv
Hier finden Sie alle vergangenen Cluster-Veranstaltungen im Überblick.
Cluster Kolloquium "Maschinelles Lernen" - 1. Mittwoch im Monat
Seminarreihe des Exzellenzclusters "Maschinelles Lernen"
-------------------------
Mittwoch, 14:00 - 15:00, mit anschliessendem Get Together
Hörsaal, AI Research Building, Maria von Linden-Str. 6 (Erdgeschoss), 72076 Tübingen
-------------------------
PROGRAMM
-
16.11.2023 Neural Flow Operators: Learning dynamical systems from data
(and what you can do with them)
Prof. Daniel DURSTEWITZ
Zentralinstitut für Seelische Gesundheit (ZI), Mannheim
Leiter der Abteilung "Theoretische Neurowissenschaften" WebseiteMost systems we encounter in science and engineering, at one level or the other could be cast in the form of systems of differential equations, whose short- and long-term behavior is the subject of dynamical systems (DS) theory. Can we infer generative DS models directly from time series observations without explicit knowledge of the underlying governing equations? In my talk I will first provide some necessary background in DS theory, and then discuss recent deep learning approaches for approximating the flow of unknown DS from data. I will in particular focus on challenges in training, recent teacher forcing techniques to overcome these, and how to map systems evolving on multiple time scales and observed through multiple data modalities. I will also discuss how to analyze and interpret trained systems. Concepts will be illustrated on various examples from neuroscience with DS models trained to recreate neurophysiological recordings.
-
01.03.2023 Reverse-engineering Drosophila action selection and movement control
Prof. Pavan Ramdya
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
Director of the Neuroengineering Laboratory WebsiteA shared goal of neuroscience and robotics is to understand how systems can be built to move effectively and autonomously through the world. However, state-of-the-art algorithms for selecting and executing limb behaviors in robots are still quite primitive compared with those used by animals. To inform the design of artificial systems, we are investigating how the fly, Drosophila melanogaster, selects and controls its behaviors and how this process can be modulated by learning. I will discuss how we are pursuing this research program using a combination of machine learning, microscopy, and modeling.
-
26.10.2022 Machine learning for improved understanding and projections of climate change
Veronika Eyring
Head of Earth System Model Evaluation and Analysis Department at the German Aerospace Center
(Deutsches Zentrum für Luft- und Raumfahrt) and Professor and Chair of Climate Modeling at the
University of Bremen. Webseite
Climate models are fundamental to understanding and projecting climate change. The models have continued to improve over the years, but considerable biases and uncertainties in their projections remain. A large contribution to this uncertainty stems from differences in the representation of phenomena such as clouds and convection that occur at scales smaller than the resolved model grid. This impacts the models’ ability to accurately project global and regional climate change, climate variability, and extremes. High-resolution, cloud resolving models with horizontal resolution of a few kilometers alleviate many biases of coarse-resolution models for deep clouds and convection, but they cannot be run at climate timescales for multiple decades or longer due to high computational costs. In this talk I will present work from my group and collaborators where we use short regional and global cloud resolving simulations to develop machine learning based atmospheric parametrizations for a reduction of long-standing biases in climate models. While unconstrained neural networks often learn spurious relationships that can lead to instabilities in climate simulations, causally informed deep learning can mitigate this problem by identifying direct physical drivers of subgrid-scale processes. Trust and generalizability of the ML models can be further improved by introducing climate invariant variables, physical constraints, or equation discovery. Our approach can drive a paradigm shift in current climate and Earth system modelling towards a new data-driven, yet still physics-aware, ML-based hybrid climate model for improved understanding and projections of climate change.About Veronika Eyring
Veronika Eyring is Head of the Earth System Model Evaluation and Analysis Department at the German Aerospace Center (DLR) Institute of Atmospheric Physics and Professor of Climate Modelling at the University of Bremen. She maintains a strong collaboration with the National Center for Atmospheric Research (NCAR, USA) as Affiliate Scientist, with the DLR Causal Inference Group in Jena that she founded in 2017, and with the team of the European Research Council (ERC) Synergy Grant on "Understanding and Modelling the Earth System with Machine Learning (USMILE)". Veronika's research focuses on understanding and modelling the Earth system with machine learning to improve climate projections and technology assessments for actionable climate science.
She has extensive experience in the coordination of large international research projects, e.g. in her role as Chair of the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project (CMIP) Panel (2014-2020). She has authored many peer-reviewed journal articles and has contributed to the Intergovernmental Panel on Climate Change (IPCC) climate assessments since many years, including her role as Coordinating Lead Author for Chapter 3 “Human influence on the climate system” in the IPCC Sixth Assessment Report of Working Group I. Veronika is Fellow of the European Lab for Learning & Intelligent Systems (ELLIS), Member of the Scientific Advisory Board of Worldfund, and actively involved in WCRP activities for many years. Veronika received the Gottfried Wilhelm Leibniz Prize in 2021 for her significant contributions to improving the understanding and accuracy of climate projections through process-oriented modeling and model evaluation.
-
18.05.2022 Learning compositional, structured, and interpretable models of the world
Hedvig Kjellström
Professor in the Division of Robotics, Perception and Learning, Department of Intelligent Systems,
at KTH Royal Institute of Technology, Sweden, and Principal AI Scientist at Silo AI, Sweden. WebsiteDespite their fantastic achievements in fields such as computer vision and natural language processing, state-of-the-art deep learning approaches differ from human cognition in fundamental ways. While humans can learn new concepts from just a single or few examples, and effortlessly extrapolate new knowledge from concepts learned in other contexts, deep learning methods generally rely on large amounts of data for their learning. Moreover, while humans can make use of contextual knowledge of e.g. laws of nature and insights into how others reason, such information is generally hard to exploit in deep learning methods.
Current deep learning approaches are indeed purposeful for a wide range of applications where there are large volumes of training data and/or well defined problem settings. However, models that learn in a more human-like manner have the potential to be more adaptable to new situations, be more data efficient and also more interpretable to humans - a desirable property e.g. for intelligence augmentation applications with a human in the loop, e.g. medical decision support systems or social robots.
In this talk I will describe a number of projects in my group where we explore disentanglement, temporality, multimodality, and cause-effect representations to accomplish compositional, structured, and interpretable models of the world.
About Hedvig Kjellström
Hedvig Kjellström is a Professor in the Division of Robotics, Perception and Learning at KTH Royal Institute of Technology, Sweden. She is also a Principal AI Scientist at Silo AI, Sweden and an affiliated researcher in the Max Planck Institute for Intelligent Systems, Germany. She received an MSc in Engineering Physics and a PhD in Computer Science from KTH in 1997 and 2001, respectively, and thereafter worked at the Swedish Defence Research Agency, before returning to a faculty position at KTH. Her present research focuses on methods for enabling artificial agents to interpret human and animal behavior. These ideas are applied in the study of human aesthetic bodily expressions such as in music and dance, modeling and interpreting human communicative behavior, the understanding of animal behavior and cognition, and intelligence amplification - AI systems that collaborate with and help humans.Hedvig has received several prizes for her research, including the 2010 Koenderink Prize for fundamental contributions in computer vision. She has written around 130 papers in the fields of computer vision, machine learning, robotics, information fusion, cognitive science, speech, and human-computer interaction. She is mostly active within computer vision, where she is an Associate Editor for IEEE TPAMI and regularly serves as Area Chair for the major conferences.
-
01.12.2021 Beyond the First Portrait of a Black Hole
Katherine L. (Katie) Bouman
Assistant Professor of Computing and Mathematical Sciences, Electrical Engineering and Astronomy at
California Institute of Technology Pasadena, CA, USA. Webseite
As imaging requirements become more demanding, we must rely on increasingly sparse and/or noisy measurements that fail to paint a complete picture. Computational imaging pipelines, which replace optics with computation, have enabled image formation in situations that are impossible for conventional optical imaging. For instance, the first black hole image, published in 2019, was only made possible through the development of computational imaging pipelines that worked alongside an Earth-sized distributed telescope. However, remaining scientific questions motivate us to improve this computational telescope to see black hole phenomena still invisible to us and to meaningfully interpret the collected data. This talk will discuss how we are leveraging and building upon recent advances in machine learning in order to achieve more efficient uncertainty quantification of reconstructed images as well as to develop techniques that allow us to extract the evolving structure of our own Milky Way's black hole over the course of a night. -
06.10.2021 Employing Immersive Virtual Reality and Machine Learning to Reveal Geometric Principles
of Individual and Collective Decision-Making
Iain Couzin
Director of the Max Planck Institute of Animal Behavior, Department of Collective Behaviour
and the Chair of Biodiversity and Collective Behaviour at the University of Konstanz Webseite
I will discuss our development and application of new machine learning technologies for automated tracking and identification of unmarked individuals, computational sensory reconstruction, bio-mimetic robotics, and ‘holographic’ virtual reality (VR) for animals, and demonstrate how these quantitative methodologies provide new insights into individual and collective sensing and decision-making. For example, they allow us to reconstruct (automatically) the dynamic, time-varying sensory networks in large animal collectives, to identify at any instant in time the most socially-influential individuals within groups, and to predict cascades of social contagion (behavioural change) before they actually occur. Furthermore, such methodologies enable us to study phenomena across multiple scales of biological organisation, from neural interactions to individual and collectives decision-making. Specifically, we have recently investigated how animals choose among spatially-discrete options, a central challenge in their lives. Employing an integrated theoretical and experimental approach (using immersive VR), with both invertebrate and vertebrate models—the fruit fly, desert locust and zebrafish—we find that the brain spontaneously reduces multi-choice decisions into a series of abrupt (critical) binary decisions in space-time, a process that repeats until only one option—the one ultimately selected by the individual—remains. This mechanism facilitates highly effective decision-making, and is shown to be robust both to the number of options available, and to context, such as whether options are static (e.g. refuges) or mobile (e.g. other animals). In addition, we find evidence that the same geometric principles of decision-making occur across scales of biological organisation, from neural dynamics to animal collectives, suggesting they are fundamental features of spatiotemporal computation.
-
07.07.2021 Beyond Expectations & Better than Average: Foundations of ML Systems
Robert Williamson
Professur für "Foundations of Machine Learning Systems" an unserem
Exzellenzcluster "Maschinelles Lernen"
Machine Learning (ML) technology provides value by its integration into a system, either technological or socio-technical. This requires an external outward-looking view of ML, rather than the usual internal inward-looking view of much ML research. I will illustrate the external view by considering some foundational concerns regarding ML which motivates the research I propose to conduct in Tübingen. The starting point turns out to be a more careful analysis of expectation or averages. Somewhat astonishingly, there is a lot to be said, and a lot to be yet discovered, about this apparently elementary building block of ML systems, and about its natural generalisations. I will argue why one should consider moving beyond expectations, and explore some of the intriguing technical problems that naturally arise. I will also explain how replacing expectation by something else offers an attractive alternate approach to questions of fairness in ML, but how this choice, like other approaches, is inherently value-laden in a strong sense.
-
09.06.2021 Learning from Trees - Modeling, Simulation, and Inference of Microbial Genome Evolution
Franz Baumdicker
Leiter der Unabhängigen Forschergruppe "Mathematical and Computational Population
Genetics", eine gemeinsame Arbeitsgruppe der beiden Tübinger Exzellenzclustern "Kontrolle
von Mikroorganismen zur Bekämpfung von Infektionen" und "Maschinelles Lernen"
Population genetics aims to understand how the observed genetic diversity emerged. In population genetics, many theoretical results have been developed in times where not much genomic and genetic data were available. These theory-driven results are still essential for our research, but data-driven discoveries have meanwhile dramatically changed our view of evolution and ecology, in particular for bacteria.
The vast amount of newly sequenced genetic data leads to a multitude of interesting applications in the emerging field of machine learning in population genetics. The main challenge is that sequence data are not independent of one another, but rather are linked by their phylogenetic relationship, often represented by a tree sequence. Thus independent training data generation relies heavily on simulation procedures. I will present some of our approaches to develop, analyze, and apply supervised machine learning tools that can use this phylogenetic relationship to improve our understanding of bacterial genome evolution.
-
14.04.2021 Machine learning for medical image analysis and why clinicians are not using it
Christian Baumgartner
Leiter der Unabhängigen Forschergruppe "Maschinelles Lernen in der medizinischen Bildanalyse"
an unserem Exzellenzcluster "Maschinelles Lernen".
-
03.03.2021 Challenges in Renewable Energy Systems: A (mostly) Probabilistic Perspective
Nicole Ludwig
Leiterin der Early Career Forschergruppe "Maschinelles Lernen in Nachhaltigen
Energiesystemen" an unserem Exzellenzcluster "Maschinelles Lernen"
-
03.02.2021 Scalable Bayesian Inference: New Tools for New Challenges - Robert Bamler
-ONLINE-
Professur für "Data Science und Maschinelles Lernen" an unserem
Exzellenzcluster "Maschinelles Lernen"
Abstract
-
13.01.2021 Generalizing from sparse data and learning from other people - Charley Wu
-ONLINE-
Leiter der Unabhängigen Forschergruppe "Human and Machine Cognition" an unserem
Exzellenzcluster "Maschinelles Lernen"
Abstract
-
02.12.2020 Morals and Methodology - Konstantin Genin
-ONLINE-
Leiter der Unabhängigen Forschergruppe "Epistemologie und Ethik des maschinellen Lernens" an
unserem Exzellenzcluster "Maschinelles Lernen"
-
14.10.2020 ABGESAGT
-
01.04.2020 FÄLLT CORONA-BEDINGT AUS
How to be fair - The concept of fairness from a Computational Social Choice perspective
Britta Dorn (Host: Fabian Sinz)
Mathematische Strukturen in der Informatik, Fachbereich Informatik, Universität Tübingen
Webseite
Abstract
-
06.05.2020 FÄLLT CORONA-BEDINGT AUS
Bob Williamson (Host: Ulrike von Luxburg)
Distinguished Researcher in Data61 and Professor at Research School of Computer Science,
Australian National University, Canberra -
04.03.2020 Ian Couzin -- FÄLLT AUS
-
05.02.2020 Learning and artificial intelligence in the quantum domain
Hans Briegel (Host: Eric Raidl)
Institut für Theoretische Physik , Universität Innsbruck & Fachbereich Philosophie,
Universität Konstanz Webseite
Abstract -
08.01.2020 Mining observations and climate models for detecting and attributing anthropogenic
climate change in the world’s water cycle
Lukas Gudmundsson (Host: Fabian Sinz)
Institut für Atmosphäre und Klima, ETH Zürich, Webseite
Abstract
-
04.12.2019 Explaining and Representing Novel Concepts With Minimal Supervision
Zeynep Akata (Host: Fabian Sinz)
Exzellenzcluster Maschinelles Lernen, Erklärbares Machinelles Lernen, Universität Tübingen
Webseite
-
21.11.2019 Biomarker Discovery in Clinical Time Series
Karsten Borgwardt (Host: Fabian Sinz)
Department für Biosystems Science and Engineering, ETH Zuerich. Webseite
Abstract
-
06.11.2019 Gaussian Process emulation of tsunami and climate models
Serge Guillas (Host: Motonobo Kanagawa )
University College London / The Alan Turing Institute. Webseite
Abstract
-
03.07.2019 Machine Learning, Neuroscience, and Spiking Neural Networks
Robert Legenstein (Host: Harald Baayen)
Institut für Grundlagen der Informationsverarbeitung, TU Graz, Österreich
Webpage
Abstract
2024
Philosophy of Science Meets Machine Learning (PhilML'2024), 11. - 13. September 2024
Philosophy of Science Meets Machine Learning (PhilML'2024)
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
11. - 13. September 2024
Veranstaltungsort: AI Research Building, Hörsaal (Erdgeschoss), Maria-von-Linden-Straße 6, Tübingen
Veranstalter: Markus Ahlers, Raysa Benatti, Heather Champion, Timo Freiesleben, Konstantin Genin, Thomas Grote, Sebastian Zezulka
Registrierung: Online Registrieung hier.
