November 2011
Kostas Glampedakis, Nils Andersson, Sam Lander
Much of the recent theoretical work on neutron star physics has aimed on improving our understanding of the magnetic field equilibrium structure in neutron stars. This is a necessary step if we ever hope to develop truly realistic models of phenomena such as magnetar flares and the quasi-periodic oscillations observed during these events. Our work improves on the existing models of hydromagnetic equilibrium by including a key property of neutron star matter, namely, the combined presence of superfluid and superconducting components.
July 2011
Erich Gaertig, Kostas Glampedakis, Kostas D. Kokkotas, Burkhard Zink
Rapidly spinning neutron stars are known to harbour pulsation modes that may become unstable and grow in amplitude by emitting gravitational radiation. This is due to the so-called Chandrasekhar-Friedman-Schutz (CFS) mechanism which is based on the general notion of oscillations changing from counter- to co-rotating (with respect to the stellar rotation) as a result of rotational dragging. As soon as a retrograde mode in the comoving frame of the rotating neutron star is dragged forward and moves prograde in the coordinate sytem of an inertial observer, the emission of gravitational waves leads to an instability which removes angular momentum from the neutron star and will spin it down.
Among the various stellar modes, the f-mode is the one typically considered as a promising source of gravitational radiation for ground-based detectors such as LIGO and VIRGO. Improving the existing work on the f-mode instability in Newtonian stellar models, in this work we present the first calculation of the basic properties of the f-mode instability in rapidly rotating relativistic neutron stars, adopting the Cowling approximation. Using a relativistic polytropic stellar model with representative values for mass and radius, we obtain a minimum gravitational growth timescale (for the dominant l=m=4 mode) of the order of 103-104 seconds near the Kepler spin frequency. This is substantially shorter than the Newtonian value which typically is one or two order of magnitudes larger. By accounting for dissipation in neutron star matter, i.e. shear/bulk viscosity and superfluid mutual friction, we also calculate the associated f-mode instability window.
July 2011
Burkhard Zink, Paul D. Lasky, Kostas D. Kokkotas
Few theoretical studies have been concerned with this problem, with the small number using either highly idealized models or assuming a magnetic field orders of magnitude beyond what is supported by observations. We perform nonlinear general-relativistic magnetohydrodynamics simulations of large-scale hydromagnetic instabilities in magnetar models. We utilise these models to find gravitational wave emissions over a wide range of energies, from 1040 to 1047 erg. This allows us to derive a systematic relationship between the surface field strength and the gravitational wave strain, which we find to be highly nonlinear. In particular, for typical magnetar fields of a few times 1015 G, we conclude that a direct observation of f-modes excited by global magnetic field reconfigurations is unlikely with present or near-future gravitational wave observatories, though we also discuss the possibility that modes in a low-frequency band up to 100 Hz could be sufficiently excited to be relevant for observation.
June 2011
Paul D. Lasky, Burkhard Zink, Kostas Glampedakis, Kostas D. Kokkotas
Magnetic fields play a pivotal role in multiple aspects of neutron star physics. We are modelling strongly magnetised neutron stars with three-dimensional, non-linear, general relativistic magnetohydrodynamic (GRMHD) simulations to understand the secular and dynamical evolution of these exotic objects. The first of these works studied magnetic field instabilities and the susbequent evolution to new, quasi-equilibria magnetic field configurations. The existence of these stable equilibra may have consequences for neutron star physics, including flare generation mechanisms and interpretations of quasi-periodic oscillations. Read more about this work here.
May 2011
Stratos Boutloukos
X-ray burst spectra have long been used to estimate neutron star masses and radii. These estimates assumed that burst spectra are accurately described by the model atmosphere spectra developed over the last three decades. We compared RXTE data from a superburst with these spectra and found that the spectra predicted by previously published model atmospheres are strongly inconsistent with these high-precision measurements. This suggests caution in making inferences using these model spectra. In contrast, a simple Bose-Einstein spectrum is fully consistent with the data, as are recently published model atmosphere spectra. Fitting the latter to long stretches of data may yield constraints on the neuron star mass and radius via joint constraints on the surface gravity and redshift.
