There are countless examples for insights from animal experiments that, conducted diligently and responsibly, promote medical advances and are of great benefit to humans. A prominent example is the Rhesus blood group system (including the Rhesus factor), which takes its name from its discovery in Rhesus macaques in 1940. Since then, knowledge about the Rhesus incompatibility of different blood types has saved millions of newborns from severe damage or even death.
In neuroscience, the discovery of mirror neurons in the brains of Rhesus macaques exemplifies how unexpected results from fundamental research can quickly incur clinical relevance. By now it is well-known that mirror neurons are also present in humans. They are responsible for our ability to put ourselves in the position of others. On the basis of these fundamental insights, medical research now focuses on disorders in the field of personal interactions, such as in autism.
So Rhesus macaques have specific relevance inside and outside neuroscience. Since monkeys are closely related to humans, that does not seem so surprising. As for other animals, there are possibly even more compelling arguments for transferability of research. In fact, for many decades few if any great biomedical advances have come about without the use of animal experiments.
From the discovery of the malaria cycle in 1898, to the first successful organ transplants (1905) and blood transfusions (1915), to the isolation of insulin (1922), seminal breakthroughs which have since saved countless lives have been grounded in animal research almost since the earliest days of modern medicine.
The track record continues with such indispensable insights as the development of antibiotics (proof for efficacy of penicillin in mice; 1940), the development of polio vaccination (extensive testing in mice, rats, monkeys and great apes; 1955) and the first medication for AIDS (research in mice, rats, and dogs; 1986).
Today, greatly promising research such as that into cancer therapies based on monoclonal antibodies, and into deep brain stimulation as a treatment for Parkinson’s disease, epilepsy, and depression is directly dependent on animal research combined with clinical studies. For more information about the history of animal use in biomedical research, take a look at AnimalResearch.info’s excellent timeline here.
A final note: to be fair, sometimes the transferability of animal research to humans is not even desired. In fact, there are many animal species whose physiological capabilities far surpass those of humans in certain fields. Examples include the Axolotl’s astounding ability to regenerate lost limbs, and the Naked Mole-Rat’s resistance to cancer and its longevity. Decoding these species’ secrets promises to open up whole new fields of research that will, at some point, hopefully turn out to be transferable to humans. But for the time being, science is still seeking a deeper understanding of the core mechanisms involved.