Bitte beachten: Es wird eine geringe Anmeldegebühr erhoben.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Machine learning methods have become a mainstay in the toolkit of various scientific disciplines. For the fourth time, the PhilML'24 conference offers the opportunity to explore how recent developments in machine learning change the process of scientific research. The main conference will take place from September 11-13 and will be preceded by a one-day graduate workshop on September 10. We invite submissions of extended abstracts both for the conference and the graduate workshop.
The PhilML conference and workshop are organized jointly by the Ethics and Philosophy Lab and the Epistemology and Ethics of Machine Learning group at the Tübingen Cluster of Excellence "Machine Learning".
The workshop’s central topics include
- Reflections on key topics such as learning, reliability, causal inference, robustness, explanation, trust, transparency, and understanding.
- Implications of machine learning for the sciences, e.g. physics, cognitive science, biology, psychology, social science, or medicine.
- Implications of machine learning for scientific methodology, e.g. model-building and model selection, design of experiments, conceptual engineering.
- Issues arising at the intersection of machine learning and public policy, e.g. risk assessment, resource allocation, climate and energy policy, and the provision of public services.
- Novel considerations raised by foundation models e.g., authorship, latent representation, or nativism/empiricism.
| Programm |
Mittwoch, 11. September
08:45 - 09:00 | Arrival & Registration |
09:00 - 09:15 | Welcome |
09:15 - 10:00 | Standards for belief representation in LLMs Daniel Herrmann (University of Groningen) |
10:15 - 11:00 | Dissecting link uncertainty Sara Pernille Jensen (University of Oslo) |
11:15 - 12:00 | Do large language models have a duty to tell the truth? Brent Mittelstadt (University of Oxford) |
12:00 - 13:00 | Lunch |
13:00 - 13:45 | Causal Inference from competing treatments Ana-Andreea Stoica (MPI Tübingen) |
14:00 - 14:45 | Epistemic Virtues in Unsupervised Learning Maximilian Noichl (University of Vienna) |
14:45 - 15:30 | Coffe Break |
15:30 - 16:15 | Scrutinizing the foundations: could large language models be solipsistic Andreea Eșanu (New Europe College) |
16:30 - 17:15 | Monocultures of knowing in science & society Molly Crockett (Princeton University) |
19:00 | Conference Dinner at Freistil (covered) |
Donnerstag, 12. September
09:00 - 09:15 | Morning Coffee |
09:15 - 10:00 | Measuring for moral performance in foundation models Julia Haas (DeepMind) |
10:15 - 11:00 | Understanding without understanding Frauke Stoll & Annika Schuster (TU Dortmund) |
11:15 - 12:00 | Conceptual Engagement in Machine Learning: Operationalism in Social Science Applications Donal Khosrowi (Leibniz University Hannover) |
12:15 - 13:00 | Lunch |
13:00 - 13:45 | What is overfitting? Nico Formanek (University Stuttgart) |
14:00 - 14:45 | Transparency of what? Hanseul Lee & Hyundeuk Cheon (Seoul National University) |
14:45 - 15:30 | Coffee Break |
15:30 - 16:15 | Thick descriptions in data-driven psychiatry Hanna van Loo & Jan Wilhelm Romeijn (University of Groningen) |
16:30 - 17:15 | Evaluating the quality of explanations beyond fidelity Stefan Buijsman (TU Delft) |
19:00 | Dinner at El Pecado (self-pay) |
Freitag, 13. September
09:00 - 09:15 | Morning Coffee |
09:15 - 10:00 | Precarious accurate predictions Gabrielle Johnson (Claremont McKenna College) |
10:15 - 11:00 | Values in machine learning: What follows from underdetermination? Tom Sterkenburg (LMU Munich) |
11:15 - 12:00 | Causal agnosticism about race Alexander Tolbert (Emory University) |
12:15 - 13:00 | Lunch |
13:00 - 13:45 | Does personalized allocation make our experimental designs more fair? Bertille Picard (Aix-Marseille University) |
14:00 - 14:45 | Alignment as a principal-agent problem Aydin Mohseni (Carnegie Mellon University) |
14:45 - 15:30 | Coffee Break |
15:30 - 16:15 | All causal DAGs are wrong but some are useful Dominik Janzing (Amazon Research) |
16:15 - 16:45 | Closing remarks, followed by drinks |
Weitere Informationen auf der Veranstaltungs-Webseite.
6. Jahres-Konferenz "Machine Learning in Science", 9. + 10. Juli 2024
6. Exzellenzcluster Konferenz
"Machine Learning in Science" 2024
-------------------------------------------------------------------------------------------------------------------------------------------------------
► Dienstag, 9. Juli
► Mittwoch, 10. Juli
------------------------------------------------------------------------------------------------------------------------------------------------------
Tagungsort: Neckawa (Freistil), Wöhrdstraße 25, 72072 Tübingen
Bitte beachten Sie: Die Registrierung ist geschlossen, es ist keine Anmeldung mehr möglich.
------------------------------------------------------------------------------------------------------------------------------------------------------
PROGRAMM
Alle Zeiten sind in MESZ, Mitteleuropäische Sommerzeit, angegeben.
Dienstag, 9. Juli 2024
09:00 | Ulrike von Luxburg, Philipp Berens ► Eröffnung |
09:15 | Tobias Hauser ► Using Computational Models to Understand Neural Mechanisms Underlying Mental Disorders |
10:00 | Kerstin Ritter ► Machine Learning in Clinical Brain Research |
10:45 | Kaffeepause |
11:15 | Aseem Behl ► Machine Learning Applications in Marketing Science |
11:45 | Çağatay Yildiz ► Lifelong Learning and Language Models |
12:15 | Thomas Küstner ► Machine Learning in Clinical Workflows of Medical Imaging |
13:00 | Mittagspause |
14:15 | Jakob Macke ► Mechanistic Models of Neural Computations |
14:45 | Alina Wernick ► AI, Law and Society - in Search of Blind Spots of AI Regulation |
15:45 | Gruppenfoto |
16:00 | Poster Session - Cluster Projekte & AIMS Fellows Übersicht Poster Session [PDF] ► Kaffee |
19:00 | Konferenzdinner |
***************************************************************************************************************************************
Mittwoch, 10. Juli 2024
09:00 | Moritz Hardt ► The Emerging Science of Benchmarks |
09:45 | Katharina Eggensperger ► Automated Machine Learning for Science |
10:15 | Markus Ahlers ►Ethics and Evidence |
10:45 | Kaffeepause |
11:15 | Keynote: Stefanie Jegelka (Department of Computer Science, Technische Universität München) ► Strengthening Graph Neural Networks, with Applications to Mass Spectrometry |
12:15 | Stephan Eckstein ► Quantifying Differences Between Probabilistic Causal Models |
13:00 | Ulrike von Luxburg, Philipp Berens ► Closing Remarks |
13:15 | Mittagspause |
14:15 - 15:30 | Generalversammlung (nur Cluster-Mitglieder und deren AGs) |
Healthy Minds in Academia – April bis Juli 2024
Healthy Minds in Academia
Die Vortrags- und Workshop-Reihe Healthy Minds bietet interaktive Sitzungen und Vorträge, in denen Tools und Wissen vorgestellt werden, um gemeinsam zu lernen, wie wir uns besser um unsere psychische Gesundheit in der akademischen Welt und darüber hinaus kümmern können. Die Veranstaltung wird in den kommenden Monaten regelmäßig stattfinden und wird vom Exzellenzcluster und dem AI Center finanziert.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
How can I boost my mental health? A resource oriented approach.
Mittwoch, 27. März 2024 um 13:30 Uhr
Veranstaltungsort: Zoom
Sprecherin: Suzanne Jones
This workshop offers you the chance to reflect on your inner and outer resources. You will find suggestions on how to re-load your personal battery and strengthen your mental health through positive emotions and an optimistic focus.
Suzanne Jones is a psychologist and systemic therapist and a counsellor for health promotion and stress prevention: http://www.suzanne-jones.de
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Stress management skills - Increasing mental health and well-being.
Mittwoch, 24. April 2024 um 12.30 Uhr
Veranstaltungsort: AI Research Building, Lecture Hall, Maria-von-Linden-Straße 6, Tübingen und Zoom
Sprecherin: Fanny Kählke
The workshop provides an overview of strategies to promote positive mental health under stressful work conditions. You will learn about different (instrumental, regenerative, and mental) ways to cope with stress and reflect on your own coping strategies and future needs.
Mehr Informationen hier.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Study psychologically fit.
Mittwoch, 29. Mai 2024 um 13.30 Uhr
Veranstaltungsort: Zoom
Veranstalter: Beate Schulze and Hendrik Hutthoff
In the two hours of the workshop, students can expect an authentic, intensive forum in which psychological crises can be discussed. In the last half hour, students can ask any questions they have about the topic.
Mehr Informationen hier.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Decolonizing Academia - How (not) to Fail a Decolonial Lecture Series
Mittwoch, 26. Juni 2024 um 13.30 Uhr
Veranstaltungsort: AI Research Building, Lecture Hall, Maria-von-Linden-Straße 6, Tübingen und Zoom
Veranstalter: Sharon Nathan
Mehr Informationen hier.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Workshop: Intercultural and diversity competences and inclusion in diverse, interdisciplinary research groups
Mittwoch, 24. Juli 2024 um 13.30 Uhr
Veranstaltungsort: AI Research Building, Lecture Hall, Maria-von-Linden-Straße 6, Tübingen und Zoom
Veranstalter: Imke Lode
Imke Lode is a certified trainer for intercultural competences, see https://lindengruen.de/dr-imke-lode/.
Mehr Informationen hier.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Symposium "Machine Learning in Science", 13. Mai 2024
Symposium "Machine Learning in Science"
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Montag, 13. Mai 2024 von 12.30 - 17.30 Uhr
Veranstaltungsort: AI Research Building, Maria von Linden Str. 6, 72076 Tübingen (Lecture Hall, Ground Floor)
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
12:30 | Covering Multiple Scales: Graph Machine Learning for Science Prof. Dr. Stephan Günnemann (Technical University of Munich, Germany) |
13:30 | Using DNA Language Models to Understand Different Layers of Code in Genomes |
14:30 | Coffee Break |
15:00 | On How to Incorporate Spacetime Symmetries into Your Neural Networks |
16:00 | Towards an Artificial Muse for New Ideas in Science |
17:00 | Coffee Break |
17:30 | Reinforcement Learning Theory towards Robust Discovery in Science |
Healthy Minds in Academia – Kick-off Veranstaltung, 26. März 2024
Healthy Minds in Academia
Kick-off Veranstaltung
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Dienstag, 26. März 2024 um 15 Uhr
Veranstaltungsort: AI Research Building, Lecture Hall, Maria-von-Linden-Straße 6, Tübingen
Veranstalter: Nina Effenberger, Janne Lappalainen
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Die Vortrags- und Workshop-Reihe Healthy Minds bietet interaktive Sitzungen und Vorträge, in denen Tools und Wissen vorgestellt werden, um gemeinsam zu lernen, wie wir uns besser um unsere psychische Gesundheit in der akademischen Welt und darüber hinaus kümmern können. Die Veranstaltung wird in den kommenden Monaten regelmäßig stattfinden und wird vom Exzellenzcluster und dem AI Center finanziert.
In der Kick-Off-Veranstaltung werden zwei Promovierende ihre Umfrage zur psychischen Gesundheit von Promotionsstudierenden an der Universität Tübingen vorstellen. Darüber hinaus stellen sich die Ansprechpersonen der psychologischen Betreuung des Tübingen AI Center und der psychosozialen Beratung der Universität vor. Wir stellen die Ziele unserer Gesprächsreihe vor und schließen mit einem Ausblick auf die nächsten Veranstaltungen, bevor wir zu Snacks und Getränken einladen.
Die Veranstaltung richtet sich an Mitarbeiterinnen und Mitarbeiter der Universität Tübingen und des MPIs - darunter PIs, Postdocs, Promovierende und Mitarbeiterinnen und Mitarbeiter der Verwaltung.
Women in Machine Learning Workshop, 8. März 2024
Machine Learning from Theory to Application
Workshop for International Women's Day
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Freitag, 8. März 2024 | 9 - 13.30 Uhr
Veranstaltungsort: AI Research Building, Lecture Hall, Maria-von-Linden-Straße 6, Tübingen
Organisatorinnen: Tübingen Women in ML (TWiML)
Registrierung: Wir bitten alle Teilnehmer um eine Anmeldung.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Programm
09:00 | Arrival and Welcome |
09:00 - 09:05 | Introduction Claire Vernade, Cluster of Excellence |
09:05 - 09:45 | Caterina De Bacco, MPI-IS Probabilistic generative models for hypergraphs: structure and inference |
09:45 - 10:15 | Albane Ruaud, Cluster of Excellence Modelling Bacterial Communities with Graph Neural Networks |
10:15 - 10:50 | Coffee Break |
10:50 - 11:30 | Ulrike von Luxburg, Cluster of Excellence Theoretical guarantees for explainable machine learning |
11:30 - 12:00 | Ana-Andreea Stoica, MPI-IS Algorithm design for social good: fair design and strategic interactions |
12:00 - 13:00 | Lunch |
13:00 - 13:30 | Panel discussion: Ask me anything! |
Women in Machine Learning, 2. Workshop, 11. Oktober 2024
Bridging Industry and Academia
2. Workshop der Tübingen Women in Machine Learning
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Freitag, 11. Oktober 2024 | 9:00 -- 16:30 Uhr
Veranstaltungsort: Max-Planck-Insitut für Intelligente Systeme, Tübingen, Hörsaal EG
Organisatorinnen: Tübingen Women in ML (TWiML)
Registrierung: Wir bitten alle Teilnehmer um eine Anmeldung bis zum 1. Oktober.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Programm
09:00 - 11:30 | Invited talks: Betty Mohler, Amazon Science Tanja Tauber, ZEISS Corporate Research & Technology Georgia Chalvatzaki, TU Darmstadt Auguste Schultz, Universität Tübingen Almut Sophia Koepke, Universität Tübingen (TBC) |
11:30 - 12:30 | Science speed dating |
12:30 - 13:30 | MITTAGESSEN |
13:30 - 15:30 | Poster Session |
15:30 - 16:30 | Panel discussion |
16:30 | APERITIF |
Die Veranstaltung wird unterstützt von WiML, Cluster of Excellence "Maschinelles Lernen" und IMPRS-IS.
Wir vergeben einen NeurIPS Travel Award für das beste Poster.
Alle Teilnehmer müssen die WiML CoC beachten.