April 2011
Antonella Colaiuda, Kostas D. Kokkotas
Modelling the so-called quasi periodic oscillations in strongly magnetised neutron stars (magnetars) could help to constrain the equation of state of those compact objects.
According to the magnetar model, energy is fed to the neutron star magnetosphere when local “crustquakes'' occur, giving rise to recurrent bursts with a large range of amplitudes. Giant flares are believed to originate from large-scale rearrangements of the inner field or catastrophic instabilities in the magnetosphere. Both mechanisms are accompanied by quasi-periodic oscillations (QPOs) in the tails of the flares.
In our work, we use a linear general relativistic code in order to find a better model that could fit to the observed frequencies.
March 2011
Erich Gaertig, Kostas D. Kokkotas
When a fast rotating neutron star becomes unstable to the CFS-mechanism, the non-axisymmetric instabilities will be a strong emitter of gravitational waves. The detection of these gravitational waves from oscillating neutron stars will allow the study of their interior, in the same way as helioseismology provides information about the interior of the Sun. It is expected that the identification of specific pulsation frequencies in the observational data will reveal the true properties of matter at densities that cannot be probed today by any other experiment.
This is the original suggestion about gravitational wave asteroseismology which was first applied to nonrotating neutron stars. The idea is to compute frequencies and damping times for different neutron star models and a huge variety of equations of state. Based on this data pool, model-independent relationships between oscillation frequencies/damping times and stellar key parametes like mass and radius can be established which will unambiguously pinpoint these parameters once gravitational waves from neutron stars can be detected.
In this study, gravitational wave asteroseismology has been extended to handle rapidly rotating neutron stars as well. The inclusion of rotational effects leads to several complications. First, non-axisymmetric mode frequencies split once the star is spinning and second, depending on the actual model, certain configurations can become secularly unstable. Nevertheless, it was possible to derive again model-independent relationships which in this case also include the angular velocity as fitting parameter.
February 2011
Burkhard Zink
Massively parallel computations typical of scientific simulations can nowadays make use of GPUs (graphics processing units). HORIZON is a new application code for general relativistic magnetohydrodynamics which is optimized to make full use of these new architectures. Substantial performance improvements over traditional CPU-based computations have been observed in this study.
Auf unserer Webseite werden Cookies verwendet. Einige davon werden zwingend benötigt, während es uns andere ermöglichen, Ihre Nutzererfahrung auf unserer Webseite zu verbessern. Ihre getroffenen Einstellungen können jederzeit bearbeitet werden.
oder
Essentiell
in2cookiemodal-selection
Erforderlich, um die Benutzerauswahl der Cookie-Einstellungen zu speichern.
3 Monate
be_lastLoginProvider
Benötigt, damit TYPO3 beim Backend-Login den Zeitpunkt des letzten Logins feststellen kann.
3 Monate
be_typo_user
Dieses Cookie teilt der Webseite mit, ob ein Besucher oder eine Besucherin zugleich im TYPO3-Backend angemeldet ist und die Rechte besitzt, die Webseite zu verwalten.
Sitzungsende
ROUTEID
Diese Cookies werden gesetzt, um den Benutzer oder die Benutzerin immer zum gleichen Server zu leiten.
Sitzungsende
fe_typo_user
Ermöglicht Frontend-Login.
Sitzungsende
Videos
iframeswitch
Wird verwendet, um eingebettete externe Inhalte Dritter anzuzeigen.
3 Monate
yt-player-bandaid-host
Wird verwendet, um YouTube-Videos anzuzeigen.
Beständig
yt-player-bandwidth
Wird verwendet, um die optimale Videoqualität basierend auf den Geräte- und Netzwerkeinstellungen des Besuchers oder der Besucherin zu bestimmen.
Beständig
yt-remote-connected-devices
Speichert die Einstellungen des Videoplayers des Benutzers oder der Benutzerin unter Verwendung von eingebettetem YouTube-Video.
Beständig
yt-remote-device-id
Speichert die Einstellungen des Videoplayers des Benutzers oder der Benutzerin unter Verwendung von eingebettetem YouTube-Video.
Beständig
yt-player-headers-readable
Sammelt Daten über die Interaktion der Besucher mit den Videoinhalten der Website - Diese Daten werden verwendet, um die Relevanz der Videoinhalte der Website für den Besucher zu erhöhen.
