Quantum technology carries the promise to revolutionise data processing, communication, and metrology. The current approach towards unlocking this potential builds on scalable and fully coherent devices. Although a quantum roadmap is currently set out and the necessity of elements such as error correction is understood, it is currently unclear whether the required technological breakthroughs are indeed fully achievable.
This project follows a novel route and seeks to identify and realise quantum resources yielding a possible quantum advantage by exploiting collective phenomena in open systems. The benefit of this approach is that it does not rely on perfect coherence from the outset. Instead, it exploits the competition between coherent interactions and dissipative processes, which is expected to yield a certain degree of robustness against external perturbations. A prominent example are so-called dissipative time-crystals, which constitute a many-body phase that displays persistent and well-defined temporal oscillations although their dynamical evolution is heavily influenced by incoherent processes.
The goal of this project is to identify and characterise such many-body phases more generally and to perform proof-of-principle experiments that demonstrate their applicability in protocols for sensing and timekeeping. Our focus will be on spin-boson models which constitute simple, yet fundamental and broadly relevant, many-body quantum systems. Within our consortium we will implement such a system using crystals of trapped ions, which offer ultra-long-lived and state-independent hi-fidelity confinement of individually addressable quantum particles. Crystal vibrations mediate interactions among the particles and allow in-situ cooling. The latter is indispensable as only this capability will allow long-time stability and continuous read-out of dissipative many-body phases to be achieved. Apart from its capability to generate quantum resources on demand this highly controllable platform allows us to address a spectrum of important foundational questions, ranging from the consistent formulation of open quantum many-body dynamics under periodic driving to the use of (time-delayed) feedback for controlling dissipative dynamics.
To accomplish this ambitious agenda, we will combine various theoretical techniques including analytical approaches, tensor-network-based numerical simulations, quantum trajectory analyses and machine learning-inspired methods for parameter estimation. All this will be achieved within our diverse and interdisciplinary consortium which gathers experts on the theory of open quantum systems, quantum optics and condensed matter physics as well as in experimental trapped ion physics.
An ensemble of spins, driven by a laser with Rabi-frequency and characterised by a decay rate , interacts with bosonic degrees of freedom (also subject to decay of excitations with rate ). Such an interaction can give rise to genuine nonequilibrium phases, in which the long-time state of the system approaches a limit cycle rather than a stationary phase. This so-called time-crystal phase, which is separated from the stationary phase by a critical point, can be observed via monitoring of the emission output of the spins (quantum trajectories in left plots). While the stationary phase displays spin-squeezing which may lead to quantum-enhanced metrological capabilities, in the time-crystal phase sensing may be performed exploiting oscillations and their sensitivity to the system parameters.
Prof. Dr. Igor Lesanovsky
Institut für Theoretische Physik
Auf der Morgenstelle 14
Universität Tübingen
72076 Tübingen
Germany
open-quantum-systems.com
Our website uses cookies. Some of them are mandatory, while others allow us to improve your user experience on our website. The settings you have made can be edited at any time.
or
Essential
in2cookiemodal-selection
Required to save the user selection of the cookie settings.
3 months
be_lastLoginProvider
Required for the TYPO3 backend login to determine the time of the last login.
3 months
be_typo_user
This cookie tells the website whether a visitor is logged into the TYPO3 backend and has the rights to manage it.
Browser session
ROUTEID
These cookies are set to always direct the user to the same server.
Browser session
fe_typo_user
Enables frontend login.
Browser session
Videos
iframeswitch
Used to show all third-party contents.
3 months
yt-player-bandaid-host
Is used to display YouTube videos.
Persistent
yt-player-bandwidth
Is used to determine the optimal video quality based on the visitor's device and network settings.
Persistent
yt-remote-connected-devices
Saves the settings of the user's video player using embedded YouTube video.
Persistent
yt-remote-device-id
Saves the settings of the user's video player using embedded YouTube video.
Persistent
yt-player-headers-readable
Collects data about visitors' interaction with the site's video content - This data is used to make the site's video content more relevant to the visitor.
Persistent
yt-player-volume
Is used to save volume preferences for YouTube videos.
Persistent
yt-player-quality
Is used to save the quality settings for YouTube videos.
Persistent
yt-remote-session-name
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-session-app
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-fast-check-period
Saves the settings of the user's video player using embedded YouTube video.
Browser session
yt-remote-cast-installed
Saves the user settings when retrieving a YouTube video integrated on other web pages
Browser session
yt-remote-cast-available
Saves user settings when retrieving integrated YouTube videos.
Browser session
ANID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
2 years
SNID
Google Maps - Google uses these cookies to store user preferences and information when you view pages with Google Maps.
1 month
SSID
Used to store information about how you use the site and what advertisements you saw before visiting this site, and to customize advertising on Google resources by remembering your recent searches, your previous interactions with an advertiser's ads or search results, and your visits to an advertiser's site.
6 months
1P_JAR
This cookie is used to support Google's advertising services.
1 month
SAPISID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
2 years
APISID
Used for targeting purposes to profile the interests of website visitors in order to display relevant and personalized Google advertising.
6 months
HSID
Includes encrypted entries of your Google account and last login time to protect against attacks and data theft from form entries.
2 years
SID
Used for security purposes to store digitally signed and encrypted records of a user's Google Account ID and last login time, enabling Google to authenticate users, prevent fraudulent use of login credentials, and protect user data from unauthorized parties. This may also be used for targeting purposes to display relevant and personalized advertising content.
6 months
SIDCC
This cookie stores information about user settings and information for Google Maps.
3 months
NID
The NID cookie contains a unique ID that Google uses to store your preferences and other information.
6 months
CONSENT
This cookie tracks how you use a website to show you advertisements that may be of interest to you.
18 years
__Secure-3PAPISID
This cookie is used to support Google's advertising services.
2 years
__Secure-3PSID
This cookie is used to support Google's advertising services.
6 months
__Secure-3PSIDCC
This cookie is used to support Google's advertising services.
6 months