2023
Workshop on Bandits and Statistical Tests, 23. - 24. November 2023
Workshop on Bandits and Statistical Tests
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Donnerstag, 23. November & Freitag, 24. November 2023
Veranstaltungsort: Neues Palais, Am Neuen Palais 10, 14469 Potsdam
Organisatoren: Claire Vernade (Cluster Machine Learning, Tübingen) und Alexandra Carpentie (Maths Department, Universität Potsdam)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
We are pleased to invite you to our upcoming Workshop on Statistical Tests in Machine Learning, with a specific emphasis on Online Learning and Bandit Algorithms. The workshop aims to provide participants with a comprehensive understanding of statistical testing methodologies in the context of machine learning, particularly in the dynamic and ever-changing landscape of online and bandit settings.
This workshop is intended for researchers, practitioners, and students interested in the intersection of machine learning, statistics, and algorithm design.
Registration is closed now.
Tutorials:
-
Bandit algorithms and testing: Prof. Aurelien Garivier, ENS Lyon, France
-
Minimax tests: Dr. Nicolas Verzelen, INRAE, Montpellier, France
Keynote speakers:
-
Prof. Thomas Berrett, University of Warwick
-
Prof. Rui Castro, TU Eindhoven
-
Prof. Cristina Butucea, CNRS, France
-
Ariane Marandon, Sorbonne University, France
-
Prof. Peter Grünwald, CWI and Leiden University, Amsterdam
-
Dr. Remy Degenne, INRIA, Lille, France
-
Dr. Emilie Kaufmann, CNRS, INRIA, Lille, France
-
Prof. David Preinerstorfer, University of St Gallen, Switzerland
For more Information, please check here.
Kunstexponat IN-ML-OUT, 27. Oktober 2023
Präsentation unseres Kunstexponats
IN-ML-OUT – Windenergie und Maschinelles Lernen
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Freitag 27. Oktober 2023 um 17:00 Uhr
Veranstaltungsort: swt-KulturWerk (Werkstraße 4, 72074 Tübingen)
Eintritt kostenfrei
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Mit maschinellem Lernen kann Windenergie in Zeiten des Klimawandels bestmöglich nutzbar gemacht werden. Wie das geht, verraten Nina Effenberger und Nicole Ludwig, die im Exzellenzcluster zu nachhaltigen Energien forschen, am 27. Oktober 2023 um 17 Uhr im Tübinger swt-KulturWerk: Mithilfe des interaktiven Kunstexponats „IN-ML-OUT“ wollen sie den Dialog zwischen Forschung, Gesellschaft und Politik vorantreiben und dabei das Potential von maschinellem Lernen aufzeigen. Das Exponat macht erfahrbar, dass unser Handeln das Klima beeinflusst, welche Lösungsansätze Forschende mit Hilfe von Maschinellem Lernen unterstützen können und welche Initiativen und Projekte zu erneuerbaren Energien es bereits gibt.
Im Anschluss an die Präsentation des Exponats gibt es eine Diskussion zur Frage "Wie kann KI die Energiewende unterstützen?". Nicole Ludwig wird daran ebenso teilnehmen wie Peter Seimer (Sprecher für Digitalisierung, Grüne im Landtag von Baden-Württemberg) und Philipp Staudt (Digitalisierte Energiesysteme, Universität Oldenburg). Moderiert wird die Diskussion von Olaf Kramer (Forschungszentrum für Wissenschaftskommunikation, Universität Tübingen).
Mehr Informationen
AITE Abschlusskonferenz, 24. - 26. Oktober 2023
"Artificial Intelligence, Trustworthiness and Explainability"
Abschlusskonferenz
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Dienstag 24. bis Donnerstag 26. Oktober 2023
Veranstaltungsort: Max-Planck-Institut für Intelligente Systeme (Hörsaal, Ergeschoss), Max-Planck-Ring 4, 72076 Tübingen
Konferenz-Organisatoren: Saeedeh Babaii, Sara Blanco, Oliver Buchholz, Eric Raidl
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Das Projekt „Artificial Intelligence, Trustworthiness and Explainability (AITE)“, gefördert von der Baden-Württemberg Stiftung, ist ein Gemeinschaftsprojekt des "Ethics and Philosophy Labs" unseres Clusters und dem "Internationalen Zentrum für Ethik in den Wissenschaften" (IZEW) der Universität Tübingen.
Gegenwärtig ist nicht klar, warum maschinelle Lernsysteme (ML) so entscheiden oder antworten, wie sie es tun. Wenn ein Bildklassifikator sagt: "Das ist ein Zug", erkennt er dann den Zug oder nur die Schienen oder etwas ganz anderes? Wie können wir sicher sein, dass er aus den richtigen Gründen so entscheidet? Dieses Problem steht im Mittelpunkt von mindestens zwei Debatten: Können wir künstlichen intelligenten Systemen (KI) vertrauen? Und wenn ja, auf welcher Grundlage? Würde eine Erklärung der Entscheidung zu unserem Verständnis beitragen und letztlich das Vertrauen fördern? Und wenn ja, welche Art von Erklärung? Dies sind die zentralen Fragen, mit denen sich das AITE-Projekt beschäftigt.
Auf der AITE-Abschlusskonferenz stellen die Wissenschaftlerinnen und Wissenschaftler des AITE-Projekts ihre Arbeit vor, tauschen sich mit Experten auf diesem Gebiet und anderen interessierten Forschenden aus und diskutieren in einer Podiumsdiskussion mit der Öffentlichkeit.
Mehr Informationen auf der Konferenz-Webseite
Podiumsdiskussion „Wer kontrolliert KI?“, 20. Oktober 2023
Podiumsdiskussion
„Wer kontrolliert KI?"
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Freitag 20. Oktober 2023 um 20:00 Uhr
Veranstaltungsort: Uhlandsaal der Museumsgesellschaft, Wilhelmstr. 3, Tübingen
Eintritt kostenfrei
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Am Freitag, 20. Oktober, um 20 Uhr, veranstalten das Stadtmuseum Tübingen und unsere Universität eine Podiumsdiskussion zur Frage "Wer reguliert KI?".
Die vier PodiumsteilnehmerInnen sind alle Mitglieder unseres Clusters: Carsten Eickhoff, Michèle Finck, Moritz Hardt und Ulrike von Luxburg. Moderiert wird die Podiukmsdiskussion vom SWR.
Philosophy of Science Meets Machine Learning (PhilML2023), 12. - 14. September 2023
Philosophy of Science Meets Machine Learning (PhilML2023)
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
12. - 14. September 2023
Veranstaltungsort: AI Research Building, Lecture Hall (Ground Floor), Maria-von-Linden-Straße 6, Tübingen
Veranstalter: Timo Freiesleben, Konstantin Genin, Thomas Grote, Sebastian Zezulka
Registrierung: Wir bitten alle Teilnehmer und Referenten um eine Anmeldung bis zum 31.07.2023.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Machine learning methods have become a mainstay in the tool-kit of various scientific disciplines. PhilML’23 offers an opportunity to explore whether and how exactly recent developments in the field of machine learning potentially transform the process of scientific inquiry. For this purpose, it sets out to analyse the field of machine learning through the lens of philosophy of science, including cognate fields such as epistemology and ethics. In addition, we are also interested in contributions from machine learning researchers/scientists, addressing foundational issues of their research. Similar to the previous workshops, we try to bring together philosophers from different backgrounds (from formal epistemology to the study of the social dimensions of science) and machine learning researchers.
The workshop`s central topics are:
(i) A critical reflection on key-concepts, such as ‘learning’, ‘causal inference’, ‘robustness’, ‘explanation’ or ‘understanding’.
(ii) The implications of machine learning for the special sciences, e.g. cognitive science, biology, social science or medicine.
(iii) The ethics of machine learning-driven science, e.g. the moral responsibilities of researchers, ethical issues in model evaluation, or issues at the intersection of science and policy.
(iv) Social aspects of machine learning-driven science, e.g. the impact of funding structures on research.
| Programm |
Dienstag, 12. September
09:15 - 09:30 | Arrival & Registration |
09:45 - 10:00 | Welcome |
10:00 - 10:45 | Deep Learning Robustness for Scientific Discovery: The Case of Anomaly Detection Florian Boge (TU Dortmund) |
11:00 - 11:45 | Generalizing Philosophy of Science to Unseen Instances Mel Andrews (CMU/Cincinnati) |
11:45 - 13:00 | Lunch |
13:00 - 13:45 | Recommender Systems and Inferred Preferences: Accurate or Rational? Silvia Milano (Uni Exeter) |
14:00 - 14:45 | Trustworthiness and Knowledge from Machine Learning Jonathan Vandenburg (Stanford) |
14:45 - 15:30 | Coffee Break |
15:30 - 16:15 | Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments Michael Knaus (Uni Tübingen) |
16:30 - 17:15 | Prediction, Explanation, and AI in Scientific Practice Marta Halina (Uni Cambridge) |
19:00 | Dinner |
Mittwoch, 13. September
09:00 - 09:15 | Welcome |
09:15 - 10:00 | Manipulative Explanations in AI Atoosa Kasirzadeh (Uni Edinburgh) |
10:15 - 11:00 | The Epistemology of Statistical Learning Tom Sterkenburg (LMU) |
11:15 - 12:00 | Conceptual Engagement in Machine Learning: Operationalism in Social Science Applications Alex Mussgnug (Uni Edinburgh) |
12:15 - 13:00 | Lunch |
13:00 - 13:45 | What Counts as Good Data? Kino Zhao (Simon Fraser University) |
14:00 - 14:45 | The Language of Mathematics: Epistemological Consequences of the Application of Neural Models to Mathematical Knowledge Juan Luis Gastaldi (ETH) |
14:45 - 15:30 | Coffee Break |
15:30 - 16:15 | Lifelong Statistical Testing Claire Vernade (Uni Tübingen) |
16:30 - 17:15 | Using Machine Learning to Increase Equity in Healthcare and Public Health Emma Pierson (Cornell) |
19:00 | Dinner |
Donnerstag, 14. September
09:00 - 09:15 | Welcome |
09:15 - 10:00 | Why do large language models align with human brains? Mariya Toneva (MPI Saarbrücken) |
10:15 - 11:00 | Why is Homogenization Bad? Katie Creel (Northeastern) |
11:15 - 12:00 | The Function of Replicability in Machine Learning Tianqui Kou (Penn State) |
12:15 - 13:00 | Lunch |
13:00 - 13:45 | Interpersonal Comparisons of Utility: A Conventional Take Daniel Alexander Herrmann (UC Irvine) |
14:00 - 14:45 | Representational Similarity Analysis Underdetermines Similarity of Object Recognition Mechanisms in Deep Neural Networks and the Brain Bojana Grujičić (MPSCog, HU, UCL) |
15:00 - 15:45 | Learning an Index of Economic Complexity Frederik Eberhardt (Caltech) |
15:45 - 16:00 | Closing remarks, followed by drinks |
Weitere Informationen auf der Veranstaltungs-Webseite.
5. Jahres-Konferenz "Machine Learning in Science", 11. + 12. Juli 2023
5. Exzellenzcluster Konferenz
"Machine Learning in Science" 2023
-------------------------------------------------------------------------------------------------------------------------------------------------------
► Dienstag, 11. Juli | 09:00 - 19:00 |
► Mittwoch, 12. Juli | 09:00 - 17:00 |
------------------------------------------------------------------------------------------------------------------------------------------------------
Tagungsort: Freistil, Wöhrdstraße 25, 72072 Tübingen
Für alle, die nicht persönlich an der Konferenz teilnehmen können, die Vortäge werden übertragen auf
Zoom (Kenncode: 145437)
Bitte beachten: 1. Anmeldung nur mit vollem Namen. 2. Es wird nicht möglich sein, über Zoom Fragen zu stellen.
------------------------------------------------------------------------------------------------------------------------------------------------------
PROGRAMM
Alle Zeiten sind in MESZ, Mitteleuropäische Sommerzeit, angegeben.
Dienstag, 11. Juli 2023
09:00 | Ulrike von Luxburg, Philipp Berens ► Eröffnung |
09:15 | Tobias Kaufmann ► Computational psychiatry: what can we learn from large-scale brain imaging data? |
10:00 | Michael Knaus ► Machine learning to predict effects in economics and beyond |
10:45 | Kaffeepause |
11:15 | Claire Vernade ► Lifelong Statistical Testing |
12:00 | Christian Igel ► KEYNOTE: Machine Learning for Large-Scale Ecosystem Monitoring |
13:00 | Mittagspause |
14:00 | Poster Session und Kaffee - Cluster Einzelprojekte, AIMS Fellows und Arbeitsgruppen |
16:00 | Wieland Brendel ► Machine Vision for Flexible and Robust Autonomous Robots |
16:45 | Daniela Doneva ► ML as a Tool in Gravitational Wave Physics |
17:30 | Open Space ► 18:00 Guided Tour AI Makerspace |
19:00 | Konferenzdinner |
***************************************************************************************************************************************
Mittwoch, 12. Juli 2023
09:00 | Georg Martius ► Model-based Reinforcement Learning |
09:45 | Christoph Bareither, Libuše Hannah Vepřek ► Human-ML Assemblages in the Sciences: Approaches from Digital Anthropology & STS |
10:30 | Nicole Ludwig ► Machine Learning for Sustainability - Bridging the Gap between Theory and Application |
11:00 | Kaffeepause |
11:30 | Carsten Eickhoff ► Health Natural Language Processing |
12:15 | Albane Ruaud ► Modeling bacterial communities' dynamics with GNN |
13:00 | Mittagspause |
14:00 | Poster Session und Kaffee - Cluster Verbundprojekte |
16:45 | Ulrike von Luxburg, Philipp Berens ► Closing Remarks |
Vortrag Dale Durran - 28. Juni 2023
| Weather forecasting and climate simulation:
What are the challenges for AI and numerical weather prediction |
Dale Durran
Professor of Atmospheric Sciences
University of Washington, Seattle, USA
WANN: Mittwoch, 28.06.2023 um 14:00, mit anschliessendem Get Together
WO: Hörsaal, AI Research Building, Maria von Linden-Str. 6 (Erdgeschoss), 72076 Tübingen
HOSTS: Martin Butz und Matthias Karlbauer
Vortrag Srinivas Turaga - 21. Juni 2023
| How to simulate a connectome? |
Srinivas Turaga
WANN: Dienstag, 21. Juni, 15 - 16 Uhr
WO: Hörsaal, AI Research Building, Maria von Linden-Str. 6, 72076 Tübingen
HOST: Jakob Macke
ABSTRACT
We can now measure the connectivity of every neuron in a neural circuit, but we are still blind to other biological details, including the dynamical characteristics of each neuron. The degree to which connectivity measurements alone can inform understanding of neural computation is an open question. We show that with only measurements of the connectivity of a biological neural network, we can predict the neural activity underlying neural computation. Our mechanistic model makes detailed experimentally testable predictions for each neuron in the connectome. We found that model predictions agreed with experimental measurements of neural activity across 24 studies. Our work demonstrates a strategy for generating detailed hypotheses about the mechanisms of neural circuit function from connectivity measurements.
Paper: https://www.biorxiv.org/content/10.1101/2023.03.11.532232
Vortrag Laura Filion - 14. Juni 2023
| Machine learning in soft matter |
Laura Filion
Physics Department, Soft Condensed Matter Group, Universiteit Utrecht
WANN: Mittwoch, 14.06.2023 um 14:15
WO: N3, Hörsaalzentrum Morgenstelle, Universität Tübingen
HOST: Martin Oettel
Abstract
Developments in machine learning (ML) have opened the door to fully new methods for studying phase transitions due to their ability to extremely efficiently identify complex patterns in systems of many particles. Applications of machine learning techniques vary from the use of developing new ML-based methods for detecting complex crystal structures, to locating phase transitions, to speeding up simulations. The rapid emergence of multiple applications of machine learning to statistical mechanics and materials science demonstrates that these techniques are becoming an important tool for studying soft matter systems. In this talk, I will briefly present an overview of the work my group is doing on using machine learning to study soft matter systems with a focus on how machine learning might help us to understand the structure – or lack thereof – in glasses.