Beständig
yt-player-volume
Wird verwendet, um die bevorzugte Lautstärke der YouTube-Videos zu speichern.
Beständig
yt-player-quality
Wird verwendet, um die bevorzugte YouTube Wiedergabequalität zu speichern.
Beständig
yt-remote-session-name
Speichert die Einstellungen des Videoplayers des Benutzers oder der Benutzerin unter Verwendung von eingebettetem YouTube-Video.
Sitzungsende
yt-remote-session-app
Speichert die Einstellungen des Videoplayers des Benutzers oder der Benutzerin unter Verwendung von eingebettetem YouTube-Video.
Sitzungsende
yt-remote-fast-check-period
Speichert die Einstellungen des Videoplayers des Benutzers oder der Benutzerin unter Verwendung von eingebettetem YouTube-Video.
Sitzungsende
yt-remote-cast-installed
Speichert die Benutzereinstellungen beim Abruf eines auf anderen Webseiten integrierten YouTube-Videos.
Sitzungsende
yt-remote-cast-available
Speichert die Benutzereinstellungen beim Abruf von integrierten YouTube-Videos.
Sitzungsende
ANID
Wird für Targetingzwecke verwendet, um ein Profil der Interessen der Website-Besucher zu erstellen, um relevante und personalisierte Google-Werbung anzuzeigen.
2 Jahre
SNID
Google Maps - Google verwendet diese Cookies, um Benutzereinstellungen und Informationen zu speichern, wenn Sie Seiten mit Google Maps aufrufen.
1 Monat
SSID
Wird verwendet, um Informationen darüber zu speichern, wie Sie die Website nutzen und welche Werbung Sie vor dem Besuch dieser Website gesehen haben, und um die Werbung auf Google-Ressourcen anzupassen, indem Sie sich an Ihre letzten Suchanfragen, Ihre früheren Interaktionen mit Anzeigen oder Suchergebnissen eines Werbetreibenden und Ihre Besuche auf einer Website eines Werbetreibenden erinnern.
6 Monate
1P_JAR
Dieses Cookie wird verwendet, um die Werbedienste von Google zu unterstützen
1 Monat
SAPISID
Wird für Targetingzwecke verwendet, um ein Profil der Interessen der Website-Besucher zu erstellen, um relevante und personalisierte Google-Werbung anzuzeigen.
6 Monate
APISID
Wird für Targetingzwecke verwendet, um ein Profil der Interessen der Website-Besucher zu erstellen, um relevante und personalisierte Google-Werbung anzuzeigen.
6 Monate
HSID
Beinhaltet verschlüsselte Einträge Ihres Google Accounts und der letzten Login-Zeit um vor Attacken und Datendiebstahl aus Formulareinträgen zu schützen.
2 Jahre
SID
Wird zu Sicherheitszwecken verwendet, um digital signierte und verschlüsselte Aufzeichnungen der Google-Konto-ID eines Nutzers und der letzten Anmeldezeit zu speichern, die es Google ermöglichen, Nutzer zu authentifizieren, eine betrügerische Verwendung von Anmeldeinformationen zu verhindern und Benutzerdaten vor Unbefugten zu schützen. Dies kann auch für Targetingzwecke genutzt werden, um relevante und personalisierte Werbeinhalte anzuzeigen.
6 Monate
SIDCC
Dieses Cookie speichert Informationen über Nutzereinstellungen und -informationen für Google Maps.
3 Monate
NID
Das NID-Cookie enthält eine eindeutige ID, die Google verwendet, um Ihre Einstellungen und andere Informationen zu speichern.
6 Monate
CONSENT
Dieses Cookie verfolgt, wie Sie eine Website nutzen, um Ihnen Werbung zu zeigen, die für Sie interessant sein könnte.
18 Jahre
__Secure-3PAPISID
Dieses Cookie wird verwendet, um die Werbedienste von Google zu unterstützen
2 Jahre
__Secure-3PSID
Dieses Cookie wird verwendet, um die Werbedienste von Google zu unterstützen
2 Jahre
__Secure-3PSIDCC
Dieses Cookie wird verwendet, um die Werbedienste von Google zu unterstützen.
6 Monate