Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN)

Neural Circuits of Vision

Visual information processing across different levels of the early visual system

For most animals including humans, vision is the dominant sense and a large fraction of the brains computational power is devoted to processing the incoming stream of visual information. This already starts in the eye. Here, unlike a simple camera, the retina extensively processes the visual input by extracting separate information channels like contrast, motion or edges. In my lab, we seek to understand how this disassembly of a complex visual input stream is performed by retinal circuits using two-photon population calcium and glutamate imaging in the ex-vivo mouse retina.

For example, we have recently investigated how color – a distinct visual feature – arises within the retinal network by recording light responses to colored stimuli all the way from photoreceptors to the retinal output. This revealed that neural circuits in the mouse retina are exquisitely tuned to extract color information from the upper visual field (Szatko, Korympidou et al. 2019), where it might aid robust detection of aerial predators and ensure the animal´s survival. Interestingly, our findings may explain recent behavioral data (Denman et al. 2018), demonstrating that mice are better at discriminating light spots of different colors in the upper compared to the lower visual field.

My lab is also interested in studying how the representation of specific visual features changes from the retina to downstream visual targets in the brain, like superior colliculus and primary visual cortex. In collaboration with Prof. Andreas Tolias at Baylor College of Medicine, Houston, we are currently studying how color information is further processed in mouse visual cortex. By systematically following the visual signal across consecutive processing layers, we hope to uncover fundamental principles of how the brain processes visual information to generate a specific behavioral output.