Führungen über den Max-Planck-Campus - 14. Juni 2023
Führungen über den Max-Planck-Campus
-------------------------------------------------------------------------------------------------------------------------------------------------------
14. Juni 2023, 16:30 - 18:00 Uhr
Veranstaltungsort: Max-Planck-Campus, Tübingen
------------------------------------------------------------------------------------------------------------------------------------------------------
Welche Institutionen und Einrichtungen gehören zum Cyber Valley Ökosystem? An was wird dort geforscht? Die Tour ist Teil des Begleitprogramms der Ausstellung „Cyber and the City – Künstliche Intelligenz bewegt Tübingen“.
In den letzten Jahren entstanden viele neue Gebäude bei der Sternwarte in der Tübinger Nordstadt sowie auf dem Max-Planck-Campus. Welche Institutionen gehören zum Cyber Valley Ökosystem? Cyber Valley Eventmanagerin Tabea Brietzke erklärt in dieser kostenfreien Führung die Zusammenhänge und zeigt, wo an künstlicher Intelligenz (KI) geforscht wird. Die Führung macht Halt an verschiedenen Gebäuden, unter anderem dem Tübinger Max-Planck-Institut für intelligente Systeme. Sie endet am Tübingen AI Center, wo ein KI-Kunstprojekt zu erneuerbaren Energien aus dem Exzellenzcluster „Maschinelles Lernen. Neue Perspektiven für die Wissenschaft“ vorgestellt und ein Einblick in die Arbeit des Tübingen AI Centers gegeben wird.
Das Angebot ist Teil des Begleitprogramms der KI-Ausstellung „Cyber and the City – Künstliche Intelligenz bewegt Tübingen“ im Tübinger Stadtmuseum. Die Führung ist kostenfrei und richtet sich an alle Interessierten, Vorwissen zu KI ist nicht notwendig. Die Tour eignet sich auch für Rollstühle und Kinderwägen. Die Plätze sind auf 15 Personen begrenzt. Eine Anmeldung ist notwendig; der Anmeldelink wird zeitnah auf dieser Seite eingestellt. Die Details zum Treffpunkt bekommen Sie nach der Anmeldung per Mail zugeschickt.
Zur Anmeldung geht es hier.
Vortrag Markus Ahlers - 12. Juni 2023
| The Ethical Significance of Pattern |
Markus Ahlers
Institute for Philosophy, Gottfried Wilhelm Leibniz University Hannover, Germany
WANN: Montag, 12.06.2023 um 11:00
WO: Seminarraum Erdgeschoss, Raum 00-10/A12, AI Research Building,
Maria von Linden-Str. 6, 72076 Tübingen
Eröffnungsevent des Kunstexponats „IN ML OUT“, 15. Mai 2023
Kunstexponat „IN ML OUT“
______________________________________________________________________________________________________________________________________________________________
► Eröffnung am 15. Mai 2023, 18:00
Veranstaltungsort: Staatliche Akademie der Bildenden Künste Stuttgart, Am Weißenhof 1, Neubau 2, 70191 Stuttgart
______________________________________________________________________________________________________________________________________________________________
Maschinelles Lernen birgt ein großes Potential für die zukünftige Versorgung mit erneuerbaren Energien. Um in einen aktiven Dialog mit Bürger*innen und Entscheidungsträger*innen zu treten, ist das Ausstellungsstück „IN-ML-OUT“ entstanden. Dieses ist aus einer Kooperation unserer Forscherinnen Nicole Ludwig und Nina Effenberger mit Designstudierenden der "Staatlichen Akademie der Bildenden Künste" in Stuttgart und dem "Zentrum für rhetorische Wissenschaftskommunikationsforschung zur Künstlichen Intelligenz" (RHET AI) an der Universität Tübingen hervorgegangen.
"Explainability in Machine Learning", 28. - 29. März 2023
Workshop "Explainability in Machine Learning"
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Dienstag 28. März und Mittwoch 29. März 2023
Veranstaltungsort: Alte Aula, Münzgasse 30, 72070 Tübingen
Workshop-Organisatoren: Zeynep Akata, Stephan Alaniz, Christian Baumgartner, Almut Sophia Koepke, Massimiliano Mancini, Seong Joon Oh
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Deep Learning hat große Fortschritte beim maschinellen Lernen ermöglicht. Der Einsatz von Deep-Learning-Systemen, die in sicherheitskritischen Bereichen eingesetzt werden oder die Auswirkungen auf die Zivilgesellschaft haben, setzt allerdings voraus, dass ihre Entscheidungen erklärbar sind. Für den Aufbau vertrauenswürdiger und nutzerorientierter maschineller Lernmodelle ist dies von grundlegender Bedeutung. Ziel dieses Workshops ist es, das Bewusstsein für die Erklärbarkeit von maschinellem Lernen zu fördern, da es ein Thema von wachsendem Interesse ist. Darüber hinaus wollen wir, insbesondere im Kontext des maschinellen Sehens, die interdisziplinäre Interaktion und Zusammenarbeit zwischen Forschenden an der Universität Tübingen und an anderen internationalen Institutionen fördern, die an verschiedenen Aspekten der Erklärbarkeit arbeiten.
Programm: Der Workshop umfasst sowohl Keynotes von bekannten Forschern auf diesem Gebiet als auch eingeladene Vorträge und Spotlight-Präsentationen über die jüngsten Fortschritte auf dem Gebiet der Erklärbarkeit.
► Vorläufiges Programm und weitere Informationen: https://www.eml-unitue.de/eml-workshop
Spring School on Probabilistic Numerics, 27. - 29. März 2023
Spring School on Probabilistic Numerics
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Montag, 27. bis Mittwoch, 29. März 2023
Veranstaltungsort: Audimax, Neue Aula, Geschwister-Scholl-Platz, 72074 Tübingen
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
The first ever Probabilistic Numerics Spring School and Research Workshop consists of two days of (in-person) lectures, keynotes, and tutorial sessions, from the 27th to the 28th of March. It will be held in English, and is aimed at graduate students, researchers, and professionals interested in probabilistic numerical methods.The school features lectures and keynotes by leading experts, and hands-on code tutorials.
The school will be followed by a workshop on the 29th of March, 2023. The workshop offers a stage for advances in the probabilistic computation, by researchers working in the field.
For more information visit the Workshop webpage.
Focus Session "Physics meets ML" bei der DPG-Frühjahrstagung, 27. März 2023
Frühjahrstagung der Deutschen Physikalischen Gesellschaft (DPG), Sektion Kondensierte Materie
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Montag, 27. März 2023
Veranstaltungsort: Technische Universität Dresden - Campus Südvorstadt, Bergstraße 64, 01069 Dresden
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Vom 26. März bis 31. März 2023 findet auf dem Campus der Technischen Universität Dresden die DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) statt.
In diesem Rahmen findet am 27. März 2023 eine Focus Session "Physics meets ML" statt, organisiert von Sabine Andergassen und Moritz Helas, Martin Gärttner und Markus Schmitt. Das dazugehörige Tutorial findet am 26. März 2023 statt.
PROGRAMM
Machine learning for complex quantum systems
Stefanie Czischek, University of Ottawa
Marcello Dalmonte, ICTP Trieste
Florian Marquardt, MPI & University of Erlangen-Nürnberg*
Christof Weitenberg, University of Hamburg
Understanding machine learning as complex interacting systems
Elena Agliari, Roma “La Sapienza”
Marc Mezard, Bocconi University
Manfred Opper, TU Berlin*
Cengiz Pehlevan, Harvard University
Zohar Ringel, Hebrew University of Jerusalem*
*Tutorial Lecturer
Workshop "Machine Learning MEETS Neurosciences", 15. Februar 2023
Workshop "Machine Learning meets Neurosciences"
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Mittwoch, 15. Februar 2023 | 13:00 bis 16:00
Veranstaltungsort: AI Research Building, Lecture Hall (Ground Floor), Maria-von-Linden-Straße 6
Organisatoren: Tobias Kaufmann, Jakob Macke
Anmeldung: Dies ist ein interner Workshop des Clusters.
Bei Interesse bitten wir um Anmeldung (E-Mail an Sebastian Schwenk sebastian.schwenkspam prevention@uni-tuebingen.de).
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
13:00 - 13:30 | Arrival, Lunch and Chat |
13:30 - 13:40 | Introduction Tobias Kaufmann (Medical Faculty, Computational Psychiatry) Jakob Macke (Computer Science Department, Machine Learning in Science) |
13:40 - 15:00 | Research Spotlights I (6 minutes presentation, 4 minutes discussion each) Peter Dayan (Max Planck Institute for Biological Cybernetics, Department Computational Neuroscience) Anna Levina (Computer Science Department, Self-organization of neuronal networks) Felix Wichmann (Computer Science Department, Neural Information Processing) Dmitry Kobak (Medical Faculty, Data Science for Vision Research) Charley Wu (Machine Learning Cluster of Excellence) Thomas Wolfers (Medical Faculty, Mental Health Mapping) Kathrin Brockmann (Medical Faculty, Neurology) |
15:00 - 15:20 | Coffee Break |
15:20 - 16:00 | Discussion: Which strategic topics should we be pursuing? |
16:00 - | Snacks and Refreshments |
Workshop "Machine Learning MEETS Quantitative Social Sciences", 08. Februar 2023
Workshop "Machine Learning meets Linguistics"
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Mittwoch, 08. Februar 2023 | 08:25 bis 16:00
Veranstaltungsort: AI Research Building, Hörsaal (Erdgeschoss), Maria-von-Linden-Straße 6
Organisatoren: Dominik Papies, Augustin Kelava
Anmeldung: Dies ist ein interner Workshop des Clusters. Bei Interesse bitten wir um Anmeldung (E-Mail an Sebastian Schwenk sebastian.schwenkspam prevention@uni-tuebingen.de) bis zum 3. Februar 2023.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
08:00 - 08:25 | Arrival and Check-in with Coffee |
08:25 - 08:30 | Welcome Augustin Kelava (Methods Center), Dominik Papies (Department of Economics) |
08:30 - 08:45 | Estimating causal effects with double/debiased machine learning - a method evaluation Jonathan Fuhr (School of Business and Economics), Dominik Papies, Philipp Berens |
08:45 - 09:00 | Machine learning meets causal inference: An econometric perspective Michael Knaus (School of Business and Economics) |
09:00 - 09:15 | Random forests and double machine learning: Applications and extensions in labour economics Martin Biewen (School of Business and Economics), Philipp Kugler, Pascal Erhardt |
09:15 - 09:30 | The use of machine learning techniques in Psychometrics: A necessary transition for modern data designs Holger Brandt (Methods Center), Roberto Faleh, Patrick Schmidt, Zachary Roman |
09:30 - 09:45 | Optimized estimation of nonparametric causal mediation models via machine learning procedures Roberto Faleh (Methods Center), Holger Brandt |
09:45 - 10:00 | Discussion and Wrap-up 1 |
10:00 - 10:25 | Coffee Break |
10:25 - 10:40 | Generalized Mincer-Zarnowitz regressions Patrick Schmidt (Methods Center), Holger Brandt |
10:40 - 10:55 | Efficient estimation and forecasting of heterogeneous latent variable models for intensive longitudinal data Augustin Kelava (Methods Center) |
10:55 - 11:10 | Data-driven performance analysis utilizing machine learning techniques: identifying and improving players’ key performance factors in elite soccer Oliver Höner (Institute of Sports Science), Gabriel Anzer, Pascal Bauer, Benedikt Hosp, Augustin Kelava, Pascal Kilian, Daniel Leyhr, Florian Schultz |
11:10 - 11:25 | The Dirichlet-Horseshoe - A new shrinkage prior for both dense and sparse signal detection Lukas Fischer (Methods Center), Michael Nagel, Tim Pawlowski, Augustin Kelava |
11:25 - 11:40 | A deep learning model for complex interpretable and identified factor analysis – Evaluation on talent structure of youth soccer players Pascal Kilian (Methods Center), Daniel Leyhr, Oliver Höner, Augustin Kelava |
11:40 - 11:55 | Discussion and Wrap-up 2 |
11:55 - 12:40 | Lunch |
12:40 - 12:55 | Identifying distinct subgroups of suicidal ideations: A pre-registered ecological momentary assessment study in psychiatric patients Roman Zachary (Methods Center) |
12:55 - 13:10 | Explaining relationships between academic documents using generative transformer models Aseem Behl (School of Business and Economics) |
13:10 - 13:25 | The face of trustworthiness: Can a machine detect valid cues of trustworthy behavior in human faces? Stefan Mayer (School of Business and Economics), Agnes Bäker, Jan Landwehr, Martin Natter |
13:25 - 13:40 | Analysing structures of the scientific discourse with NLP tools Steffen Hillmert (Institute of Sociology) |
13:40 - 13:55 | Discussion and Wrap-up 3 |
13:55 - 14:15 | Coffee Break |
14:15 - 14:30 | Sports as a behavioral (economics) lab Tim Pawlowski (Institute of Sports Science) |
14:30 - 14:45 | Machine learning methods for large survey data in social sciences: Challenges, solutions, and future directions Kou Murayama (Hector Research Institute of Education Sciences and Psychology), Rosa Lavelle-Hill |
14:45 - 15:00 | Machine learning for modelling, assessing and supporting educational processes Thorsten Bohl (Tübingen School of Education), Xiaobin Chen, Ulrike Cress, Peter Gerjets, Andreas Lachner, Detmar Meurers, Kou Murayama, Ulrich Trautwein |
15:00 - 15:15 | Quantification of stock risk premia using theory-based/option-implied methods and machine learning approaches, and testing conditional factor asset pricing models with the help of ML-methods Steffen Hillmert Joachim Grammig (School of Business and Economics), Constantin Hanenberg, Christian Schlag, Jantje Sönksen |
15:15 - 15:30 | Combining ML and psychometrics is a two-way street – Example for mixed effects in machine learning Pascal Kilian (Methods Center), Sangbaek Ye, Augustin Kelava |
15:30 - 15:45 | Discussion and Wrap-up 4 |
15:45 - 16:00 | What follows next |
16:00 - | Snacks and Refreshments |
Workshop "Machine Learning MEETS Physics", 01. Februar 2023
Workshop "Machine Learning meets Physics"
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Mittwoch, 01. Februar 2023 | 13:00 bis 17:00
Veranstaltungsort: Auf der Morgenstelle 10, Building C, Room 7E02
Organisatoren: Martin Oettel, Frank Schreiber
Anmeldung: Dies ist ein interner Workshop des Clusters.
Bei Interesse bitten wir um Anmeldung (E-Mail an Sebastian Schwenk sebastian.schwenkspam prevention@uni-tuebingen.de).
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
13:00 - 13:15 | Arrival and Welcome |
13:15 - 13:20 | Introduction Martin Oettel (Department of Physics, University of Tübingen) |
13:20 - 14:15 | Spotlight Presentations:
Learning Generators of (open) System Quantum Dynamics
Finding Classical Density Functionals and Power Functionals in Analytic Form
ML on Scattering Data (X-Rays and Neutrons)
A few observations on where ML is really good at and where it can make a difference. Mostly to spark thoughts.
Neuromorphic Computing with Strongly Correlated Materials
ML in Quantum Metrology |
14:15 - 15:00 | Discussion and Coffee Break |
15:00 - 15:15 | Mechanistic Models and Machine Learning Jakob Macke (Department of Computer Science, University of Tübingen) |
15:15 - 17:00 | Discussion about Topics of mutual benefit, Potential "hot" topics, Method development vs. application of methods, etc. |
17:00 - | Open End |
Workshop "Machine Learning MEETS Machine Learning“, 01. Februar 2023
Workshop "Machine Learning meets Machine Learning“
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Mittwoch, 01. Februar 2023 | 11:00 bis 14:00
Veranstaltungsort: AI Research Building, Hörsaal (Erdgeschoss), Maria-von-Linden-Straße 6
Organisatoren: Philipp Hennig, Matthias Hein
Anmeldung: Dies ist ein interner Workshop des Clusters.
Bei Interesse bitten wir um Anmeldung (E-Mail an Sebastian Schwenk sebastian.schwenkspam prevention@uni-tuebingen.de) bis zum 27. Januar 2023.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
11:00 - 11:15 | Arrival and Welcome |
11:15 - 11:30 | Pitch I: Mnemosyne — End-to-End Trustworthy Data Analytics Bob Williamson (Department of Computer Science, University of Tübingen) |
11:30 - 11:45 | Pitch II: Beyond High Performance and Big Data - New Paradigms for Scientific Computing Philipp Hennig (Department of Computer Science, University of Tübingen) |
11:45 - 12:00 | Pitch III: NLP in Medicine Carsten Eickhoff (Medical Faculty, University of Tübingen) |
12:00 - 12:15 | Discussion: Spontaneous Additional Proposals |
12:15 - 13:00 | Lunch + Strategic Structure Discussion: Which topics are wemissing/not covering well? |
13:00 - 13:15 | Consolidation, forming groups |
13:15 - 14:00 | Small Groups write short (0.5 page) summaries, strategic points |
14:00 - | Snacks and Refreshments |
Workshop "Machine Learning MEETS Qualitative Social Sciences", 25. Januar 2023
Workshop "Machine Learning meets Qualitative Social Sciences"
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Mittwoch, 25. Januar 2023 | 09:00 bis 13:30
Veranstaltungsort: AI Research Building, Lecture Hall (Ground Floor), Maria-von-Linden-Straße 6
Organisatoren: Christoph Bareither, Thomas Thiemeyer
Anmeldung: Dies ist ein interner Workshop des Clusters.
Bei Interesse bitten wir um Anmeldung (E-Mail an Sebastian Schwenk sebastian.schwenkspam prevention@uni-tuebingen.de).
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Panel 1: Human-ML-Relationships in Scientific Practice
09:00 - 09:30 | Human-ML-Relationships from the Perspective of Digital Anthropology Christoph Bareither (Institute of Historical and Cultural Anthropology, University of Tübingen) |
09:30 - 10:00 | Data Robert C. Williamson (Department of Computer Science, University of Tübingen) |
10:00 - 10:30 | Improving Teamwork between Humans and ML Samira Samadi (Max Planck Institute for Intelligent Systems, Tübingen) |
10:30 - 11:00 | ML in (Scientific) Contexts: Ethical, Societal, and Philosophical Questions Regina Ammicht Quinn, Jessica Heesen, Wulf Loh (International Center for Ethics in the Sciences and Humanities (IZEW), University of Tübingen) |
11:00 - 11:30 | Coffee Break |
Panel 2: Machine Learning and Society
11:30 - 12:00 | Morals and Methodology Konstantin Genin (Cluster of Excellence Machine Learning for Science, University of Tübingen) |
12:00 - 12:30 | The Social Foundations of Computation Moritz Hardt (Max Planck Institute for Intelligent Systems, Tübingen) |
12:30 - 13:00 | ML in Tübingen Ulrike von Luxburg (Department of Computer Science, University of Tübingen) Thomas Thiemeyer (Institute of Historical and Cultural Anthropology, University of Tübingen) |
13:00 - 13:30 | General Discussion & Concluding Remarks |
13:30 - | Lunch organized by the Excellence Cluster ML for Science |
Workshop "Machine Learning MEETS Geosciences", 25. Januar 2023
Workshop "Machine Learning meets Geosciences"
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Mittwoch, 25. Januar 2023 | 14:00 bis 17:00
Veranstaltungsort: AI Research Building, Hörsaal (Erdgeschoss), Maria-von-Linden-Straße 6
Organisatoren: Thomas Scholten, Todd Ehlers
Anmeldung: Dies ist ein interner Workshop des Clusters.
Bei Interesse bitten wir um Anmeldung (E-Mail an Sebastian Schwenk sebastian.schwenkspam prevention@uni-tuebingen.de) bis 20. Januar 2023.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
13:30 - 14:00 | Arrival and Lunch |
Panel 1: Current Research Topics in Geosciences
14:00 - 14:15 | Causal Explanations for Model Interpretation in Digital Soil Mapping Nafiseh Kakhani (Department of Geosciences, University of Tübingen) |
14:15 - 14:30 | Using ML for Inversion of Mechanistic Forward Models in Geophysics Reinhard Drews (Department of Geosciences, University of Tübingen) |
14:30 - 14:45 | ISOCLIM: Exploring Isotopic Constraints on Future Climate Variability Kira Rehfeld (Department of Geosciences, University of Tübingen) |
14:45 - 15:00 | Discussion: Additional Statements from Geosciences |
15:00 - 15:15 | Coffee Break |
Panel 2: Current Research Topics in Machine Learning
15:15 - 15:30 | Inference with Computational Uncertainty Philipp Hennig (Department of Computer Science, University of Tübingen) |
15:30 - 15:45 | Machine Learning in Science Jakob Macke (Department of Computer Science, University of Tübingen) |
15:45 - 16:00 | Modeling SpatioTemporal Dynamics Martin Butz (Department of Computer Science, University of Tübingen) |
16:00 - 16:15 | Discussion: Additional Statements from ML |
16:15 - 17:00 | General Discussion & Concluding Remarks |
17:00 - | Snacks and Refreshments |
Workshop "Machine Learning MEETS Medicine", 18. Januar 2023
Workshop "Machine Learning meets Medicine"
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Mittwoch, 18. Januar 2023 | 13:00 bis 16:00
Veranstaltungsort: AI Research Building, Lecture Hall (Ground Floor), Maria-von-Linden-Straße 6
Organisatoren: Manfred Claassen, Sergios Gatidis
Anmeldung: Dies ist ein interner Workshop des Clusters.
Bei Interesse bitten wir um Anmeldung (E-Mail an Sebastian Schwenk sebastian.schwenkspam prevention@uni-tuebingen.de)
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
12:30 – 13:00 | Arrival and Lunch |
13:00 – 14:30 | Impulse Pitches Josef Leibold (Medical Faculty, Functional Immunogenomics) Bettina Weigelin (Werner Siemens Imaging Center, Preclinical Imaging of the Immune System) Michael Bitzer / Pavlos Missios (Medical Faculty, Gastroenterology) Daniela Thorwarth (Medical Faculty, Biomedical Physics) Tobias Kaufmann (Medical Faculty, Computational Psychiatry) Christian Baumgartner (Machine Learning Cluster of Excellence, Machine Learning in Medical Image Analysis) Carsten Eickhoff (Medical Faculty, Medical Informatics) |
14:30 – 16:00 | Discussion about Strategic Directions |
16:00 – | Snacks and Refreshments |
Workshop "Machine Learning MEETS Linguistics", 11. Januar 2023
Workshop "Machine Learning meets Linguistics"
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Mittwoch, 11. Januar 2023 | 14:00 bis 18:00
Veranstaltungsort: AI Research Building, Lecture Hall (Ground Floor), Maria-von-Linden-Straße 6
Organisatoren: Michael Franke, Detmar Meurers
Anmeldung: Dies ist ein interner Workshop des Clusters.
Bei Interesse bitten wir um Anmeldung (E-Mail an Sebastian Schwenk sebastian.schwenkspam prevention@uni-tuebingen.de)
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
13:30 – 14:00 | Arrival and Lunch |
14:00 – 14:10 | Workshop Goals: Reiterate Mission Statement |
14:10 – 14:25 | Explainability in Deep Learning through Communication Zeynep Akaty (Department of Computer Science, University of Tübingen) |
14:25 – 14:40 | Current Collaborative Projects with ML Involving the Quantitative Linguistics Group Harald Baayen (Department of Linguistics, University of Tübingen) |
14:40 – 14:55 | Event-Predictive Language Grounding Martin Butz (Department of Computer Science, University of Tübingen) |
14:55 – 15:10 | Probabilistic Pragmatics Meets (Needs?) ML Michael Franke (Department of Linguistics, University of Tübingen) |
15:10 – 15:30 | Coffee Break |
15:30 – 15:45 | Generative Models of Language Change Gerhard Jäger (Department of Linguistics, University of Tübingen) |
15:45 – 16:00 | Title to be defined Hendrik Lensch (Department of Computer Science, University of Tübingen)
|
16:00 – 16:15 | Title to be defined Detmar Meurers (Department of Linguistics, University of Tübingen) |
16:15 – 16:30 | Using Cognitive Psychology to Understand GPT-3 Eric Schulz (Max Planck Institute for Biological Cybernetics) |
16:30 – 17:00 | General Discussion & Concluding Remarks |
17:00 – | Snacks and Refreshments |
2022
Philosophy of Science Meets Machine Learning (PhilML), 20. - 22. Oktober 2022
Philosophy of Science Meets Machine Learning (PhilML)
-------------------------
20. - 22. Oktober 2022
Hörsaal, MPI-IS, Max-Planck-Ring 6, 72076 Tübingen
-------------------------
Mehr Informationen über die Veranstaltung sowie das Programm sind hier zu finden.
4. Jahres-Konferenz "Machine Learning in Science", 12. + 13. Juli 2022
4. Exzellenzcluster Konferenz
"Machine Learning in Science" 2022
► Dienstag 12. Juli | 9:00 - 18:00 |
► Mittwoch 13. Juli | 9:00 - 17:00 |
------------------------------------------------------------------------------------------------------------------------------------------------------
Tagungsort: Westspitze, Eisenbahnstraße 1, 72072 Tübingen
Für alle, die nicht persönlich an der Konferenz teilnehmen können, die Präsentationen werden übertragen auf
Zoom
------------------------------------------------------------------------------------------------------------------------------------------------------
PROGRAMM
Alle Zeiten sind in MESZ, Mitteleuropäische Sommerzeit, angegeben.
Dienstag, 12. Juli 2022
09:00 | Ulrike von Luxburg, Philipp Berens ► Eröffnung |
09:15 | Gerard Pons-Moll ► Virtual Humans - From Appearance to Behaviour |
10:00 | Kira Rehfeld ► Understanding Past, Present and Future Climate Evolution: Between Facts, Physics and Fiction |
10:45 | Kaffeepause |
11:15 | Setareh Maghsudi ► Linear Combinatorial Semi-Bandit with Causally Related Rewards |
12:00 | Flora Jay ► KEYNOTE: Digging Historical Diversity Patterns out of Large-Scale Genomic Data using Exchangeable and Generative Neural Networks |
13:00 | Mittagspause |
14:15 | Michèle Finck ► The EU's Legislative Agenda on AI |
15:00 | Frank Schreiber ► Machine Learning Applied to Scattering |
15:45 | Celestine Mendler-Dünner ► Social Dynamics in Learning and Decision-Making |
16:30 | Poster Session und Kaffee |
19:00 | Konferenzdinner im "Freistil" (Anmeldung erforderlich) |
***************************************************************************************************************************************
Mittwoch, 13. Juli 2022
09:00 | Sergios Gatidis ► Machine Learning for Science - and What About the Real World? Challenges for ML in Medicine |
09:45 | Michael Franke ► Probabilistic Models of Language Use |
10:30 | Charley Wu ► The Trajectory of Human Development Resembles Stochastic Optimization in the Space of Learning Strategies |
11:00 | Kaffeepause |
11:15 | Devis Tuia ► KEYNOTE: Machine Learning Supporting Ecology Supporting Machine Learning |
12:15 | Richard Gao ► Simulation-based inference for discovering mechanistic models of neural population dynamics |
12:45 | Almut Sophia Köpke ► Title tbd |
13:15 | Mittagspause |
14:15 | Cluster Network Project ► Machine Learning in Education |
14:45 | Cluster Network Project |
15:15 | Cluster Network Project |
15:45 | Cluster Network Project |
16:15 | Cluster Network Project |
16:45 | Ulrike von Luxburg, Philipp Berens ► Closing Remarks |
Science and Innovation Days, 29. Juni - 2. Juli 2022
Science and Innovation Days
Vom 29. Juni bis zum 2. Juli 2022 öffnen die großen Tübinger Forschungseinrichtungen ihre Türen und präsentieren interessierten Bürgerinnen und Bürgern ihre Forschung. Die Science and Innovation Days finden über die gesamte Stadt verteilt statt, das Programm ist hier zu finden. Die Veranstaltungen sind auf Deutsch.
Die Mitglieder unseres Clusters beteiligen sich mit folgenden Beiträgen:
Mittwoch, 29. Juni 2022
18:15 | Mit Eric Schulz ► Kick Off: Wissenschafft Zukunft - Wissenschaft und Gesellschaft im Dialog |
20:30 | Mit Nicole Ludwig ► Künstliche Intelligenzen der Zukunft: Fakten und Fiktionen (Lesung) Mehr Info: https://uni-tuebingen.de/de/230849#c1565249 |
Freitag, 1. Juli 2022
20:00 | Mit Robert Bamler ► Wieviel Science steckt in der Fiction? - Künstliche Intelligenz in Film und Forschung (Film und Diskussion) Mehr Info: https://uni-tuebingen.de/de/230858#c1583855 |
Samstag, 2. Juli 2022
09:30 - 10:30 | Mit Tilman Gocht ► Hinter den Fassaden - Spaziergang über den KI-Forschungsstandort Mehr Info: https://uni-tuebingen.de/de/230852#c1583873 |
10:00 - 12:00 | Mit Kerstin Rau, Thomas Gläßle ► Wie gut versteht eine Maschine die Natur? Vorhersage von Bodentypen im Schönbuch Mehr Info: https://uni-tuebingen.de/de/230852#c1583873 |
10:00 - 12:00 | Mit Georg Martius, Huanbo Sun ► Wie Roboter fühlen können - ein sensitiver Roboterfinger mit Tastsinn Mehr Info: https://uni-tuebingen.de/de/230852#c1583873 |
10:00 - 10:30 und 11:30 - 12:00 | Für Kinder ► Bernhard Schölkopf: Warum sind Computer dumm? Mehr Info: https://uni-tuebingen.de/de/230852#c1583873 |
10:00 - 13:00 | Mit Philipp Hennig ► Info- und Feedbackstand: Was macht Cyber Valley? Mehr Info: https://uni-tuebingen.de/de/230852#c1583873 |
10:30 - 11:15 | Mit Tilman Gocht ► Hinter den Fassaden - Spaziergang über den KI-Forschungsstandort Mehr Info: https://uni-tuebingen.de/de/230852#c1583873 |
13:15 | Für Kinder ► Andreas Geiger: Kann künstliche Intelligenz kreativ sein? ( bereits ausgebucht) Workshop für Kinder im Rahmen des Kinder-Uni-Forschungstags Mehr Info: https://uni-tuebingen.de/de/2626#c547865 |
15:15 | Für Kinder ► Andreas Geiger: Kann künstliche Intelligenz kreativ sein? Workshop für Kinder im Rahmen des Kinder-Uni-Forschungstags. Anmeldung bis 29.6 unter kinderunispam prevention@uni-tuebingen.de Mehr Info: https://uni-tuebingen.de/de/2626#c548369 |
Workshop „AI and ML Research and Democracy”, 2. - 4. April 2022
PhD Workshop "Artificial Intelligence and Machine Learning Research and Democracy" mit öffentlicher Abschlussveranstaltung
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
2. - 4. April 2022 an der Universität Tübingen
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
About the workshop:
As the use of Machine Learning algorithms and Artificial Intelligence pervades all areas of our lives and societies, it also affects fundamental pillars of democracy, such as public debate, political decision making and (dis)information through media. In our PhD workshop “Artificial Intelligence and Machine Learning research and democracy – an interdisciplinary perspective” we will provide a platform for young researchers from all relevant disciplines – from machine learning research to political science and every nuance in between – to engage in exchange of methods and current state of the art research. Our guiding question will be: How can we shape the co-development of AI/ ML research and democracy?
More information: ai-and-democracy-workshop.de
„KI gestaltet Demokratie – Demokratie gestaltet KI“ am 4. April um 18:30
Zum Abschluss des Workshops findet am 4. April ab 18:30 Uhr eine öffentliche Diskussionsrunde zu "KI und Demokratie" in der "Westspitze" in Tübingen statt.
Zu dieser Veranstaltung sind alle Interessierten herzlich eingeladen.
Anmeldung über folgenden Link: ai-and-democracy-workshop.de/podium
Workshop "Introduction to Machine Learning", 30. März 2022
Workshop "Introduction to Machine Learning"
Das Machine Learning ⇌ Science Colaboratory lädt zu einem praxisorientierten Präsenz-Workshop über die Einführung in das Maschinelle Lernen ein.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Mittwoch, 30. März 2022, 9:00 bis 13:00
Die Veranstaltung findet vor Ort statt in der Maria-von-Linden-str. 6, 72076 Tübingen, Hörsaal (Erdgeschoss, Raum 00-28/A7)
Anmeldung:
Hier geht es zum Anmeldeformular
Bitte beachten, dass die Teilnehmerzahl auf 12 Personen begrenzt ist! Teilnehmer werden etwa eine Woche vor der Veranstaltung von uns benachrichtigt.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
What? We’ll present first the fundamentals of ML with the aid of interactive demonstrations. Equipped with the necessary concepts, we will then jointly look at your specific research problems and data, and discuss how to design a ML project for them.
Who? Researchers from MSc student to PI level at the University of Tübingen who would like to know more about machine learning and how it can help with their research. Scholars from all disciplines are invited to join, no math or programming skills will be assumed.
How to prepare? Think about the characteristics of relevant datasets that you have access to, and be ready to discuss your use-case with the group. Bring your own laptop.
Covid regulations: 3G-rules apply (proof of vaccination or past infections or negative test) + FFP2 mask
For more information, please visit the Machine Learning ⇌ Science Colaboratory Website
2021
Workshop "Philosophy of Science Meets Machine Learning", 9. - 12. November 2021
Workshop "Philosophy of Science Meets Machine Learning"
Der Workshop findet in Präsenz in Tübingen statt
am 09.11. + 10.11. in der Alten Aula (Münzgasse 30)
am 11.11. + 12.11. im Max Planck Institute for Intelligent Systems (Max-Planck-Ring 4)
Der Workshop wird organisiert von der Arbeitsgruppe 'Ethik und Philosophie der Künstlichen Intelligenz' des Exzellenzclusters 'Machine Learning: Neue Perspektiven für die Wissenschaft' an der Universität Tübingen (Workshop-Veranstalter: Thomas Grote, Thilo Hagendorff, Eric Raidl).
Anmeldung: Die Plätze sind begrenzt. Gäste melden sich bitte an über: rebigtimspam prevention@googlemail.com
Machine learning does not only transform businesses and the social sphere, it also fundamentally transforms science and scientific practice. The workshop focuses on that latter issue. It aims to discuss whether and how exactly recent developments in the field of machine learning potentially transform the process of scientific inquiry. For this, it sets out to analyse the field of machine learning through the lenses of philosophy of science, epistemology, research ethics and cognate fields such as sociology of science. The workshop will bring together philosophers from different backgrounds (from formal epistemology to the study of the social dimensions of science) and machine learning researchers. The workshop`s central topics are:
- A critical reflection on key-concepts, such as ‘learning’, ‘inference’, ‘explanation’ or ‘understanding’.
- The implications of machine learning for the special sciences, e.g. cognitive science, social science or medicine.
- The ethics of machine learning-driven science, e.g. the moral responsibilities of researchers.
- Social aspects of machine learning-driven science, e.g. the impact of funding structures on research.
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Programm
DAY 1: November 9 - Alte Aula
13:00 | Registration & Coffee |
13:50 | Short Introduction |
14:00 - 14:50 | Gregory Wheeler - "Discounting Desirable Gambles" |
15:00 - 15:40 | Vlasta Sikimic - "Algorithmic grant review: benefits and limitations" |
15:50 - 16:40 | Emily Sullivan - "Stopping the Opacity Regress" |
16:40 - 17:00 | Coffee & Snacks |
17:00 - 17:50 | Bob Williamson - "(Un)stable facts, and (missing) chains of reference in machine learning" |
Evening activities / Dinner |
DAY 2: November 10 - Alte Aula
09:00 - 09:50 | Carlos Zednik - "The Explanatory Role of Explainable Artificial Intelligence" |
10:00 - 10:40 | Moritz Renftle et al. - "Evaluating the Effect of XAI on the Understanding of Machine Learning Models" |
10:40 - 11:20 | Timo Freiesleben - "To Explain and to Predict - Explanatory Machine Learning Models in Science" |
11:20 - 11:40 | Coffee & Snacks |
11:40 - 12:30 | Alex Broadbent - "Predictive Investigation and Deep Learning" |
12:30 - 14:00 | Extended lunch break |
14:00 - 14:50 | Jon Williamson - "Evidential Pluralism and Explainable AI" |
15:00 - 15:40 | Oliver Buchholz - "Towards a Means-End Account of XAI" |
15:40 - 16:00 | Break |
16:00 - 16:40 | Koray Karaca - "Inductive Risk and Values in Machine Learning" |
16:40 - 17:30 | Lena Kästner - "Grasping Psychopathology: On Complex and Computational Models" |
Informal discussion / Dinner |
DAY 3: November 11 - MPI-IS
9:30 - 10:10 | Benedikt Hoeltgen - "Causal Variable Selectrion Through Neural Networks" |
10:10 - 10:50 | Daniela Schuster - "Suspension of Judgment and Explainable AI" |
10:50 - 11:20 | Coffee & Snacks |
11:20 - 12:10 | Anouk Barberousse - "Can Concept of Scientific Knowledge be Transformed by Machine Learning?" |
12:10 - 14:00 | Extended lunch break |
14:00 - 14:40 | Giorgio Gnecco et al. - "Simple Models in Complex Worlds: Occam's Razor and Statistcal Learning Theory" (Online) |
14:40 - 15:20 | Atoosa Kasirzadeh - "Kinds of Explanation in Machine Learning" (Online) |
15:20 - 15:50 | Coffee Break |
15:50 - 16:30 | Tim Räz - "Understanding Machine Learning for Empiricists" |
16:30 - 17:20 | Carina Prunkl - "Predictive Investigation and Deep Learning" |
Informal Discussion / Dinner |
DAY 4: November 12 - MPI-IS
9:30 - 10:10 | Mario Günther - "How to Attribute Beliefs to AI Systems?" (Online) |
10:10 - 10:50 | Dilectiss Liu - "Epistemic Opacity Does Not Undermine the Epistemic Justification of Machine Learning Models" |
11:00 - 11:50 | Kate Vredenburgh - "Against Rational Explanations" |
11:50 - 12:20 | Coffee Break |
12:20 - 13:00 | Roundtable |
Vortrag Claire Vernade - 30. September 2021
| Bandit learning with delays in Non-stationary environments |
Claire Vernade
WANN: Donnerstag, 30.09.2021 um 9:00
WO: Hybrid-Veranstaltung:
Claire hält den Vortrag im Hörsaal der Maria-von-Linden-Straße 6 (EG). Aufgrund der aktuellen Covid-Beschränkungen sind die Plätze begrenzt. Cluster-PIs können vor Ort im Hörsaal teilnehmen - bei Interesse bitte bei Elena Sizana anmelden. Es gilt die 3G-Regel (vollständig geimpft, getestet oder genesen).
Alle anderen laden wir ein, über Zoom teilzunehmen: https://zoom.us/j/99906352769
ABSTRACT
We consider the problem of learning with delayed bandit feedback, meaning by trial and error, in changing environments. This problem is ubiquitous in many online recommender systems that aim at showing content, which is ultimately evaluated by long-term metrics like a purchase, or a watching time. Mitigating the effects of delays in stationary environments is well-understood, but the problem becomes much more challenging when the environment changes. In fact, if the timescale of the change is comparable to the delay, it is impossible to learn about the environment, since the available observations are already obsolete. However, the arising issues can be addressed if relevant intermediate signals are available without delay, such that given those signals, the long-term behavior of the system is stationary. To model this situation, we introduce the problem of stochastic, non-stationary and delayed bandits with intermediate observations. We develop a computationally efficient algorithm based on UCRL, and prove sublinear regret guarantees for its performance.
Workshop "Simulation-based Inference for scientific discovery", 20.-22. September 2021, ONLINE
Workshop "Simulation-based Inference for scientific discovery"
Der Workshop findet virtuell auf Zoom statt.
Der Workshop wird gemeinsam organisiert vom ML⇌Science Colaboratory, der Machine Learning in Science Arbeitsgruppe (Jakob Macke) und Helmholtz AI.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Anmeldung:
Deadline für die Anmeldung ist der 31. August, hier geht es zum Anmeldeformular
Please note, we can only select 20 participants for the workshop. To come up with that list and make a final decision, we will form a small selection board. We will inform successful applicants subsequently.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
You use simulation in physics, economics, archaeology or any other domain of your choice? You want to find the simulator's parameters that best fits the observations? Then simulation-based inference is something for you!
We teach a practical simulation-based inference workshop to help you understand recent machine learning techniques and apply them to your problem.
Apply to learn, have fun, and participate in a supportive and inclusive community. The workshop will combine lectures and practical hands-on sessions by experts in the field. We strive to provide a seamless computing environment for you to focus on the content rather than in import errors.
We plan to cover the following topics:
| Programm
20. September | Using simulators for discovery, introduction to conditional density estimation.
|
21. September | How does neural simulation-based inference work?
|
22. September | Applying the sbi toolbox to your problem. Pitfalls, tricks and opportunities!
|
3. Jahres-Konferenz "Machine Learning in Science", 12. + 13. Juli 2021
3. Exzellenzcluster Konferenz
"Machine Learning in Science" 2021
► Montag 12. Juli | 14:00 - 18:00 | Registrierungslink
anschliessendes Online Theater um 19:30
► Dienstag 13. Juli | 14:00 - 18:00 | Registrierungslink
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Die Konferenz findet virtuell statt über Zoom.
Eine Anmeldung ist notwendig, für jeden Tag separat, Registrierungslinks s.o.
Das Theaterstück am Montagabend ist für die Öffentlichkeit zugänglich, weitere Informationen hier. Das Stück wird in englischer Sprache gespielt und auf Youtube live gestreamt. Im Anschluss gibt es eine Diskussion mit den Schauspielern und einigen Forschenden unseres Clusters. Eine Anmeldung ist nicht erforderlich.
Links:
Theaterstück https://tinyurl.com/SiliconWoman
Anschliessende Diskussion auf Zoom https://zoom.us/j/91670801978
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
PROGRAMM
Alle Zeiten sind in MESZ, Mitteleuropäische Sommerzeit, angegeben.
Montag, 12. Juli 2021
14:00 - 14:15 | Ulrike von Luxburg, Philipp Berens ► Eröffnung |
14:15 - 14:45 | Robert Bamler ► Maintaining Individual Agency in the Age of Big Data: Baby Steps |
14:45 - 15:15 | Caterina De Bacco ► Learning Reciprocity and Community Patterns in Networks |
15:15 - 15:30 | PAUSE |
15:30 - 16:00 | Konstantin Genin ► Clinical Equipoise and Causal Discovery |
16:00 - 16:45 | Spotlight Präsentationen Innovation Fund Projekte des Exzellenzclusters "Maschinelles Lernen" |
16:00 - 16:10 ► Machine Learning Approaches for Psychophysics with Ordinal Comparisons | |
16:10 - 16:20 ► Interpretable Spatial Machine Learning for Environmental Modelling | |
| 16:20 - 16:30 ► Human-Robot Interface with Eye-Tracking |
| 16:30 - 16:40 ► Counterfactual Explanations of Decisions of Deep Neural Networks with Applications in Medical Diagnostics |
16:45 - 17:00 | PAUSE |
17:00 - 17:30 | Spotlight Präsentationen Innovation Fund Projekte des Exzellenzclusters "Maschinelles Lernen" |
17:00 - 17:10 ► Visualizing Uncertainty from Data, Model and Algorithm in Large-Scale Omics Data | |
17:10 - 17:20 ► Modelling Behavioral Responses to Emotional Cues in Sports - A Bayesian Approach | |
17:20 - 17:30 ► Understanding Quantum Effects in Neural Network Models through ML | |
17:30 - 18:00 | Manfred Claassen ► (Weakly) Supervised Learning of Disease Associated Cell States and Dynamics |
18:00 - 19:30 | PAUSE |
19:30 - 20:15 | Theater ► Silicon Woman - the Singing Cyborg |
***************************************************************************************************************************************
Dienstag, 13. Juli 2021
14:00 - 14:50 | Keynote Lecture ► Machine Learning and the Physical World |
14:50 - 15:20 | Samira Samadi ► Socially Fair k-Means Clustering |
15:20 - 15:30 | PAUSE |
15:30 - 16:30 | Spotlight Präsentationen |
| 15:30 - 15:40 ► Short-to-Mid Scale Weather Forecasting with a Distributed, Recurrent CNN |
| 15:40 - 15:50 ► Extracting Expertise from Tweets: Exploring the Boundary Conditions of Ambient Awareness |
| 15:50 - 16:00 ► Enhancing Machine Learning of Lexical Semantics with Image Mining |
| 16:00 - 16:10 ► Applied Casual Inference in Social Sciences and Medicine |
| 16:10 - 16:20 ► Extending Deep Kernel Approaches for Better Prediction and Understanding of ADME Phenotypes and Related Drug Response |
| 16:20 - 16:30 ► Analytic Classical Density Functionals from an Equation Learning Network |
16:30 - 16:45 | PAUSE |
16:45 - 17:15 | Peter Ochs ► Optimization for Machine Learning |
17:15 - 17:45 | Enkelejda Kasneci ► Machine Learning for intelligent Human-Computer Interaction |
17:45 - 18:00 | Ulrike von Luxburg / Philipp Berens ► Closing Remarks |
2020
Workshop "Philosophy of Medical AI", 08.-09. Okt 2020 -- ONLINE
Virtual Workshop on the Philosophy of Medical AI
► Donnerstag, 08. Oktober | 09:30 - 17:30
► Freitag, 09. Oktober | 10:00 - 16:00
Anmeldung
Der Workshop ist öffentlich zugänglich, eine Anmeldung ist nicht erforderlich.
Organisation
Thomas Grote; Ethics and Philosophy Lab; Cluster of Excellence “Machine Learning: New Perspectives for Science”
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Der Workshop findet virtuell auf Zoom statt.
Link zum Meetig am DONNERSTAG Meeting-ID: 977 8903 0792
Link zum Meeting am FREITAG Meeting-ID: 990 9618 3434
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Die jüngsten Fortschritte im Bereich des Deep Learning haben das Interesse an der Anwendung von KI-Systemen im Gesundheitswesen weiter gesteigert. Eine Vielzahl hochkarätiger Studien zeigt, wie vielfältig die Möglichkeiten sind, die KI für verschiedene Zweige der Medizin bietet: Sie reichen von der Verbesserung medizinischer Diagnosen über die rechtzeitige Vorhersage von Gesundheitsrisiken bis hin zur Entdeckung neuer Medikamente. Gleichzeitig gibt es Befürchtungen, dass die Unvollkommenheit der gegenwärtigen KI-Systeme strukturelle Missstände im Gesundheitssystem verstetigen könnten oder sogar neue ethische Probleme schaffen könnten. Ziel dieses Workshops ist es, über die Chancen und Herausforderungen des Einsatzes von KI in der Medizin nachzudenken. Dazu bringt der Workshop Wissenschaftsphilosoph*innen, Medizinethiker*innen sowie Forscher*innen aus den Bereichen Maschinelles Lernen oder Bioinformatik zusammen.
Donnerstag, 08. Oktober 2020
09:30 - 10:00 | Welcome address and brief introduction |
10:00 - 10:50 | Sune Holm (University of Copenhagen) Equality and Fair Algorithmic Decision Making |
11:00 - 11:50 | Atoosa Kasirzadeh (Australian National University/University of Toronto) The Use and Misuse of Counterfactuals in Machine Learning |
| MITTAGSPAUSE |
13:00 - 13:50 | Georg Starke (University of Basel) Does Trust Constitute an Adequate Epistemic Stance Towards Medical AI? |
14:00 - 14:50 | Geoff Keeling (Stanford University) Decision-Support Systems and Clinical Reasoning – A Peircian Approach |
| PAUSE |
15:30 -16:20 | Manfred Claassen (University of Tübingen) Challenges in machine learning driven translation of single-cell biology studies |
16:30 - 17:30 | Alex London (Carnegie Mellon University, Pittsburgh) Keynote: Ethics in Medical AI: Explaining Models vs Explaining the Warrant for Their Use |
***************************************************************************************************************************************
Freitag, 09. Oktober 2020
10:00 - 10:50 | Chris Burr (Alan Turing Institute) Responsible Innovation and Digital Psychiatry |
11:00 - 11:50 | Rune Nyrup (University of Cambridge) Value Transparency in Science and Machine Learning |
| MITTAGSPAUSE |
13:00 - 13:50 | Emily Sullivan (University of Eindhoven) Opacity in Medical Explanations: Is AI Special? |
14:00 - 14:50 | Zeynep Akata (University of Tübingen) Explaining Neural Network Decisions Via Natural Language |
15:00 - 16:00 | Alex Broadbent (University of Johannesburg) Keynote: Why Robots Cannot Do Epidemiology |
Machine Learning meets Environmental Science, 25. September 2020
Machine Learning meets Environmental Science
Friday, September 25, 2020
Meeting Venue
Neue Aula, Audimax, Geschwister-Scholl-Platz
Organizers
Prof. Martin Butz (ML Cluster, Dep. Of Computer Science)
Prof. Christiane Zarfl (Center for Applied Geoscience)
Registration
Registration is required by Email until Sept 22, 2020.
_______________________________________________________________________________________________________________________________________________________________________________________________
PROGRAM
09:00 Welcome and Introduction: Cluster of Excellence – Machine Learning for Science
Philipp Berens
09:10 ML Transfer Center and simulation based inference
Álvaro Tejero-Cantero & Jakob Macke
09:40 Day-ahead optimization of production schedules for saving electrical energy costs
Thomas Stüber & Michael Menth
10:00 Uncovering hidden structure in climate data
Bedartha Goswami
10:20 Coffee Break
10:40 Learning spatiotemporal distributed generative graph neural networks
Martin Butz
11:00 Modeling environmental processes in rivers
Christiane Zarfl
11:20 Can plants learn? Coupling models and data in eco-evolutionary research
Sara Tomiolo & Maximiliane Herberich (from Katja Tielbörger’s group)
11:40 Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by
stacking machine learning models and rescanning covariate space
Ruhollah Taghizadeh-Mehrjardi (from Thomas Scholten’s group)
12:00 The climate situation: Facts and Necessities
Harald Baayen
12:05 Snack Break
12:30 ML and mobile robots in environmental science
Andreas Zell
12:50 Turbulent transport of energy, momentum and matter by large data sets
obtained from airborne probing of the lower atmosphere
Jens Bange
13:20 Status of the CRC 1253 CAMPOS - Catchments as Reactors:
Metabolism of Pollutants on the Landscape Scale
Christiane Zarfl
13:40 Funding options in the ML Cluster of Excellence and beyond
Tilman Gocht
14:00 End
_________________________________________________________________________________________________________________________________________________
Aim of the day
Environmental science studies spatio-temporal dynamics of various processes and on different topics, including climate and weather, geology, hydrology, vegetation and agriculture, various forms of pollution (e.g. of organic pollutants), to name just a few. In all these cases, multiple, often interrelated data sources are available at varying degrees of spatial and temporal granularity. Moreover, human activities, such as river dam building, CO2 release, plantations, industry etc., strongly influence the unfolding dynamics. Critical principles – such as basic laws in physics – apply universally in such systems. Environmental science has strong expertise in modeling the underlying processes – typically by systems of partial or ordinary differential equations.
As a result, besides the expertise about the underlying processes, environmental science offers two types of data – real-world data as well as data from the respectively available models of the considered environmental system. This offers essentially the perfect basis for a meaningful, science-driven application of ML algorithms. On the one hand, the parameters of the differential equations may be optimized more effectively by means of state-of-the-art gradient-based approximation approaches from ML. On the other hand, the available models may be augmented or fully substituted by distributed spatio-temporal, generative neural network approaches, such as convolutional networks, graph networks, autoencoders, recurrent neural networks, and combinations thereof.
Seeing that models are available to pre-train and analyze potentially applicable ML architectures, expertise is available to tune these models to the actual underlying processes, and that real world data is available to further train and test the generalizability of these ML architectures, it is time that ML meets Environmental Science! The aim is to foster collaboration with a focus on two main potential strands. First, available models of differential equations and involved prior situation assumptions may be optimized by means of state-of-the-art ML techniques. Second, ML techniques and particularly distributed, generative artificial neural networks may be designed to infer the processes and structures that generate particular data patterns, thus enabling (i) the fast, efficient, and accurate simulation of environmental processes and (ii) the consideration of impacts of human actions, including the potential to derive optimal actions for steering the environmental system towards a desired (stable / homeostatic) direction.
2. Jahres-Konferenz "Machine Learning in Science", 21. - 23. Juli 2020 -- ONLINE
2. Exzellenzcluster Konferenz
"Machine Learning in Science" 2020
► Dienstag 21. Juli | 14:00 - 17:45
► Mittwoch 22. Juli | 14:00 - 18:15
► Donnerstag 23. Juli | 14:00 - 18:30
Programmänderung, Donnerstag 23. Juli: Der Vortrag von Manfred Claassen um 14:00 Uhr muss leider abgesagt werden. Phillip Berens übernimmt dankenswerterweise kurzfristig mit einem Vortrag zum Thema "Towards hybrid models of retinal circuits - integrating biophysical realism, anatomical constraints and predictive performance" contenteditable="false".
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Die Konferenz findet virtuell auf Crowdcast mit einem Live-Stream auf Youtube statt.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Anmeldung
Die Konferenz ist zugänglich für die Öffentlichkeit. Um per Chat an den Diskussionen teilnehmen zu können, muss man sich über Crowdcast anmelden - Kamera und Mikrofon der Teilnehmer bleiben dabei ausgeschaltet. Einfach an jedem Konferenztag auf den entsprechenden Link auf unserem Crowdcast-Profil klicken. Zuerst die E-Mail-Adresse angeben und dann den vollständigen Namen (Vor- und Nachname).
Wer die Vorträge nur verfolgen möchten, kann dies über Youtube tun, eine Registrierung ist nicht erforderlich. Hier sind die Livestreams aller Vorträge zu finden.
Jeder Vortrag dauert 30 Minuten plus 15 Minuten Diskussion, jede Spotlight-Präsentation 5 Minuten plus 5 Minuten Diskussion.
Wichtig: Alle Zeiten sind in MESZ, Mitteleuropäische Sommerzeit, angegeben.
Dienstag, 21. Juli 2020
14:00 - 14:15 | Ulrike von Luxburg, Philipp Berens ► Eröffnung ► Grußworte |
14:15 - 15:00 | Kyle Cranmer (Center for Cosmology and Particle Physics, New York University) ► Keynote Lecture: How Machine Learning Can Help us Get the Most out of our Highest Fidelity Physical Models |
15:00 - 15:45 | Zeynep Akata ► Learning Decision Tress Recurrently through Communication |
15:45 - 16:00 | PAUSE |
| Spotlight Präsentationen |
16:00 - 16:10 | David Künstle ► Machine Learning Approaches for Psychophysics with Ordinal Comparisons |
16:10 - 16:20 | Zohreh Ghaderi / Hassan Shahmohammadi ► Enhancing Machine Learning of Lexical Semantics with Image Mining |
16:20 - 16:30 | Matthias Karlbauer ► Causal Inference with a Spatio-Temporal Generative Model |
16:30 - 16:40 | Thomas Gläßle / Kerstin Rau ► Interpretable Spatial Machine Learning for Environmental Modelling |
16:40 - 17:00 | PAUSE |
17:00 - 17:45 | Jakob Macke ► Training Neural Networks to Identify Mechanistic Models of Neural Networks |
***************************************************************************************************************************************
Mittwoch, 22. Juli 2020
14:00 - 14:45 | Peter Dayan (Max Planck Institute for Biological Cybernetics, Tübingen) ► Modelling and Manipulating Behaviour Using Recurrent Networks |
14:45 - 15:30 | Dominik Papies (Fachbereich Wirtschaftswissenschaft, Universität Tübingen) ► Machine Learning in Business and Economics - Can it Help us Understand the Relevance of Visual Product Characteristics? |
15:30 - 15:45 | PAUSE |
| Spotlight Präsentationen |
15:45 - 15:55 | Eric Raidl / Thomas Grote ► Artificial Intelligence, Trustworthiness and Explainability |
15:55 - 16:05 | Thilo Hagendorff ► The Big Picture: Ethical Considerations and Statistical Analysis of Industry Involvement in Machine Learning Research |
16:05 - 16:15 | Daniel Weber ► Human-robot Interface with Eye-tracking |
16:15 - 16:25 | Pablo Sanchez Martin ► Exploring Ambient Awareness in Twitter |
16:25 - 16:30 | PAUSE |
16:30 - 17:15 | Ingo Steinwart (Institut für Stochastik und Anwendungen, Universität Stuttgart) ► Some Thoughts towards a Statistical Understanding of Deep Neural Networks |
17:15 - 17:30 | PAUSE |
17:30 - 18:15 | Claire Monteleoni (Department of Computer Science, University of Colorado Boulder) ► Deep Unsupervised Learning for Climate Informatics |
***************************************************************************************************************************************
Donnerstag, 23. Juli 2020
14:00 - 14:45 | Philipp Berens (Exzellencluster “Maschinelles Lernen”, Universität Tübingen) ► Towards hybrid models of retinal circuits - integrating biophysical realism, anatomical constraints and predictive performance |
14:45 - 14:50 | PAUSE |
| Spotlight PräsentationenInnovation Fund Projekte des Exzellenclusters “Maschinelles Lernen” |
14:50 - 15:00 | Jonas Ditz ► Extending Deep Kernel Approaches for Better Prediction and Understanding of ADME Phenotypes and Related Drug Response |
15:00 - 15:10 | Susanne Zabel ► Visualizing Uncertainty from Data, Model and Algorithm in Large-Scale Omics Data |
15:10 - 15:20 | Paolo Mazza ► Understanding Quantum Effects in Neural Network Models through Machine Learning |
15:20 - 15:30 | Jonathan Fuhr ► Applied Causal Inference in Social Sciences and Medicine |
15:30 - 15:45 | PAUSE |
15:45 - 16:30 | Stefanie Jegelka Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology ► Keynote Lecture: Representation and Learning in Graph Neural Networks |
16:30 - 17:15 | Bedartha Goswami (Exzellenzcluster “Maschinelles Lernen”, Universität Tübingen) ► Inferring Climate Variability from Patterns Hidden in Modern and Paleo Time Series Data |
17:15 - 17:30 | PAUSE |
17:30 - 18:15 | Igor Lesanovsky Fachbereich Physik, Universität Tübingen ► Neural Network Dynamics in Quantum Many-Body Systems |
18:15 - 18:30 | Ulrike von Luxburg, Philipp Berens Sprecher Exzellenzcluster “Maschinelles Lernen”, Universität Tübingen ► Closing Remarks |
Symposium "Machine Learning in Science", 7. - 8. Juli 2020 -- ONLINE
Symposium "Machine Learning in Science"
am 7. und 8 Juli 2020
Zoom Videokonferenz
Jeder Vortrag dauert 30 Minuten, gefolgt von einer Diskussion von 15 Minuten.
An die Diskussion schließt sich eine 45-minütige nicht-öffentliche Sitzung an, die als Break-out-Gruppe organisiert ist, so dass ALLE Teilnehmer während der gesamten Dauer des Symposiums im Online-Konferenzraum bleiben können.
Anmeldung:
Die Anmeldung ist nur für Nicht-Cluster-Mitglieder erforderlich. Bitte senden Sie eine E-Mail an Sebastian Schwenk (sebastian.schwenkspam prevention@uni-tuebingen.de), der Link zur Zoom-Konferenz wird dann zur Verfügung gestellt.
Wichtig: Teilnehmer, die nicht ihren vollständigen Namen angeben, schließt der Moderator von der Videokonferenz aus.
09:00 – 09:45 | Nicole Ludwig (Karlsruhe Institute of Technology) How Machine Learning Changes Research in Energy |
09:45 – 10:15 | nicht-öffentliche Sitzung |
10:30 – 11:15 | Michal Rolínek (Max Planck Institute for Intelligent Systems, Tübingen) Machine Learning and Combinatorial Optimization |
11:15 – 11:45 | nicht-öffentliche Sitzung |
11:45 – 13:00 | PAUSE |
13:00 – 13:45 | Thilo Wrona (GFZ Helmholtz-Zentrum, Potsdam) How can Machine Learning Help Us Advance Solid Earth Science? |
13:45 – 14:15 | nicht-öffentliche Sitzung |
14:30 – 15:15 | Niklas Wahl (German Cancer Research Center – DKFZ, Heidelberg) How will Machine Learning change Radiotherapy? |
15:15 – 15:45 | nicht-öffentliche Sitzung |
16:00 – 16:45 | Charley Wu (Harvard University, Cambridge, USA) Bridging the Gap Between Human and Machine Learning |
16:45 – 17:15 | nicht-öffentliche Sitzung |
17:15 | Ende Tag 1 |
*********************************************************************************************************************************************************
09:00 – 09:45 | Christin Beck (University of Konstanz) Learning the Language of the Past: Historical Linguistics, Natural Language Processing and Machine Learning |
09:45 – 10:15 | nicht-öffentliche Sitzung |
Vortrag Reinhard Diestel - 24. Januar 2020
Tangles: from graph minors to identifying political mindsets
Vortrag von Reinhard Diestel, Universität Hamburg, Fachbereich Mathematik
WANN: Freitag, 24.01.2020 um 10:00
WO: Hörsaal am MPI for Intelligente Systeme, Erdgeschoss
ABSTRACT
Traditional clustering identifies groups of objects that share certain qualities. Tangles do the converse: they identify groups of qualities that often occur together. They can thereby discover, relate, and structure types of phenomena: of behaviour, political views, texts, or bacteria. Tangles can identify key phenomena that allow predictions of others. Tangles also offer a new paradigm for clustering in large data sets. Tangle clusters are, by necessity, fuzzy: they tell us where in a large structure a cluster lies, which key properties of data points identify it, and how the overall data set is structured with respect to these clusters. But they do this without needing, or attempting, to assign individual points to any cluster. Tangles of graphs are central to the theory of graph minors developed by Robertson and Seymour for their celebrated proof of the graph minor theorem. For many years, however, algorithmic applications of graph minor theory were largely confined to applications of tree-decompositions, an overall structure dual to the existence of large tangles. Very recently, tangles have been axiomatised in a way that makes them directly applicable to a much wider range of contexts than graphs, even outside mathematics. This talk will outline how this works, with an emphasis on the basic concepts of abstract tangle theory and how these are applicable in real-world scenarios. No knowledge of graph minor theory will be needed.
2019
1. Mini-Konferenz "Machine Learning in Science", 22. - 23. Juli 2019
Exzellenzcluster Konferenz "Machine Learning in Science"
Montag, 22.07.2019 | 09:00 Uhr - 19:00 Uhr | Alte Aula
Dienstag, 23.07.2019 | 09:00 Uhr - 16:00 Uhr | Pfleghofsaal
Anmeldung: Bitte melden Sie sich bis spätestens 15.07.2019 verbindlich zu der Tagung an, E-Mail an Sebastian Schwenk. Bitte geben sie an, an welchen Tagen Sie teilnehmen möchten.
Montag, 22.07.2019
Alte Aula, Münzgasse 30, 72070 Tübingen
9:00 | Opening Remarks Ulrike von Luxburg, Philipp Berens Speakers of the Cluster of Excellence “Machine Learning”, University of Tübingen |
09:15 | Towards Neural Networks Which Probably Know When They Don't Know Matthias Hein Department of Computer Science, University of Tübingen |
10:00 | Inception Loops - Using Deep Learning to Control Biological Neurons Fabian Sinz Department of Computer Science, University of Tübingen |
10:45 | Kaffeepause |
11:15 | Machine Learning for Heterogeneous and Partially Biased Data in Medicine Nico Pfeifer Department of Computer Science, University of Tübingen |
12:00 | The Art of Using t-SNE for Visualization of Very Large Data Sets Dmitry Kobak Institute for Ophthalmic Research, University of Tübingen |
12:45 | Mittagessen |
13:45
| Machine Learning inside Scientific Methods and Procedures Philipp Hennig Department of Computer Science, University of Tübingen |
14:30
| Dynamic Structural Equation Models in the Social and Behavioral Sciences Augustin Kelava Methods Center, University of Tübingen |
15:15
| Identifying Climate, Vegetation, and Plate Tectonic Controls on Earth’s Topography Todd Ehlers Department of Geosciences, University of Tübingen |
16:00 | Poster Session Posterbeiträge siehe unten * |
18:00 | Mitgliederversammlung Exzellenzcluster (nicht-öffentlich) |
19:00 | Speaker’s Dinner (nicht-öffentlich) |
Dienstag, 23.07.2019
Pfleghofsaal, Schulberg 2 (Pfleghof), 72070 Tübingen
09:00 | Language Change as a Random Walk in Vector Space Gerhard Jäger Institute of Linguistics, University of Tübingen |
09:45 | Ethics and Explainability Eric Raidl, Thomas Grote, Thilo Hagendorff Ethics & Philosophy Lab, Cluster of Excellence Machine Learning, University of Tübingen |
10:45 | Kaffeepause |
11:15
| Filter ranking for neural network compression Mijung Park Department of Computer Science, University of Tübingen |
12:00
| Fairness and Interpretability in ML for Consequential Decision Making Isabel Valera Max Planck Institute for Intelligent Systems, Tübingen |
12:45 | Mittagessen |
13:45 | Statistical Limits of Hypothesis Testing: Do We Expect Too Much from ML? Debarghya Ghoshdastibar Department of Computer Science, University of Tübingen |
14:30 | How to Learn Predictive Conceptual Structures, including Causal Relationships, and Generate Goal-Directed Control with them? Achievements and Challenges Martin Butz Department of Computer Science, University of Tübingen |
15:15 | Machine Learning Algorithms as Tools and Models in Vision Science Felix Wichmann Department of Computer Science, University of Tübingen |
16:00 | Closing Remarks Ulrike von Luxburg, Philipp Berens Speakers of the Cluster of Excellence “Machine Learning”, University of Tübingen |
* Poster Session, July 22, 16:00 – 18:00 *
Weber, D, Kasneci E., Zell A. (Cluster Innovation Fund Project) University of Tübingen, Department of Computer Science
Valera I.1, Utz S.² (Cluster Innovation Fund Project) 1Max Planck Institute for Intelligent Systems Tübingen, ² Leibniz-Institut für Wissensmedien
Luxburg U., Wichmann F. (Cluster Innovation Fund Project) Machine learning approaches for psychophysics with ordinal comparisons University of Tübingen, Department of Computer Science
Zabel S.1, Hennig P.2, Nieselt K.1 (Cluster Innovation Fund Project) Visualizing Uncertainty from Data, Model and Algorithm in Large-Scale Omics Data University of Tübingen, 1Center for Bioinformatics Tübingen, ²Department of Computer Science
Karlbauer, M.1, Lensch H.1, Scholten T.², Butz M.1 (Cluster Innovation Fund Project) Short-to-Mid Scale Weather Forecasting with a Distributed, Recurrent Convolutional ANN University of Tübingen, 1Department of Computer Science, ²Department of Geosciences
Behrens, T.1, Schmidt, K.1, Hennig, P.², Scholten, T.1 (Cluster Innovation Fund Project) University of Tübingen, 1Department of Geosciences, ²Department of Computer Science
University of Tübingen, 1Department of Linguistics, ²Department of Computer Science
Macke J.1, Hennig P.², Berens P.³, Oberlaender M.4 1Technische Universität München, Computational Neuroengineering Group 1 University of Tübingen, ²Department for Computer Science, ³Institute for Ophthalmic Research 4Center of advanced european studies and research
Pawlowski, T.1, Berens, P.², Kelava, A.³ University of Tübingen, 1Department Institute of Sport Science, ²Institute for Ophthalmic Research, ³ Methods Center Kilian P. University of Tübingen, Methods Center
Klopotek M., Oettel M. University of Tübingen, Institut für Angewandte Physik
Lin SC, Oettel M. University of Tübingen, Institut für Angewandte Physik
Greco A.1, Starostin V.1, Hinderhofer A.1, Gerlach A.1, Karapanagiotis C.², Liehr S.², Kowarik S.²,
Sümer Ö.1,2, Kasneci E.1 University of Tübingen, 1Department of Computer Science, ²Hector Research Institute of Education Sciences and
Fuhl W., Kasneci G., Rosenstiel W., Kasneci E. University of Tübingen, Department of Computer Science Zadaianchuk A., Martius G. |
Machine Learning meets Physics, 10. Juli 2019
Machine Learning meets Physics
AI Gebäude, Hörsaal (EG)
Maria von Linden Str. 6, 72076 Tübingen
9:00 – 9:25: Frank Schreiber et al: “Analysis of X-ray Scattering Data Using Artificial Neural Networks”
9:25 – 9:50: Hendrik Lensch: “Deep Learning on Unstructured Point Clouds”
9:50 – 10:15: Martin Oettel: “Density functionals from machine learning”
10:15 – 10:45: Kaffeepause
10:45 – 11:10: Miriam Klopotek: “Variational autoencoders put up to the test in learning a statistical-mechanical
model system”
11:10 – 11:35: Georg Martius: “Machine Learning for Equation Identification”
11:35 – 12:00: Andreas Zell: “ML, Physics and Robotics”
12:00 – 13:00: Diskussion
TÜFFF - Tübinger Fenster für Forschung, 24. Mai 2019
TÜFFF - Tübinger Fenster für Forschung
Spitzenforschung zum Anfassen für alle Altersgruppen
WANN: Freitag, 24. Mai 2019, 15 – 22 Uhr
WO: Hörsaalzentrum der Naturwissenschaften, Auf der Morgenstelle 16
Eintritt frei
Das „Tübinger Fenster für Forschung“ (TÜFFF) bietet allgemein verständliche und interaktive Einblicke in die Tübinger Spitzenforschung. Mitmach-aktionen, Demonstrationen, Laborführungen, Vorträge, eine Informations-messe sowie ein Science Slam erwarten die interessierte Öffentlichkeit beim 4. TÜFFF an der Universität Tübingen. Durch die Aufbereitung und Präsentation aktueller Forschungsthemen für ein fachfremdes Publikum richtet sich die Veranstaltung an alle Altersgruppen.
Das Exzellenzcluster „Maschinelles Lernen“ beteiligt sich mit 8 Ständen am „Markt der Möglichkeiten“:
- Deep Capturing - Computer Vision, Prof. Hendrik Lensch
- Deep Deblurring - Computer Vision, Prof. Hendrik Lensch
- Interaktive Karte zur Bodenqualität im Raum Tübingen - Geowissenschaften, Prof. Thomas Scholten
- Was ist ein neuronales Netzwerk? – Bioinformatik, Prof. Dr. Kay Nieselt
- Antizipatives Verhalten in künstlichen neuronalen Netzen - Kognitionswissenschaften, Prof. Martin Butz
- Wie kann ein Computer lernen, Wörter in Latein, Russisch, Estnisch und Hebräisch zu beugen?
Linguistik, Prof. Harald Baayen - Vorhersage von Blickrichtungen - Neurowissenschaften,
Prof. Matthias Bethge - Briefumschlag-Computer – Theorie des maschinellen Lernens,
Prof. Ulrike Luxburg
Weitere Informationen im Programmheft und auf der Veranstaltungsseite
Symposium "Ethik und Philosophie des Maschinellen Lernens in der Wissenschaft", 15. Mai 2019
„Ethik und Philosophie des Maschinellen Lernens in der Wissenschaft“
15. Mai 2019
08:30 | Simplicity and Scientific Progress: A Topological Perspective |
09:15 | Learning Through Creativity |
10:00 | Kaffeepause |
10:20 | Black-Boxes, Understanding, and Machine Learning |
11:05 | Working at the margins of machine learning – the ethics of labeling |
11:50 | Inductive Bias and Adversarial Data |
12:35 | Mittagspause |
13:30 - 14:30 | Invited Talk Co-Opt AI! Charting the emerging field of AI, ethics and social justiceMona Sloane, Institute for Public Knowledge, New York University, USA |
17:10 - 17:55 | KONFERENZRAUM |
Symposium "Machine Learning in Science", 18. und 25. - 27. März 2019
Symposium „Machine Learning in Science“
18. und 25. - 26. März 2019
Max-Planck-Gästehaus – Hörsaal
Max-Planck-Ring 6, 72076 Tübingen
Montag, 18. März 2019
09:30 – 10:30 | Neutrino Cosmology - Weighing the Ghost Particle with the Universe Dr. Elena Giusarma -- Simons Foundation, Flatiron Institute Center for Computational |
Montag, 25. März 2019
08:30 | Information Field Theory |
09:30 | Active machine learning for automating scientific discovery |
10:30 | Kaffeepause |
11:00 | Bayesian optimisation: nano-machine-learning |
12:00 | Robust and Scalable Learning with Graphs Prof. Dr. Stephan Günnemann -- TU München |
13:00 | Mittagessen |
15:00 | Representing and Explaining Novel Concepts with Minimal Supervision Asst. Prof. Dr. Zeynep Akata -- University of Amsterdam |
16:00 | Kaffeepause |
17:45 | Konstituierende Clustersitzung und Mitgliederversammlung (nicht-öffentlich) |
19:00 | Gemeinsames Abendessen (nicht öffentlich) |
Dienstag, 26. März 2019
08:30 | Expressive, Robust and Accountable Machine Learning for Real-world Data |
09:30 | Algorithms of Vision: From Brains to Machines and Back |
10:30 | Kaffeepause |
11:00 | From Paired to Unpaired Image-to-Image Translation and Beyond |
12:00 | Face processing: Bridging Natural and Artificial Intelligence Assoc. Prof. Dr. Angela J. Yu -- University of California San Diego, USA |
13:00 | Mittagessen |
14:00 | From statistics to mechanisms, and back Prof. Dr. Jakob Macke - TU München |
2018
Machine Learning meets Law, 19. März 2019
Machine Learning meets Law, Neue Aula
9:00 Stefan Thomas: Algorithms and Antitrust: How can the law make sure that machine learning does not impede competitive freedom?
9:15 Thilo Hagendorff: Regularory Needs in the Field of AI - From Ethics to Policies
9:30 Thomas Grote: The ethics of (expert-level) algorithmic decision-making
9:45 Isabel Valera: Fairness in Machine Learning
10:00 Oliver Kohlbacher: Legal issues related to AI in medicine
10:15 Discussion as long as we want
Erstes Treffen des Cluster "Machine Learning in Science", 12.-13. November, 2018
Internal Meeting of the Cluster "Machine Learning in Science": November 12-13, 2018
Meeting location: Ground floor lecture hall at the Max-Planck Institute for Intelligent Systems (directions)
Preliminary schedule:
Nov 12th
=========
9:00-10:00 Welcome, information & organisation
Ulrike von Luxburg and Philipp Berens
10:00-12:15 Short introductory talks of new group leaders
10:00-10:15 Jörg Stückler
10:15-10:30 Falk Lieder
10:30-11:00 Coffee break
11:00-11:15 Georg Martius
11:15-11:30 Britta Dorn
11:30-11:45 Fabian Sinz
11:45-12:00 Zhaoping Li
12:00-12:15 Gabriele Schweikert
12:15-12:30 Augustin Kelava
12:30-12:45 Michael Krone
12.45 -14:00 Lunch
14:00-15:00 Spotlights for open questions
(all PIs: please prepare exactly 1 slide (3 minutes) and send it to Alla at latest Nov 11)
15:00-15:30 Coffee break
15:30-18:00 Work phase for project teams
18:30 Dinner at Hofgut Rosenau
Nov 13th
========
9:00-10:30 Discussion of open questions, directions, ideas for how
the Excellence Cluster should start and work
10:30-11:00 Coffee break
11:00-12:00 Discussion and work phase
12:00-14:00 Lunch
14:00-15:00 Presentations of project ideas and discussion
15:00-15:30 Coffee break